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Abstract

Viral infections of the central nervous system (CNS) are a significant cause of neurological 

impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial 

responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses 

of both brain resident cells and infiltrating immune cells. This review discusses how microglia 

may promote this antiviral response at a molecular level, from potential mechanisms of virus 

recognition to downstream cytokine responses and interaction with antiviral T cells. Recent 

advancements in genetic tools to specifically target microglia in vivo promise to further our 

understanding about the precise mechanistic role of microglia in CNS infection.
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1. Introduction

Viral infections in the central nervous system (CNS) represent a significant cause of 

neurologic impairment [1], driven by both the primary infection and the subsequent 

inflammatory reaction. Understanding CNS antiviral immunity has never been more 

important, as the novel coronavirus pandemic continues to highlight the acute and chronic 

consequences of systemic infection on neurological and psychiatric function [2–4].

Microglia constitute 5–10% of brain cells, and are the only resident immune cell present 

in the brain parenchyma, making them a central figure in CNS viral infection [5,6]. Unlike 

peripheral bone marrow-derived macrophages, microglia are derived from early embryonic 

yolk sac progenitor cells, and once seeded in the embryonic neural tissue, they self-renew 

throughout life without significant contribution from bone-marrow derived macrophages 

[7,8]. In addition to their homeostatic roles in surveying the brain environment [9,10] and 

synaptic pruning during development [11–13], microglia also rapidly respond to acute CNS 

damage by migrating to sites of injury and secreting inflammatory cytokines [14,15]. Their 

embryonic origin, coupled with their relative isolation from the peripheral immune system, 

make microglia highly specialized for the brain environment.

In general, microglial dysfunction and inflammatory responses contribute to pathological 

outcomes in brain disease [15,16], but may also facilitate repair after injury [17]. Microglia 

are a central player in the inflammatory response to CNS infections, serving as first 

responders to viral invaders and essential coordinators of the antiviral responses of both 

CNS resident cells and peripheral immune cells. In this review, we discuss the current 

understanding of the roles microglia play in the antiviral response, focusing on how viruses 

enter the CNS, microglial recognition of viral infection, their inflammatory responses, and 

interactions with the peripheral immune system. We also discuss limitations to existing 

studies and how recent technological advances will help uncover the specific mechanistic 

roles of microglia in CNS viral immunity.

2. Viral invasion of the CNS

The first step in appreciating how microglia contribute to antiviral responses is 

understanding how they first encounter a virus. There are two major routes of entry 

viruses use to infiltrate the CNS – through bypassing the blood-brain barrier (BBB) 

or blood-cerebrospinal fluid (CSF) barrier from the circulation, or by retrograde axonal 

transport following primary transduction of peripheral or olfactory neurons. Viral entry can 

occur without frank breakdown of cellular barriers associated with the BBB by directly 

transducing brain endothelial cells or pericytes to infiltrate the brain parenchyma. For 

example, the flaviviruses West Nile Virus (WNV), Zika virus, and Japanese encephalitis 

virus (JEV), as well as the retrovirus human immunodeficiency virus (HIV) can transduce 

brain microvascular endothelial cells to access the brain parenchyma [18–24]. Zika virus 

can also transduce pericytes in the choroid plexus, which promotes blood-CSF barrier 

compromise [25]. After initial CNS invasion, subsequent inflammation can cause breakdown 

of BBB components such as endothelial tight junctions and the basal lamina, which 
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facilitates increased viral infiltration through either paracellular entry or “hijacked” immune 

cells – known as the “Trojan horse” method of entry. WNV promotes overt BBB breakdown 

early after initial invasion [26,27], allowing for infiltration of WNV-infected immune cells 

into the CNS [28–30]. Similarly, in vitro human BBB models show that HIV-infected 

leukocytes traverse the endothelium in response to chemokines such as CCL2 [31,32].

Alternatively, some encephalitogenic viruses first transduce peripheral or olfactory neurons 

with central synapses to efficiently bypass protective barriers. Herpes simplex virus (HSV)-1 

and a related herpesvirus, pseudorabies virus (PRV), gain access via migration along these 

neurons into the CNS and/or following reactivation of latent infection in central neurons 

[33–35]. Conversely, viruses from many families first have tropism for non-neuronal cells 

but then manage to co-opt axonal transport for CNS access. For example, both rabies 

virus (RABV) and poliovirus enter the CNS via retrograde transport along lower motor 

neurons, though they initially infect myocytes and mucosal epithelial cells respectively 

[36–38]. Several respiratory viruses, including mouse hepatitis virus (MHV), vesicular 

stomatitis virus (VSV), and Theiler’s murine encephalomyelitis virus (TMEV) can use 

initial transduction of olfactory neurons as a method of entry into the CNS [39–43]. Some 

viruses (such as WNV), use both the circulatory route and peripheral neuron transduction as 

a means to access the CNS [44,45].

Once the barriers protecting the CNS are breached, a coordinated immune response between 

CNS resident cells and infiltrating immune cells from the periphery must be raised to fight 

the invading virus and limit its spread. In a delicate, largely non-regenerative tissue like 

the CNS, this response must be balanced - too much inflammation may clear the virus but 

can also cause irreparable damage, while too little inflammation may allow the virus to run 

rampant. As the only resident immune cell in the brain parenchyma, microglia likely play 

important roles at the center of this inflammatory balance, though their exact roles in this 

process have long been debated. A summary of known microglial responses are discussed in 

further detail below.

3. A protective role for microglia during CNS viral infection

As tissue resident immune cells, microglia rapidly respond to invading viral pathogens, 

and are predicted to serve protective roles by clearing virus particles and coordinating 

the early inflammatory response. The strongest in vivo evidence that microglia protect 

the CNS from viral infection relies on studying infection severity in mouse microglia 

depletion models. Two main methods are used to deplete microglia rapidly and efficiently: 

1) pharmacologic inhibition of the microglial survival receptor, colony stimulating factor 

1 receptor (CSF1R) or 2) a genetic model that inducibly deletes the CSF1R receptor 

(Cx3cr1CreER/+::Csf1rFlox/Flox) in microglia [46,47].

Depletion studies indicate that for multiple families of neurotropic viruses, absence of 

microglia leads to more severe CNS damage and correlates with higher viral titers. CNS 

infection with the coronavirus MHV typically results in mild encephalitis and spinal cord 

white matter injury. Pharmacological depletion of microglia before or within the first 3 days 

of MHV infection is associated with delayed viral clearance, increased demyelination, and 
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increased mortality [48–50]. Infection with flaviviruses WNV or JEV or the rhabdovirus 

VSV similarly show uncontrolled viral spread in the CNS and increased mortality following 

microglial depletion [51–53]. Using super resolution and transmission electron microscopy, 

one group found that microglial depletion during herpesvirus PRV infection resulted in 

significant increases in extracellular virus protein, infected neurons, and neuronal cell death 

[54]. This increased neuronal death was linked to worse neurological outcomes, including 

seizures and muscle spasms [54]. Finally, infection of C57BL/6J mice with the picornavirus 

TMEV typically leads to hippocampal damage, causing clinical seizures. In addition to 

increased viral titers throughout the hippocampus and spinal cord, microglia-depleted mice 

had significantly more neuronal cell death in the brain and spinal cord as measured by 

neuronal cell death [55]. Clinical outcomes were also worse, as these mice had increased 

incidence of seizures early in the course of TMEV infection, hind limb paralysis, and 

increased mortality [55,56]. Taken together, these studies point to microglia being crucial in 

the antiviral response to many neurotropic viruses, both limiting their spread and preventing 

virus-induced neuropathology.

While these depletion studies implicate microglia as central players in controlling CNS 

viral infection, without orthogonal methods it is difficult to determine if it is the 

loss of a direct protective function or lack of inhibition of a destructive inflammatory 

response that leads to increased morbidity. For example, several studies observe a 

compensatory peripheral monocyte response in the brain following depletion of microglia. 

In MHV encephalomyelitis, increased numbers of blood-derived CD45hiCD11b+ monocyte/

macrophages infiltrated the brain following microglia depletion, which correlated with 

increased RNA expression of type I interferons and IL-6. Interestingly, despite this increased 

peripheral monocyte/macrophage infiltration, viral load was increased and these mice had 

worse outcomes [48]. Similar findings occurred in TMEV infection, where increased 

monocyte/macrophage inflammatory responses in the brain following microglia depletion 

were insufficient to limit viral replication and mortality [55]. These observations support a 

model where microglia are necessary players in limiting viral dissemination in the CNS, and 

further suggest that the antiviral role(s) of microglia are non-redundant with those of other 

macrophage populations, though it is difficult to decouple the effect of increased peripheral 

macrophage inflammatory response from the absence of microglia.

One proposed mechanism for how microglia provide protection against viral infection is 

by supporting the infiltration of T cells. Several studies using CSF1R signaling inhibition 

to deplete microglia also report decreased T cell responses in the brain [48–51,55], which 

suggests that microglia act as local antigen presenting cells to support CNS-infiltrating T 

cells. A significant caveat of this approach, however, is that inhibiting CSF1R signaling 

systemically can affect maturation of peripheral antigen presenting cells [48,49,51]. During 

MHV infection, for example, microglia depletion was associated with decreased CD4+ 

T cell infiltration and decreased interferon (IFN)-γ production. Though this could be 

due to absent local restimulation by microglia, peripheral monocyte/macrophages also 

expressed less MHC class II and more Ly6C suggesting an alternative defect [48]. 

Additionally, in a mouse model of WNV encephalitis, systemic CSF1R inhibition led 

to decreased costimulatory molecule expression by antigen-presenting cells (APCs) in 

lymph nodes, blood, and the CNS [51]. CSF1R signaling inhibition during JHM mouse 
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hepatitis virus (JHMV) infection, also decreased costimulatory molecule expression on 

peripheral macrophages and dendritic cells [49,51]. Altogether, depletion studies suggest 

that microglia limit viral spread and promote survival, but effects of CSF1R antagonists 

on other macrophages make differentiating their mechanistic role from that of peripheral 

monocyte/macrophages difficult.

Genetic approaches to specifically deplete microglia provide additional insight 

into microglia-specific roles during CNS infections. One study used the 

Cx3cr1CreER/+;Csf1rFlox/Flox mouse model [57], in which tamoxifen administration 

inducibly depletes microglia, which highly express CX3CR1. Tamoxifen-induced depletion 

of microglia before HSV-1 infection resulted in increased viral titers in the brain, 

rapid weight loss, and increased mortality [58]. These findings support those from 

pharmacological depletion studies pointing to microglia as essential protective players 

during CNS infection, however, this genetic approach is also somewhat confounded by 

CX3CR1 expression by Ly6Clo monocytes and CNS border macrophages. Tamoxifen-

induced depletion resulted in fewer CD45hiCD11b+Ly6C+ peripheral monocytes recruited 

to the brain during HSV-1 infection, suggesting that either microglia are important for 

recruitment of peripheral immune cells, or that depletion of CSF1R-dependent CX3CR1+ 

peripheral monocytes occurs in this model.

Overall, existing evidence suggests that microglia play a crucial antiviral role that is not 

compensated for by infiltrating monocyte/macrophages, however, it is important to consider 

additional variables such as viral strain and potential differences between murine and 

human microglial responses. For example, though seemingly rare, there are reports of 

neuroinvasion of human coronaviruses SARS-CoV, MERS-CoV, and the novel coronavirus 

SARS-CoV2 [59,60]. Though mice are typically resistant to infection with these human 

coronaviruses, a transgenic mouse model expressing human angiotensin-converting enzyme 

2 (ACE2), the receptor that mediates cellular entry of SARS-CoV and SARS-CoV2, allows 

for productive infection of SARS-CoV2, including variable neuroinvasion in anywhere from 

0–60% of mice [61–64]. One study using this mouse model found that, in contrast to studies 

using murine coronavirus MHV, pharmacological depletion of microglia had no effect on 

weight loss or viral dissemination in the brain, though inflammatory cytokine production 

in the brain decreased [65]. These results suggest the potential for some variability in 

microglial responses dependent on viral strain that should be considered. On the whole, 

though it has been well established that microglia play an important protective role in 

many CNS viral infections, limitations in existing tools have prevented dissection of the 

precise mechanisms and contribution of microglia in CNS infection. Recent developments in 

microglia-specific genetic tools, such as microglia-specific (Tmem119CreERT2 or Sall1CreER) 

[66–68] or monocyte-specific Cre lines (Ms4a3CreERT2) [69] can help delineate the antiviral 

roles of microglia versus infiltrating macrophages, as well as provide mechanistic insight 

into antiviral functions of microglia.

4. Microglial recognition of viral infection

A key to understanding the role of microglia in antiviral immunity is defining the 

molecular mechanisms by which they recognize viruses. Viral recognition by microglia 
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occurs through innate immune sensors known as pattern recognition receptors (PRRs), 

that recognize highly conserved pathogen motifs known as pathogen-associated molecular 

patterns (PAMPs). There are several major classes of PRRs including Toll-like receptors 

(TLRs), the retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), nucleotide-binding 

oligomerization domain, leucine rich repeat and pyrin domain containing (NLRPs), and 

C-type lectin receptors (CLRs), as well as the cytosolic DNA sensor cGAS. Of these, TLRs, 

RLRs, NLRPs, and cGAS recognize viral PAMPs, and are discussed in the context of 

microglia responses to CNS viral infection in more detail below.

4.1. Toll-like Receptors (TLRs)

One of the best characterized groups of PRRs are TLRs, which consist of TLRs1–10 in 

humans and TLRs1–9 and TLRs12–13 in mice. TLRs are proteins localized to the cell 

membrane or intracellular compartments such as endosomes and lysosomes. They recognize 

a wide array of PAMPs including viral DNA and RNA, and are major contributors to 

antiviral cytokine responses [70]. Evidence that TLRs are involved in antiviral immunity 

in human CNS infections is provided by GWAS studies, in which mutations in TLR3 

and the type I interferon pathway (activated downstream of TLR signaling) is linked to 

greater risk of the developing encephalitogenic HSV [71–76]. MyD88 is an important 

adaptor molecule recruited downstream of TLR activation, and is required for much of the 

TLR-mediated cytokine and chemokine response during infection [77]. MyD88-deficient 

mice are generally more susceptible to encephalitogenic viruses [78–80], suggesting that 

TLR signaling contributes to antiviral immune responses in the CNS. Mouse microglia 

constitutively express all known murine TLRs, except TLR8, and stimulation with a 

variety of TLR agonists leads to changes in TLR expression, suggesting that microglia 

are sensitive to a variety of pathogenic stimuli through members of the TLR family [66,81]. 

Following transduction with TMEV in vitro, microglia specifically upregulate TLRs 2, 

3, 5, and 9, all of which recognize viral components. Increased expression of TLRs in 

this system also correlated with increased cytokine expression, chemokine production, and 

APC function, suggesting that this family of innate immune sensors are a mechanism by 

which microglia recognize and respond to viruses [81]. Additionally, microglia, though 

not permissive to HSV-1 replication themselves, are the main producers of inflammatory 

cytokines in the presence of the virus in vitro [82]. Many of these cytokines (TNFα, IL-1, 

IL-6, and IL-12) were subsequently found to be dependent on TLR2 signaling ex vivo, 

as microglia isolated from TLR2−/− mice did not produce these cytokines in response to 

HSV-1 [83]. Interestingly, TLR2−/− mice are not more susceptible to HSV infection in vivo 
[78,84,85]. As with many innate immune signaling pathways, this is likely due to significant 

redundancy in TLR activation and signaling in vivo. Supporting this hypothesis, TLR2 and 

TLR9, by sensing viral particles and genomic DNA, respectively, act synergistically during 

HSV infection in vivo to induce microglial inflammatory cytokine production and control 

viral replication in the CNS [84–86].

TLR3, which recognizes viral RNA, is expressed by multiple cell types in the brain [87], 

but both in vitro and in vivo studies have shown that microglia respond to the TLR3 

agonist Poly I:C by producing a wide array of inflammatory cytokines [88]. TLR3 has also 

been implicated in microglial responses to JEV in vitro. Using a microglial cell line, JEV 
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induced TLR3-mediated inflammatory cytokine expression in cultured microglia, which was 

decreased with TLR3 knockdown [89].

Taken together, these reports show that microglia can respond through TLR activation to 

CNS viral pathogens. The use of in vitro microglia culture systems and global knockouts 

make conclusions about the role of microglia-specific TLR recognition of viruses difficult, 

as microglia downregulate signature genes in culture, and often do not fully recapitulate 

in vivo microglia phenotypes [90,91]. The use of microglia-specific TLR knockouts could 

further clarify how TLRs contribute to microglia antiviral responses in vivo.

4.2. RIG-I like receptors (RLRs)

RLRs are cytosolic innate immune sensors that recognize cytoplasmic viral RNA and 

contribute to antiviral cytokine and type I interferon responses. There are three known 

RLR family members: RIG-I, MDA5, and LGP2 [92]. Of these, RIG-I and MDA5 are the 

signaling effectors that respond to viral RNA. [93]. Cultured murine microglia constitutively 

express both RIG-I and MDA5 [94,95]), and upregulate their expression following exposure 

to VSV and JEV [89,94,95]. Additionally, RIG-I is necessary for optimal inflammatory 

cytokine production by microglia in response to VSV and HSV-1 in vitro [95]. In response 

to JEV, cultured murine microglia relied on both TLR3 and RIG-I signaling for cytokine 

production, suggesting that multiple innate immune sensing pathways act in concert to 

promote antiviral immunity in microglia [89]. In vivo studies interrogating the role of 

RLR signaling in virus encephalitis are extremely limited, and none specifically focus on 

microglia. Interestingly, RIG-I/MDA5 double knockout mice are more susceptible to WNV 

infection, and unable to control viral replication in the periphery and the brain compared 

to wildtype (WT) mice [96]. Similarly, RIG-I-deficient mice are more susceptible to JEV 

infection [97]. Together, these studies suggest important roles for RLR signaling in CNS 

viral infection, though more specific manipulation of microglia RLR signaling would further 

specify their function in microglial antiviral responses.

4.3. cGAS-STING

Another pathway by which microglia respond to viral pathogens is through recognition of 

viral nucleic acids by the cytoplasmic DNA sensor cyclic GMP-AMP synthase (cGAS), and 

its downstream mediator Stimulator of Interferon Genes (STING) [98]. In HSV-1 infection, 

mice deficient in either cGAS or STING had impaired control of viral replication in the 

CNS and were highly susceptible to HSV encephalitis [99]. Interestingly, while neurons and 

astrocytes rely on TLR3 signaling to mount an antiviral defenses against HSV-1, microglia 

depended on cGAS-STING signaling to produce a potent type I interferon response to limit 

viral dissemination in the brain [99,100]. Microglia were able to prime antiviral programs 

in both neurons and astrocytes in a STING-dependent manner, as neurons treated with 

conditioned media from HSV-1 infected WT microglia, but not STING-deficient microglia, 

limited viral replication. Similarly, astrocytes exposed to conditioned media from HSV-1 

infected WT microglia, but not STING-deficient microglia, upregulated TLR3 signaling, 

which was linked to increased IFNβ expression upon subsequent infection with HSV-1. 

These results suggest that microglia may be unique in their reliance on cGAS-STING 

to recognize HSV-1 infection, and that this pathway may be central to coordinating the 
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brain-wide response to viral infection. One caveat of this study, however, is the use of global 

knockouts of cGAS and STING, which again leaves open the possibility that peripheral 

monocyte/macrophages may also rely on cGAS-STING to influence antiviral functions in 

this context.

Human microglia also express cGAS and STING [101]. One study found that a human 

microglial cell line heterozygous for cGAS was unable to produce normal levels of IFNβ in 

response to B- and Y- form DNA (known ligands for cGAS), suggesting cGAS activation 

may play an important role in amplifying type I interferon in response to DNA viruses 

[102]. With HSV-1 transduction, however, the same human microglia cell line did not 

produce detectable levels of IFNβ in either WT or cGAS heterozygous cells [102]. This 

result, coupled with the caveats of studying microglia in culture and new findings in mouse 

that cGAS-STING antiviral effects in response to HSV1 may be interferon-independent 

[103] leave unanswered the question of whether cGAS contributes to antiviral responses of 

human microglia. The study of cGAS-STING in microglia is a relatively nascent field, and 

there remain many important unanswered questions regarding the role of cGAS-STING in 

microglial recognition of of viral infections, as well as its contribution to cytokine responses 

and coordination of brainwide antiviral responses.

4.4. Recognition of damage-associated molecular patterns (DAMPs)

In addition to viral detection, another critical aspect of the microglial response is recognition 

of tissue damage. In a model of nasal VSV infection, microglia cluster in the olfactory bulb, 

an action thought to “wall off” further spread of the virus in the CNS [53]. Loss of type I 

interferon (IFNAR) signaling specifically in neurons and astrocytes (using Nestin-Cre), but 

not microglia (using CX3CR1-Cre), decreased VSV-associated microglial accumulation in 

the olfactory bulb, increased viral dissemination, and increased mortality [53]. The IFNAR-

dependent effectors released by neurons and astrocytes in this context remain unidentified, 

but this study emphasizes the importance of crosstalk between CNS cells to coordinate 

microglial responses and limit viral spread.

P2RY12 is a highly expressed purinergic receptor that recognizes ADP [10,104], and is 

the predicted mechanism by which microglia sense neuronal injury that occurs during CNS 

viral infection. During infection with PRV, P2RY12 was necessary for the recruitment 

of microglia to PRV-infected neurons. Loss of P2RY12 decreased microglia contact with 

PRV-infected neurons and increased accumulation of disintegrated neurons and extracellular 

virus particles, suggesting that microglia detect infected neurons through P2RY12 to limit 

viral spread [54]. P2RY12+ microglia also cluster around and engulf HSV-1-infected 

neurons in the human brain, consistent with mouse models, though the dependence of this 

process on P2RY12 is unknown [54]. As microglia are poor replicative reservoirs for many 

CNS-infecting viruses [34,105–110], understanding how they respond to viral damage, 

independent of direct viral recognition, is critical to clarify their response to viral infection.

4.5. Inflammasome

The inflammasome complex allows innate immune cells, such as microglia, to sense PAMPs 

and DAMPs [111]. It is a subcellular signaling complex with three main components: 1) 
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a PRR (mainly NLRP1, NLRP3, NLRC3, NLRC4, and AIM2), 2) an adaptor molecule 

(the most common one being apoptosis-associated spec-like protein containing a caspase 

recruitment domain (ASC-CARD)), and 3) a caspase [112]. Activation of the inflammasome 

complex leads to the production of IL-1β and IL-18, which occurs in microglia in several 

models of neurodegeneration [111,113–115].

Polymorphisms in the NLRP3 gene are associated with increased susceptibility to HIV 

infection [116,117]. Microglia, along with peripheral monocyte/macrophages, are well-

documented reservoirs for HIV replication [118–124], suggesting that inflammasome 

activation in microglia may be key to understanding retroviral responses in the brain. 

Transcripts for downstream inflammasome pathway components, such as IL-1β, IL-18, 

ASC, and caspase-1, are expressed by microglia in HIV-infected individuals [125]. 

Additionally, following exposure to HIV in vitro, primary human microglia form ASC 

specks (indicating formation of the inflammasome complex), activate caspase-1, and release 

IL-1β, all of which is dependent on NLRP3 recognition of HIV viral proteins [125–127]. 

Overall, as the inflammasome can recognize both PAMPs and DAMPs, it has the potential 

to play an important role in microglial recognition of CNS infection, and remains a critical 

understudied mechanism regulating the microglial response to CNS viral infection.

5. What is the outcome of microglial response to CNS viral infection?

5.1. Cytokine responses

Microglial cytokines likely limit viral spread and coordinate the antiviral responses of 

other cells. Following recognition of viral infection,either through viral detection or in 

response to DAMPs, many cells produce type I interferons (IFN) that limit viral replication 

and dissemination [48,128–130]. One study found that microglial production of type I 

IFN was required to upregulate antiviral immune responses in astrocytes and neurons to 

control infection [99]. Interestingly, CSF1R inhibitor-mediated (PLX5622) depletion of 

microglia in MHV did not affect type I IFN production [48], suggesting that other cells 

might compensate for microglial loss of type I IFN. These conflicting results highlight the 

context-dependent nature of the microglial cytokine response For example, La Crosse virus 

produces a nonstructural protein that specifically inhibits type I IFN responses in infected 

astrocytes, but not microglia [128]. Thus, microglia may have unique molecular responses to 

particular viruses that are crucial to tissue antiviral responses.

Microglia produce other proinflammatory cytokines that have both antiviral and potentially 

toxic effects. JEV infection promotes microglial production of TNFα, IL-6, IL-1β, 

nitric oxide (NO) and glutamate, which limit viral replication, but are also neurotoxic 

[131–133]. Similarly, microglial production of NO during HSV-1 infection is implicated 

in infection-induced oxidative tissue damage [134], and in WNV infection, microglial 

production of antiviral cytokines can induce neuronal cell death [135]. Another consequence 

of these cytokine responses is microglial apoptosis: in response to direct transduction 

by HSV-1 or phagocytosis of HSV-1-infected cells, microglia undergo cGAS-STING-

dependent apoptosis. This is hypothesized to limit type I IFN responses and associated 

immunopathology in cases of high viral load [136,137]. Finally, microglia may play a 

regenerative role in some cases of CNS viral infection. Microglial depletion after MHV 
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infection leads to decreased transcripts encoding proteins known to promote remyelination, 

such as Cst7, Igf1, and Lpl [49], suggesting that microglia may be important in promoting 

myelin regeneration and recovery. Overall, it is clear that microglia significantly contribute 

to inflammatory cytokine responses in the brain that are necessary to control and limit viral 

pathogenesis, yet these same inflammatory responses can also have deleterious effects on 

CNS cells. In a delicate tissue like the CNS, it is crucial to better understand how this 

balance is maintained, and what role microglia play.

5.2. Phagocytosis

As resident parenchymal macrophages, a primary role of microglia is phagocytosis of 

cellular debris and myelin [15]. In response to CNS insult, microglia are the main 

cells involved in clearing tissue debris, for example in demyelinating disease and spinal 

cord injury [138–140]. Microglial phagocytosis of virally infected cells occurs in several 

models. During WNV infection of spinal cord slice cultures, microglia phagocytose 

WNV-transduced neurons and astrocytes [141]. In vivo and in vitro models of PRV 

infection demonstrate microglial reliance on P2RY12 to recognize and engulf dying 

PRV-infected neurons, thereby limiting viral spread [54]. Phagocytosis may be central to 

microglial antiviral responses, as active uptake of virally-infected cells may be an important 

mechanism by which microglia initially recognize infection, leading to PRR activation, 

and amplifying downstream antiviral responses. Clearance of dead and damaged cells may 

decrease inflammation and help promote tissue regeneration. Further studies of microglial 

phagocytosis are crucial to fully characterize the role of microglia in antiviral immunity.

5.3. Coordination with the peripheral immune response

Microglia are well situated to orchestrate the antiviral responses of infiltrating peripheral 

immune cells to limit viral replication and spread. First, as mentioned, microglia produce 

chemokines in response to viral infection, which may be crucial in recruiting peripheral 

immune cells, though the necessity of microglia-derived chemokines and cytokines remains 

unclear [52,81,83,105,141,142]. Second, microglia may provide local antigen presentation to 

CNS-infiltrating T cells. Several studies report decreased virus-induced T cell responses and 

worse infections following microglial depletion with pharmacological inhibitors of CSF1R. 

During active MHV infection, microglia depletion led to fewer CD4+ T cells and IFNγ-

producing T cells in the brains but not the spleen, suggesting that microglia are necessary 

for T cell recruitment [48]. In WNV infection, though similar numbers of CD4+ T cells 

were found in the CNS following microglia depletion, a smaller fraction expressed markers 

of full activation [51]. This decreased T cell activation was associated with decreased 

CD80 and CD86 costimulatory molecule expression by remaining microglia, suggesting that 

microglia provide local costimulation to fully activate T cells [51]. An important caveat 

is that peripheral monocyte/macrophages had lower MHCII and costimulatory molecule 

expression in response to systemic blockade of CSF1R signaling, suggesting that non-

microglia macrophages might also contribute to these deficient T cell responses [48,51].

To more specifically interrogate the importance of microglia-T cell interactions during 

CNS viral infections, a recent study used a bone marrow chimera strategy to specifically 

label microglia. Using CX3CR1-GFP mice reconstituted with unlabeled WT bone marrow 
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allowed for the differentiation of GFP+ microglia from GFP− infiltrating monocyte/

macrophages. Intravital imaging during active VSV infection revealed that CX3CR1-GFP+ 

microglia interacted extensively with infiltrating virus-specific CD8+ T cells. These 

interactions resulted in T cell calcium fluxes, a sign of T cell activation. In addition, 

microglia engulfed infected neuronal debris, and both MHCI ablation on CNS resident 

hematopoietic cells (largely microglia) and microglial depletion decreased activation of 

antigen-specific CD8+ T cells, leading to increased viral titer in the brain [143]. These 

results provide strong evidence that microglia locally activate T cells by ingesting infected 

cellular debris and cross-presenting viral antigen to induce an antiviral T cell response.

6. Latent and persistent viral infection in the CNS

Two potential outcomes of incomplete viral clearance are latent infection or long-term 

persistence of the virus in tissues. Latency usually follows retention of the viral genome 

in the host cell, where small amounts of viral antigens may induce low-level inflammation 

to keep the virus in check [144]. In latent CNS infections, reactivation of virus poses a 

significant threat, particularly for immunocompromised or aged individuals. In contrast, 

persistent viral infections are characterized by continued, active viral replication and 

transduction of cells over a long period of time [144]. Immune responses typically limit 

viral spread enough to prevent mortality and morbidity, yet complete viral clearance is not 

achieved. In the long term, ongoing inflammatory responses in viral persistence can be 

damaging, particularly to largely non-regenerative tissues like the CNS. HSV [145–148], 

JC virus [149–151], Epstein-Barr virus (EBV) [152], and HIV [122,153–155] are some of 

the most commonly characterized encephalitogenic viruses that can become either latent 

or persistent in the CNS and cause potentially severe disease. Due to minimal disease 

in immunocompetent individuals and difficulty translating chronic stages of these viral 

infections into mouse models, studies focused specifically on the immune response to latent 

or persistent viral infections are limited.

Chronic HSV encephalitis is rare, but can cause severe progressive disease in a small 

proportion of patients that survive the acute infection [145,146,148]. Neuropathological 

findings of chronic HSV encephalitis describe long-term microglial activation that is 

associated with neuronal cell death and cognitive defects [145–147,156]. Additionally, 

high expression of MHCII by chronically activated microglia is associated with retention 

of virus-specific T cells in the CNS [156], suggesting an important role for microglia in 

maintaining an active antiviral T cell responses in the CNS. JC virus is a classical example 

of latent CNS viral infection, which is asymptomatic in immunocompetent individuals. 

Immunosuppression can result in reactivation which underlies a devastating demyelinating 

disease called progressive multifocal leukoencephalopathy (PML) [157]. PML from JC virus 

is famously linked to immunosuppression that limits T-cell surveillance of the CNS, such as 

in the use of monoclonal antibodies against α4β1-integrin, which led to JC virus screening 

of patients with multiple sclerosis prior to starting natalizumab [158]. JC virus reactivation 

is also associated with reactive microglial state changes, which form clusters around focal 

areas of demyelination [159–161]. Like in other latent CNS infections, JC virus reactivation 

can also occur in AIDS-associated immunosuppression [162]. JC virus-associated PML 

lesions in HIV+ patients contain large numbers of HIV-infected microglia/macrophages 
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[159], while inflammatory cytokines known to be produced by microglia, like IL-1β, TNFα, 

and IFNγ, activate transcription of JC virus promoter genes [163–165]. These findings 

together suggest that both the immunosuppression associated with HIV infection, along with 

an inflammatory cytokine response specifically from HIV-infected microglia/macrophages 

may play a role in the reactivation of JC virus and lead to the development of PML.

How HIV is reactivated, particularly in the CNS, is a critical piece in understanding 

HIV-associated neurocognitive disorders (HAND). Unlike most encephalitogenic viruses 

that transduce neurons, astrocytes, and oligodendrocytes, HIV transduces microglia, which 

likely serve as viral reservoirs during chronic infection [166]. In vitro, HIV induces 

widespread apoptosis in both human microglia and macrophages, but a small percentage 

of infected cells survive [167]. Signs of microglial activation in HIV+ patients correlate 

with decreased cognitive function [168–171]. This persists even in patients receiving 

antiretroviral therapies [168,171], suggesting a mechanism by which low-level, chronic 

neuroinflammation impacts cognitive function even in otherwise healthy HIV+ patients on 

modern therapies. Intriguingly, co-culture of healthy neurons with HIV-infected human 

microglia silences viral replication, though the neuron-derived factors that induce this 

response are still unknown [172]. Co-culture with damaged or dying neurons induces HIV 

reactivation, an effect further amplified with TLR3 agonism [172,173]. HIV inhibits the 

phosphorylation of interferon regulatory factor 3 and 7 (IRF3 and IRF7) downstream of 

TLR3 in latently infected microglia, thereby preventing the normal antiviral effects of TLR3 

activation [174]. Interestingly, the strong TLR3 agonist Poly I:C induces HIV replication 

selectively within microglia, but not bone marrow-derived macrophages or T cells [173]. 

In addition, combination TNFα and IFNγ treatment, LPS, and methamphetamine all also 

promote reactivation of HIV replication in latently infected microglia [167], suggesting a 

wide array of inflammatory factors influence HIV latency. Together, these studies point 

to the importance of microglia in maintaining and reactivation of latent CNS infections, 

the dynamics of which likely underlie the long-term morbidity of chronic viral infection. 

Understanding how microglia carry out these roles at a molecular level is key to improving 

future therapies for latent and chronic CNS infections.

7. Conclusions and future perspectives

Microglia play a central and unique role in CNS viral infections, but major questions remain 

about the mechanisms underlying microglia-specific antiviral immunity. Using new tools 

that specifically target microglia will be key in determining exactly how important microglia 

are to viral infection, and whether their responses can be harnessed to develop better 

antiviral therapeutics and reduce morbidity. he discoveries described in this review and the 

new tools described below provide great potential to answer four pressing and long-standing 

questions:

7.1. How do microglia sense viral infection?

PRRs are likely key microglial sensors of viral infection, though which PRRs are involved 

and how PRR-mediated innate immune signaling leads to microglial antiviral responses 

remains uncertain. Microglia are singularly suited to the CNS by their unique developmental 

O’Brien et al. Page 12

Semin Immunol. Author manuscript; available in PMC 2023 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



origins, and their long-term residence. Microglia may have different PRR expression 

patterns or distinct signaling from other macrophage populations, and understanding these 

unique aspects is crucial to build a more complete picture of CNS viral immunity.

7.2. What mechanisms do microglia use to clear and/or evade virus?

With the exception of HIV, there is minimal in vivo evidence that microglia are productively 

infected by viruses. Possible explanations are that microglia are more efficient at clearing 

viruses than other CNS resident cells or other macrophages or that they are not transduced in 

the first place. A better understanding of the molecular antiviral mechanisms microglia use 

to clear or evade viruses may lead to more robust antiviral therapies.

7.3. How unique is the microglial response to viral encephalitis compared to that of 
peripheral monocyte/macrophages?

To date, one of the largest hurdles in identifying microglial-specific responses has 

been distinguishing them from peripheral monocyte-derived macrophages that infiltrate 

the brain.. Though microglia have distinct developmental history and transcriptomic 

features, unique markers and fate mapping tools to differentiate them from infiltrating 

macrophages are relatively new [66,91]. As such, prior in vivo models did not distinguish 

the individual contributions of infiltrating macrophages compared to microglia. In vitro 
infection studies using either primary microglia or microglial cell lines have helped 

identify potentially important and unique molecular pathways involved in recognition of 

virus and subsequent downstream antiviral responses, but are limited by known changes 

in microglial transcriptomic identity once removed from the brain environment. Tools 

such as brain organoids and brain slice cultures allow for isolation of microglia from 

peripheral macrophage infiltration while still leaving them in a brain tissue environment 

and may provide greater insight into molecular antiviral pathways used by microglia. 

Essential to understanding the in vivo role of microglia during CNS viral infection will 

be new microglia-[67,175] and monocyte-specific inducible Cre lines [69] that allow 

specific manipulation of each macrophage population and will delineate those antiviral 

responses unique to either microglia or brain-infiltrating monocytes. As it is likely that 

both microglia and monocyte/macrophages are involved in antiviral immunity during viral 

infection, defining the similarities and differences in their responses is crucial to providing a 

clearer picture of antiviral macrophage responses in the CNS.

7.4 How do human microglia respond to viral infection?

A major limitation in studying human microglial responses is the relative difficulty of 

acquiring primary microglia for culture, as well as the loss of microglial identity associated 

with cultured microglia. Human induced pluripotent stem cells (iPSCs) can be isolated 

from more accessible tissue sources, and iPSC-derived microglia recapitulate much of the 

phenotypic signature of primary human microglia, including in response to HIV [176–178], 

iPSC-derived microglia can potentially be coupled with current gene-editing technology 

such as CRISPR-Cas9. Additionally, replacement of endogenous microglia with xenografted 

iPSC-derived microglia in mouse models (reviewed in [179]) can provide much needed in 
vivo insight into antiviral functions of human microglia in response to viral infection.
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Microglia are poised to coordinate the CNS antiviral response. In this review, we covered 

existing literature about how microglia recognize invading viruses and initiate responses, 

while also shaping the antiviral activity of other brain resident and infiltrating peripheral 

immune cells. There is also evidence that microglia participate in tissue repair following 

viral infection. With the use of newly developed tools to specifically target microglia, the 

field can better interrogate these diverse roles, allowing for a more complete understanding 

of antiviral responses in the brain.
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Figure 1. 
Proposed mechanisms of microglial recognition of viral infection. (1) TLR recognition of 

viral DNA or RNA, either through direct sensing of virus or following phagocytosis of 

virally-infected cells, leads to the recruitment and activation of downstream modulators 

such as MyD88 or TRIF. MyD88-dependent signaling leads to the activation and nuclear 

localization of the major mediator of inflammatory responses, NFκB, or interferon 

regulatory factor 7 (IRF7), while activation of TRIF leads to activation and nuclear 

localization of another critical mediator of innate immune signaling, interferon regulatory 

factor 3 (IRF3). (2) Recognition of cytoplasmic viral RNA by RLRs RIG-I or MDA5 results 

in activation of downstream mediator MAVS, which in turn leads to activation and nuclear 

localization of IRF3. (3) cGAS serves recognizes cytoplasmic viral nucleic acids, leading 

toSTING activation which in turn activates both NFκB and IRF3, leading to their nuclear 

localization. (4) Viral components and DAMPs released by transduced or damaged cells 

activate the inflammasome, leading to the recruitment and activation of caspase-1 (casp-1), 

which cleaves pro-IL-1β and pro-IL-18 to their active forms, IL-1β and IL-18. Microglia 

likely integrate these signaling pathways following recognition of viral infection directly or 

by virally-induced signals from other cells to produce a wide array of antiviral genes such 

as inflammatory cytokines and chemokines that both serve to clear virus and coordinate the 

antiviral responses of other cells.
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Table 1.

Common encephalitogenic viruses and their differing mechanisms of viral entry into the CNS.
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