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ABSTRACT 20 

The Fusarium oxysporum species complex (FOSC) includes both plant and 21 
human pathogens that cause devastating plant vascular wilt diseases and 22 
threaten public health. Each F. oxysporum genome comprises core 23 
chromosomes (CCs) for housekeeping functions and accessory chromosomes 24 
(ACs) that contribute to host-specific adaptation. This study inspected global 25 
transcription factor profiles (TFomes) and their potential roles in coordinating 26 
CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, 27 
we found a clear positive correlation between the sizes of TFome and proteome 28 
of an organism, and FOSC TFomes are larger due to the acquisition of ACs. 29 
Among a total of 48 classified TF families, 14 families involved 30 
in transcription/translation regulations and cell cycle controls are highly 31 
conserved.  Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are 32 
most significantly expanded to 671 and 167 genes per family, including well-33 
characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-34 
specific interactions. Manual curation of characterized TFs increased the TFome 35 
repertoires by 3%, including a disordered protein Ren1. Expression profiles 36 
revealed a steady expression of conserved TF families and specific activation of 37 
AC TFs. Functional characterization of these TFs could enhance our 38 
understanding of transcriptional regulation involved in FOSC cross-kingdom 39 
interactions, disentangle species-specific adaptation, and identify targets to 40 
combat diverse diseases caused by this group of fungal pathogens. 41 
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INTRODUCTION 48 

The fungal species complex of Fusarium oxysporum (FOSC) has been used as a 49 

model to study cross-kingdom fungal pathogenesis. Members within FOSC can 50 

cause devastating fusarium wilt diseases among economically important crops 51 

(Ma et al. 2013; Ma 2014; Michielse and Rep 2009; Ploetz 2015; Edel-Hermann 52 

and Lecomte 2019; Pegg et al. 2019; Yang et al. 2020; Dean et al. 2012; 53 

Rahman et al. 2021; Viljoen et al. 2020; Halpern et al. 2018) and is listed among 54 

the top five most important plant pathogens that have a direct impact on the 55 

global economy and food security (Dean et al. 2012). With strong host specificity, 56 

plant pathogenic F. oxysporum strains are further grouped as formae speciales 57 

(Armstrong and Armstrong 1981). For instance, tomato pathogens are named F. 58 

oxysporum f.sp. lycopersici, cotton pathogens F. oxysporum f.sp. vasinfectum 59 

(Halpern et al. 2018), and banana pathogen F. oxysporum f.sp. cubense (Viljoen 60 

et al. 2020). Recently, members within FOSC have also been reported to be 61 

responsible for fusariosis, the top emerging opportunistic mycosis (Ma et al. 62 

2013; Yang et al. 2020), and fusarium keratitis, one of the major causes of 63 

cornea infections in the developing world and the leading cause of blindness 64 

among fungal keratitis patients (Kredics et al. 2015; Hassan et al. 2016). 65 

Comparative genomics studies on this cross-kingdom pathogen revealed that the 66 

FOSC genomes, both human and plant pathogens, are compartmented into two 67 

components: the core chromosomes (CCs) and accessory chromosomes (ACs). 68 

While CCs are conserved and vertically inherited to execute essential 69 

housekeeping functions, horizontally transmitted ACs are lineage- or strain-70 

specific and related to fungal adaptation and pathogenicity, conferred by virulent 71 

factors such as SIX (Secreted in Xylem) proteins (Ma et al. 2013; Yang et al. 72 

2020; Rep et al. 2004; Yu et al. 2023). ACs and CCs must coordinate their gene 73 

expression to coexist within the same genome.  74 

A few characterized transcription factors (TFs) coordinate the crosstalk between 75 

CCs and ACs, two compartments. One intriguing example is the cross-regulation 76 
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among F. oxysporum transcription factors Sge1 (SIX Gene Expression 1), Ftfs, 77 

and effector genes. Sge1 is a highly conserved, CC-encoding TF. By name 78 

definition, Sge1 regulates the expression of SIX proteins (Michielse et al. 2009; 79 

van der Does et al. 2016). AC-encoding Ftf1 proteins (Ftf1 and its AC homologs) 80 

and a CC-encoding Ftf2 (Ftf1 CC homolog) are reported in the reference genome 81 

of F. oxysporum f.sp. lycopersici Fol4287 (van der Does et al. 2016). Constitutive 82 

expression of either Ftf1 genes or Ftf2 induced the expression of effector genes 83 

(van der Does et al. 2016). Furthermore, It was documented that DNA binding 84 

sites of Sge1 and Ftf1 are enriched among the cis-regulatory elements of in 85 

planta transcriptionally up-regulated genes (van der Does et al. 2016). Another 86 

CCs and ACs cross-talking example is the alkaline pH-responsive transcription 87 

factor PacC/Rim1p reported in F. oxysporum clinical strains (Zhang et al. 2020). 88 

In addition to the full-length PacC ortholog (PacC_O), located on a CC, the 89 

clinical isolate NRRL32931 genome encodes three truncated PacC homologs, 90 

named PacC_a, PacC_b, and PacC_c in ACs (Zhang et al. 2020).  91 

To thoroughly understand the coordination of the crosstalk between genome 92 

compartments and their contribution to the cross-kingdom fungal pathogenesis, 93 

this study compared the repertoire of TFs (i.e., TFome) among 15 F. oxysporum 94 

and 15 other ascomycete fungal genomes, which was organized into 48 families 95 

based on the InterPro classification of proteins. Remarkably, we discovered a 96 

strong positive correlation (y = 0.07264x - 190.9, r2= 0.9361) between the 97 

number of genes (x) and TFome size (y) of an organism. Primarily due to the 98 

acquisition of ACs, we observed increased TFome sizes among FOSC genomes. 99 

Fourteen out of 48 families involved in transcription/translation regulations and 100 

cell cycle controls are highly conserved. Thirty, accounting for ¾ of all families, 101 

are expanded in various degrees among FOSC genomes. Unique TF expansions 102 

driven by ACs include members of Zn2-C6 fungal-type (Zn2-C6) and Zinc Finger 103 

C2H2 (Znf_C2H2) families. This comparative study first highlights the conserved 104 

regulatory mechanisms of F. oxysporum, which are essential for variability and 105 

plant colonization. With the foundation established by functional conservation, 106 
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this study further emphasizes potential modifications of existing regulatory 107 

pathways by acquiring additional TFs. In combination with existing expression 108 

data, this study may provide clues to the fine-tuning of networks in the 109 

environmental adaptation of this group of diverse organisms to engage in 110 

complex cross-kingdom interactions with different hosts. 111 

 112 

MATERIALS AND METHODS  113 

Generation of fungal TFomes 114 

The annotation pipeline is briefly summarized in Figure S1A-B. The fungal 115 

proteomes of 30 strains were downloaded from the JGI MycoCosm portal 116 

(Grigoriev et al. 2014). Protein annotation was performed using InterProScan/5.38-117 

76.0 (https://www.ebi.ac.uk/interpro/search/sequence/) (Jones et al. 2014). 118 

Annotations of proteins putatively serve as TFs were filtered out using a table 119 

containing InterPro terms related to transcriptional regulatory functions 120 

summarized by literature (Park et al. 2008; Shelest 2017), with further addition by 121 

manual curation (Table S1). Orthologous analysis to probe orthologs of functionally 122 

validated TFs (Table S3-4 and Table 3) in Fusarium was done with OrthoFinder 123 

2.5.4 (https://github.com/davidemms/OrthoFinder) (Emms and Kelly 2019). 124 

RNA-seq analysis 125 

The RNA-seq datasets were previously described (Guo et al. 2021; Redkar et al. 126 

2022) and deposited by those authors to the NCBI Short Read Archive with 127 

accession number GSE87352 and to the ArrayExpress database at EMBL-EBI 128 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-10597, 129 

respectively. For data reprocessing, reads were mapped to reference genomes of 130 

Arabidopsis [annotation version Araport11 (Cheng et al. 2017)], Fo5176 (Fokkens 131 

et al. 2021), Fo47 (Wang et al. 2020) and Fol4287 (Ma et al. 2010) using HISAT2 132 

version 2.0.5 (Kim et al. 2019). Mapped reads were used to quantify the 133 

transcriptome by StringTie version 1.3.4 (Pertea et al. 2015), at which step TPM 134 
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(transcript per million) normalization was applied. Normalized read counts were 135 

first averaged per condition and then transformed by log2 (normalized read count 136 

+ 1) and Z-scaled, then visualized in pheatmap (version 1.0.12).  137 

Genome partition 138 

The genome partition results for chromosome-level assemblies were retrieved 139 

from previous reports for Fol4287 (Ma et al. 2010), FoII5 (Zhang 2019), Fo5176 140 

(Fokkens et al. 2021), and Fo47  (Wang et al. 2020). Fo47 has a clear genome 141 

partition with 11 core chromosomes and one accessory chromosome, therefore 142 

serving as the reference for the genome partition of other F. oxysporum 143 

genomes. mummer/3.22 was applied to align scaffolds of genome assemblies 144 

against 11 core chromosomes of the reference genome Fo47 using default 145 

parameters. The scaffolds aligned to the core chromosomes of Fo47 with a 146 

coverage larger than 5% were annotated as core scaffolds. The rest of the 147 

scaffolds were partitioned as accessory scaffolds. Genes residing on core and 148 

accessory scaffolds were annotated as core and accessory genes, respectively. 149 

Phylogenetics analysis 150 

Protein sequences were aligned via MAFFT/7.313 (Katoh and Standley 2013). 151 

Then the iqtree/1.6.3 (Minh et al. 2020; Nguyen et al. 2015) was run on the 152 

sequence alignment to generate the phylogeny (by maximum likelihood method 153 

and bootstrapped using 1000 replicates) (Hoang et al. 2018) and was then 154 

visualized via the Interactive Tree of Life (Letunic and Bork 2021), producing the 155 

phylogram. OrthoFinder  2.5.4 (Emms and Kelly 2019) was used for orthogroup 156 

determination. To build a species phylogram, randomly selected 500 conserved 157 

proteins (single-copy orthologs) were aligned first. Then the alignment was 158 

concatenated, and phylogeny was determined and visualized using the above 159 

methods. 160 

 161 
 162 
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RESULTS 163 

1. FOSC TFome expansion resulted from the acquisition of ACs  164 

 165 

We compared 30 ascomycete fungal genomes (Figure 1 and Table 1), including 166 

15 strains within the FOSC, nine sister species close to F. oxysporum, two yeast 167 

genomes (Saccharomyces cerevisiae and Schizosaccharomyces pombe), four 168 

other filamentous fungal species (Neurospora crassa, Aspergillus nidulans, 169 

Aspergillus acristatulus, and Magnaporthe oryzae). To maintain consistency, the 170 

protein sequences for all these genomes were retrieved from the MycoCosm 171 

portal (Grigoriev et al. 2014).  172 

 173 

 174 

 175 

Figure 1. Phylogeny of fungal genomes included in this study. Both left and right 
phylograms were constructed by concatenated alignment of randomly selected 500 
single-copy orthologous proteins, followed by the maximum likelihood method with 1000 
bootstraps. Left shows a phylogram of FOSC (represented by the reference genome 
Fol4287) together with the other 15 ascomycetes. The right shows a phylogram of 
members within FOSC, rooted by F. verticillioides (not shown). Only bootstrap values 
not equal to 100 are shown. 
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 176 

Fungal species or strains 
MycoCosm 
identifier 

Genome 
Size (MB) 

No. of 
genes 

TFome 
Size Host Reference 

Saccharomyces cerevisiae Sacce1 12.07 6575 284  (Goffeau et al. 1996) 
Schizosaccharomyces pombe Schpo1 12.61 5134 228  (Wood et al. 2002) 
Aspergillus nidulans Aspnid1 30.48 10680 635  (Galagan et al. 2005) 
Aspergillus acristatulus Aspacri1 32.59 11221 666  (Vesth et al. 2018) 
Neurospora crassa Neucr2 41.04 9730 447  (Galagan et al. 2003) 
Magnaporthe oryzae Magor1 40.49 12673 520 Rice (Dean et al. 2005) 
Fusarium solani Fusso1 52.93 17656 1137 broad hosts (Mesny et al. 2021) 
F. pseudograminearum Fusps1 36.33 12395 627 Wheat (Gardiner et al. 2012) 
F. graminearum Fusgr1 36.45 13321 608 Wheat (Cuomo et al. 2007) 
F. venenatum Fusven1 37.45 12845 802  (Mesny et al. 2021) 
F. tricinctum Fustr1 43.69 14106 925 Broad hosts (Mesny et al. 2021) 
F. verticillioides Fusve2 41.78 15869 917 Corn (Ma et al. 2010) 
F. fujikuroi Fusfu1 43.83 14813 901 Broad hosts (Wiemann et al. 2013) 
F. redolens Fusre1 52.56 17051 1098 Broad hosts (Mesny et al. 2021) 
F. commune Fusco1 48.37 15731 1012 Broad hosts (Mesny et al. 2021) 
F. oxysporum f.sp. cubense (II5) FoxII5 49.43 16048 1047 Banana (Zhang 2019) 
F. oxysporum f. sp. radicis-lycopersici (CL57) Fusoxrad1 49.36 18238 1151 Tomato (DeIulio et al. 2018) 
F. oxysporum Fo47 (Fo47) FusoxFo47_2 50.36 16207 1082  (Wang et al. 2020) 
F. oxysporum f. sp. lycopersici (MN25) Fusoxlyc1 48.64 17931 1119 Tomato (DeIulio et al. 2018) 
F. oxysporum NRRL26365 (NRRL26365) Fox26365_1 48.46 16047 1036 Human (Yang 2020) 
F. oxysporum f. sp. melonis (FoMelon) Fusoxmel1 54.03 19661 1219 Melon (Ma et al. 2014) 
F. oxysporum f. sp. lycopersici (Fol4287)  Fusox2 61.36 20925 1292 Tomato (Ma et al. 2010) 
F. oxysporum NRRL32931 (NRRL32931) Fusox32931 47.91 17280 1072 Human (Zhang et al. 2020) 
F. oxysporum MRL8996 (MRL8996) FoxMRL8996 50.07 16631 1057 Human (Zhang et al. 2020) 
F. oxysporum f. sp. matthiolae (PHW726) FoxPHW726_1 57.22 17996 1157 Brassica (Yu et al. 2020) 
F. oxysporum f. sp. vasinfectum (FoCotton) Fusoxvas1 52.91 19143 1189 Cotton (DeIulio et al. 2018) 
F. oxysporum f. sp. pisi (HDV247) Fusoxpis1 55.19 19623 1229 Pea (Williams et al. 2016) 
F. oxysporum f. sp. raphani (PHW815) Fusoxrap1 53.5 19306 1132 Brassica (DeIulio et al. 2018) 
F. oxysporum f. sp. conglutinans (PHW808) Fusoxcon1 53.58 19854 1142 Brassica (DeIulio et al. 2018) 
F. oxysporum Fo5176 (Fo5176) FoxFo5176 67.98 19130 1236 Arabidopsis (Fokkens et al. 2021) 

 177 

To have a comprehensive TFome annotation, we started with reported 178 

InterProScan (IPR) terms associated with fungal transcriptional regulation (Park 179 

et al. 2008; Shelest 2017) and curated a mapping with updated IPR classification 180 

(interproscan version: 5.38-76.0) (Blum et al. 2021). In addition, we searched the 181 

IPR classification of protein families and obtained all other terms related to the 182 

transcriptional regulation activity. This resulted in 234 TF-related IPR terms 183 

(Table S1). Since most of the terms are initially defined in the mammalian 184 

systems, it was not surprising to see that overall, our fungal genomes are only 185 

associated with 71 IPR terms out of the total 234 TF-related IPR terms (Table 186 

S1, Materials and Methods, and Figure S1A-B for annotation pipeline). After 187 

filtering out 13 and 10 terms for redundancy (two terms describing the identical 188 

Table 1. Fungal genomes used in this study 
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domain) and minimal presentation (< 4 among the 30 genomes), respectively, 189 

this comparative TFome study focused on the rest 48 IPR terms, which 190 

represented a total of 27967 TFs (Table S1-S2). Notably, 12 out of 48 terms 191 

were not reported to be affiliated with fungal transcriptional regulation by either 192 

Park et al. 2008 or Shelest 2017 (Table S1), adding values to our manual IPR 193 

term search. 194 

Comparing the total number of genes in a genome (x) and the total number of 195 

TFs within that genome (y), we observed a strong positive correlation (y = 196 

0.07264x - 190.9, r2= 0.9361) (Figure 2A). Among all genomes included in this 197 

study, FOSC TFomes are the largest, with an average of 1144 TFs per genome 198 

(Figure 2A, Table 1). After partitioning each FOSC genome into core and 199 

accessory regions (see Materials and Methods for details), we observed a 200 

positive correlation between the number of TFs encoded in the accessory 201 

chromosomal region of each strain (defined as accessory TFs hereafter) with the 202 

size of accessory genomes (Mb) (y = 17.239x + 3.553) (Figure S2), suggesting 203 

that accessory chromosomes contribute directly to the expanded TFome. 204 

  205 

Figure 2. TFome conservation and variation among ascomycete fungi: baseline 
description. (A) There is a positive correlation between the number of genes and 
TFome size of an organism. JGI fungal genome identifiers were used as labels. (B) 
Histogram illustrates the distribution of expansion indexes among different families. (C) 
Average number of TFs of two most drastically expanded families (Znf_C2H2 and Zn2-
C6) within each genome set. Genome Set 1 (G1) includes two yeast genomes (S. 
cerevisiae and S. pombe). Genome Set 2 (G2) includes four filamentous fungal species 
(N. crassa, A. nidulans, A. acristatulus, and M. oryzae). Genome Set 3 (G3) includes 
nine sister species close to F. oxysporum. Genome Set 4 (G4) includes 15 FOSC 
genomes. 
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To understand genome regulation among FOSC, we developed an expansion 206 

index score using two yeast lineages as the baseline (EIy): 207 

𝐸𝐼𝑦 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑇𝐹𝑠	𝑖𝑛	𝐹𝑂𝑆𝐶 + 1
𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑇𝐹𝑠	𝑖𝑛	𝑦𝑒𝑎𝑠𝑡𝑠 + 1

 208 

 209 

 210 

IPR Term EIy 
Group 1   
IPR000814 TBP 1 
IPR003228 TFIID_TAF12 1 
IPR004595 TFIIH_C1-like 1 
IPR006809 TAFII28 1 
IPR042225 Ncb2 1 
IPR008570 Vps25 1 
IPR008895 Vps72/YL1 1 
IPR007196 CNOT1 1 
IPR005612 CBF 1 
IPR001289 NFYA 1 
IPR018004 APSES-type HTH 1 
IPR003150 RFX 1 
IPR033896 MADS_MEF2-like 1 
IPR018501 DDT 1 
Group 2   
IPR006856 MATalpha_HMGbox 0.8 
IPR039515 NOT4 0.9 
IPR033897 MADS_SRF-like 0.95 
IPR000232 HSF 0.98 
Group 3   
IPR003163 Tscrpt_reg_HTH_APSES-type  1.04 
IPR001766 Fork_head 1.05 
IPR011016 Znf_RING-CH 1.11 
IPR001965 Znf_PHD 1.11 
IPR009071 HMG_box 1.12 
IPR004181 Znf_MIZ 1.24 
IPR001606 ARID 1.25 
IPR000679 Znf_GATA 1.3 
IPR001005 SANT/Myb 1.32 
IPR000818 TEA/ATTS 1.33 
IPR003120 Ste12 1.33 
IPR003958 CBFA_NFYB 1.35 
IPR001083 Cu_fist 1.37 
IPR000967 Znf_NFX1 1.4 
IPR006565 Bromodomain 1.52 
IPR001387 Cro/C1-type_HTH 1.6 
IPR001841 Znf_RING 1.64 
IPR000571 Znf_CCCH 1.74 
IPR001878 Znf_CCHC 1.83 
IPR010666 Znf_GRF 2 
IPR018060 HTH_AraC*  2 
IPR001356 Homeobox 2.28 
IPR007604 CP2* 2.73 
IPR007396 PAI2 3.42 
IPR024061 NDT80 3.47 
IPR011598 bHLH 3.48 
IPR007889 HTH_Psq* 3.53 
IPR013087 Znf_C2H2 4.15 
IPR004827 bZIP 5.8 
IPR001138 Zn2-C6 15.09 

 211 

Table 2. Expansion Index (EIy) of 48 TF families 
Asterisk indicates the families without a presence in yeasts 
jwi 
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Based on this index value, we classified TF families into three major groups 212 

(Table 2, Table S1). Group 1 contains 14 TF families with an expansion score of 213 

1, indicating high conservation. Group 2 includes four families with an index 214 

score of less than 1, reflecting some level of gene family contraction. Group 3 215 

contains 30 families with an expansion index greater than 1, indicating gene 216 

expansion. 217 

2. Conserved TF families that are primarily associated with general/global 218 

transcription factors 219 

About 30% of the TF families, fourteen, are associated with strong orthologous 220 

conservation in all genomes we included in this study (Figure 2B; Table 2; Table 221 

S1). Because most of these conserved TF families are single-copied TF families, 222 

these 30% conserved TF families only account for less than 2% of the total 223 

TFomes. Based on a detailed study on S. cerevisiae and other model organisms, 224 

these TF families are involved in transcription/translation regulation and cell cycle 225 

controls.  226 

2.1. Transcription/Translation regulation 227 

Either TF families are related to transcription initiation and elongation, including 228 

TATA box-binding protein (TBP), TBP-associated factors (TAFs), and RNA 229 

polymerase II elongation regulator Vps25. CCAAT-Binding Factors (CBFs) are 230 

related to ribosomal biogenesis. These families overall play conserved roles in 231 

general transcriptional and translational regulation across Ascomycota. 232 

Transcription initiation TBP is one of the most conserved TF families, TBP 233 

binds directly to the TATA box to define the transcription start and initiate 234 

transcription facilitated by all three RNA polymerases. The function of TBP is so 235 

conserved as the yeast homolog can complement TBP mutations in humans 236 

(Yamaguchi et al. 2001; Roberts and Winston 1996).  237 

Transcription positive/negative regulators, including TAF12 and TAFII28, are 238 

parts of the transcription factor TFIID complex. Interacting with TBP, TAFs form 239 
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the TFIID complex and positively participate in the assembly of the transcription 240 

preinitiation complex (Green 2000). Similarly, TFIIH works synergistically with 241 

TFIID to promote the transcription (Fribourg et al. 2000). In contrast, Negative 242 

cofactor 2 (Ncb2) inhibits the preinitiation complex assembly (Goppelt et al. 243 

1996). Other factors include the CNOT1, a global regulator involved in 244 

transcription initiation and RNA degradation (Chalabi Hagkarim and Grand 2020), 245 

and Vps72/YL1 that contributes to transcriptional regulation through chromatin 246 

remodeling as reported in the yeast (Liang et al. 2016; Latrick et al. 2016). 247 

Transcription elongation: Vps25 is a subunit of the ESCRT-II complex, which 248 

binds to RNA polymerase II elongation factor to exert transcriptional control in 249 

mammalian systems (Kamura et al. 2001). 250 

Translational regulation: CCAAT box is a common cis-acting element found in 251 

the promoter and enhancer regions of genes in the eukaryotes (Vuorio et al. 252 

1990; Becker et al. 1991). CBFs are necessary for the 60S ribosomal subunit 253 

biogenesis and therefore involved in the translational control (Milkereit et al. 254 

2001; Fromont-Racine et al. 2003; Edskes et al. 1998). This family, including 255 

Noc3, Noc4, and Mak21 in S. cerevisiae, has three members in each genome, 256 

and a clear single-copy orthologous relationship can be observed for each 257 

member (Figure S3A). 258 

2.2. Cell cycle control 259 

Five TF families are related to cell cycle control, including cell cycle progression, 260 

DNA repair, and machinery/cell integrity maintenance. 261 

APSES-type HTH represents a family of fungal TFs involved in cell-cycle control 262 

and is crucial to the development (Xin et al. 2020). Every genome maintains four 263 

copies of genes encoding APSES-type HTH (Figure S3B), and they form single-264 

copy orthologs in all genomes except yeasts. Genes in Clade 1, including StuA 265 

homologs, are targets of the cyclic AMP (cAMP)-dependent protein kinase A 266 

(PKA) signal transduction pathway and were reported to be involved in dimorphic 267 

switch (Pan and Heitman 2000; Gimeno and Fink 1994), fungal spore 268 

development and the production of secondary metabolites (Lysøe et al. 2011). 269 
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Genes in Clade 2 and Clade 3 include S. cerevisiae Swi4 and Swi6, which form a 270 

protein complex and regulate genes essential during cell cycle progression from 271 

G1 to S phase (Koch et al. 1993), as well as meiosis (Son et al. 2016b). Genes in 272 

Clade 4 include homologs of S. pombe Bqt4 that connect telomeres to the 273 

nuclear envelope (Chikashige et al. 2009). Since this family of TFs is highly 274 

conserved across ascomycetes, similar functions can be proposed in F. 275 

oxysporum. 276 

DTT, represented by the S. cerevisiae homolog Itc1, is a subunit of ATP-277 

dependent Isw2p-Itc1p chromatin remodeling complex and is required for 278 

repression of early meiotic gene expression during the mitotic growth (Sugiyama 279 

and Nikawa 2001).  280 

RFX represents a family of fungal TFs involved in DNA repair. Each strain 281 

encodes two orthologous copies, except F. venenatum encodes two copies 282 

within the RFX1 clade (Figure S3C). A major transcriptional repressor of DNA-283 

damage-regulated genes in S. cerevisiae, Rfx1, is involved in DNA damage 284 

repair and replication checkpoint pathways (Lubelsky et al. 2005). In F. 285 

graminearum, Rfx1 is essential for maintaining the genome integrity (Min et al. 286 

2014). The other copy, Rsc9 in S. cerevisiae, is a chromatin structure-remodeling 287 

complex RSC involved in transcription regulation and nucleosome positioning 288 

(Cairns et al. 1996; Hsu et al. 2003).  289 

NFYA can bind to the CCAAT box. All strains maintain one copy of this family. 290 

The yeast homolog Hap2 induces the expression of mitochondrial electron 291 

transport genes (Olesen et al. 1991). F. verticillioides NFYA Hap2 is essential for 292 

fungal growth and the virulence on maize stalks (Ridenour and Bluhm 2014). The 293 

conservativeness suggests the functional importance of these TFs across 294 

Ascomycota, possibly linked to cellular machinery control (e.g. mitochondrial 295 

electron transport chain). 296 

MADS MEF2-like family includes S. cerevisiae Rlm1, a component of the protein 297 
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kinase C-mediated MAP kinase pathway involved in maintaining cell integrity 298 

(Jung et al. 2002). Rlm1 has a paralog from the whole genome duplication in S. 299 

cerevisiae, and all filamentous fungi encode one copy. In F. verticilioides, Mef2 300 

plays a vital role in the sexual development (Ortiz and Shim 2013).  301 

 302 

3. Minimal gene family contractions in FOSC partially caused by whole 303 

genome duplication in yeast  304 

Four TF families, MATalpha_HMGbox, NOT4, MADS_SRF-like, and HSF (Heat 305 

Shock Factor), have an expansion score of less than 1, reflecting some level of 306 

gene family contraction among members of FOSC compared to the two yeast 307 

genomes (Figure S4).  308 

MATalpha_HMGbox is a TF family that includes S. cerevisiae mating type 309 

protein alpha 1, a transcription activator that activates mating-type alpha-specific 310 

genes (Martin et al. 2010). All F. oxysporum Mat1-1 type strains contain this TF, 311 

but Mat1-2 strains do not. The contraction reflects the heterothallic mating 312 

strategy, even though sexual reproduction has not been observed in FOSC (Arie 313 

et al. 2000).  314 

NOT4 is a component of the multifunctional CCR4-NOT complex, a global 315 

transcriptional repressor of the RNA polymerase II transcription (Albert et al. 316 

2002). This TF family remains a single copy in most genomes but is lost in some 317 

filamentous fungal genomes, including A. nidulans, F. redolens, F. oxysporum 318 

strains NRRL26365, MRL8666, and PHW726. It remains to be discovered why 319 

this gene is lost in some of these strains. 320 

The contractions of the other two TF families, MADS SRF-like and HSF, are 321 

primarily caused by the whole genome duplication in yeast. In both cases, some 322 

degree of expansion was found in FOSC compared to other filamentous fungi 323 

(Figure S4).  324 

 325 

 326 
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 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

MADS SRF-like is important for microconidium production and virulence in host 337 

plants, as reported in M. oryzae (Ding et al. 2020), and is essential for 338 

transcriptional regulation of growth-factor-inducible genes (Messenguy and 339 

Dubois 2003). The average copy number of phytopathogenic FOSC strains is 340 

2.73, and the Fo5176 genome has the highest copy number of 6, while most 341 

other genomes only contain a single copy (Table S1). 342 

HSF is a family of transcription factors that activate the production of many heat 343 

shock proteins that prevent or mitigate protein misfolding under abiotic/biotic 344 

stresses (Feder and Hofmann 1999). All non-FOSC filamentous fungi have three 345 

copies, while members of FOSC show expansion (e.g., Fo47: 4, Fol4287: 5, II5: 346 

4, HDV274: 4, and Fo5176: 4) (Figure 3A-B). Interestingly, all expanded HSFs 347 

are phylogenetically close to Hsf1, which cluster together with the Hsf1 paralog of 348 

Figure 3. Evolutional trajectory of heat shock factors (HSFs) suggesting genome 
expansion and adaptation. (A) Phylograms of HSFs were constructed by maximum 
likelihood method with 1000 bootstraps. Branches of Fusarium HSFs were colored in 
yellow. Accessory HSFs of FOSC are shared in red. (B) Number of accessory HSFs in 
some FOSC genomes. (C) Expression of HSF genes during plant colonization (hpi 
indicates hours post inoculation), compared to axenic growth. Transcriptome data was 
previously described in Guo et al. 2021. See Materials and Methods for details of data 
reprocessing and visualization. 
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Fusarium solani, suggesting their horizontal transfer origin (Figure 3A). We then 349 

examined the Hsf1 expression during the plant colonization (Guo et al. 2021). 350 

We found that the core copies of Hsf1 of both strains Fo47 and Fo5176 were up-351 

regulated during plant colonization. In contrast, the Hsf1 accessory copies of 352 

these two strains were under opposite regulations, with Fo47 one being up-353 

regulated and Fo5176 one being down-regulated post infection (Figure 3C), 354 

suggesting distinct regulatory adaptations after expansion. Here we noted that 355 

transcriptome data could be powerful in understanding the functional importance 356 

of TFs (see Section 6 for systematic analysis). In filamentous fungi, there are 357 

experimental reports for the other two clades. Sfl1 is essential for vegetative 358 

growth, conidiation, sexual reproduction, and pathogenesis, as shown in M. 359 

oryzae (Li et al. 2011); Skn7 is a regulator of the oxidative stress response and is 360 

essential for pathogenicity in F. graminearum (Jiang et al. 2015). Not surprisingly, 361 

both genes of Fo5176 and Fo47 were upregulated during plant colonization 362 

(Figure 3C). 363 

 364 

4. Significant TFome expansion in FOSC driven by a small number of 365 

exceedingly expanded TF families 366 

4.1. Gain-of-function among filamentous ascomycete fungi  367 

Three TF families, CP2 (EIy = 2.73), HTH_AraC (EIy = 2), and HTH_Psq (EIy = 368 

3.53), are absent in both yeast genomes, suggesting a gain of function among 369 

filamentous ascomycete fungi (Table S1). CP2 has been studied in animal and 370 

fungal kingdoms with a function related to differentiation and development (Paré 371 

et al. 2012). Both HTH_AraC and HTH_Psq belong to helix-turn-helix (HTH) 372 

superfamily. First reported in bacteria, HTH_AraC is a positive regulator 373 

associated with the arabinose operon regulatory protein AraC (Schleif 2010; 374 

Gallegos et al. 1993; Bustos and Schleif 1993). HTH_Psq, as part of the 375 

eukaryotic Pipsqueak protein family, reported in vertebrates, insects, nematodes, 376 

and fungi, regulates the cell death (Siegmund and Lehmann 2002). Most FOSC 377 

genomes have a single copy of HTH_AraC, while the count of proteins containing 378 
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the HTH_Psq ranges from 0 to 9 in the FOSC and ranges from 0 to 3 in other 379 

Fusarium relatives. Since the HTH_Psq domain also exists in transposases 380 

(Siegmund and Lehmann 2002), and ACs in FOSC are transposon-rich, it 381 

remains to be studied whether proteins containing the Psq domain are bona fide 382 

TFs.  383 

 384 

4.2. Seven exceedingly expanded TF families   385 

Among others, seven TF families have expansion indexes greater than 2 (Table 386 

2 and Figure 2B). Because of their drastic expansion, these seven families 387 

overall account for more than 75% of the total TFome. These families include 388 

Zn2-C6 (EIy = 15.09), bZIP (EIy = 5.80), and Znf_C2H2 (EIy = 4.15), Homeobox 389 

(EIy = 2.28), PAI2 (EIy = 3.42), NDT80 (EIy = 3.47), and bHLH (EIy = 3.48). All 390 

seven families show gradual expansion, reflected by the average copy number 391 

increment (FOSC > non-FOSC Fusarium > non-Fusarium filamentous fungi > 392 

yeasts, table S1). Furthermore, Zn2-C6 (44 in yeasts versus 671 in FOSC) and 393 

Znf_C2H2 (40 in yeasts versus 167 in FOSC) have the most drastic number 394 

increment along the evolutionary trajectory (Figure 2C and Table S1). Based on 395 

both high expansion index and large number increment, we considered Zn2-C6 396 

and Znf_C2H2 as the most significantly expanded families. 397 

The large copy number makes it hard to interpret functions from the protein 398 

domain annotation. Here we describe a couple of TFs reported in F. oxysporum 399 

and other systems and will introduce orthologous analysis to further survey the 400 

functionally validated TFs in the later section.  401 

Zn2-C6, a fungal family TF (MacPherson et al. 2006), has the most significant 402 

expansion, reaching over 600 members among FOSC genomes and accounting 403 

for more than half of the total TFome. This group of TFs can form a homodimer 404 

and bind to the specific palindromic DNA sequence through direct contact with 405 

the major groove of the double-stranded DNA molecules (MacPherson et al. 406 

2006). The versatility of this group of TFs can be achieved by domain shuffling 407 

and by changing the nucleotide binding specificity. In addition to the well-408 
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documented Ftf1 (Niño-Sánchez et al. 2016; van der Does et al. 2016; Ramos et 409 

al. 2007; Zuriegat et al. 2021; Zhao et al. 2020), five additional TFs within this 410 

family have been characterized in F. oxysporum, including Ctf1 (Rocha et al. 411 

2008), Ctf2 (Rocha et al. 2008), Fow2 (Imazaki et al. 2007), XlnR (Calero-Nieto 412 

et al. 2007) and Ebr1 (Jonkers et al. 2014). They are involved in the 413 

development, metabolism, stress response, and pathogenicity. 414 

Znf_C2H2 is the most common DNA-binding motif found in the eukaryotic 415 

transcription factors (Fedotova et al. 2017). Five F. oxysprum TFs have been 416 

reported: Czf1 (Yun et al. 2019), Con7-1 (Ruiz-Roldán et al. 2015), PacC 417 

(Caracuel et al. 2003; Zhang et al. 2020), ZafA (López-Berges 2020) and St12 418 

(Asunción García-Sánchez et al. 2010; Rispail and Di Pietro 2009). Particularly, 419 

PacC was linked to the pathogenicity of both plant and human host (Zhang et al. 420 

2020; Caracuel et al. 2003). 421 

Other five families include bZIP, Homeobox, PAI2, Ndt80 and bHLH. bZIP 422 

domain contains a region for sequence-specific DNA binding followed by a 423 

leucine zipper region required for dimerization (Bader and Vogt 2006). Three F. 424 

oxysporum bZIP TFs have been reported, including Atf1 (Li et al. 2013), Hapx 425 

(López-Berges et al. 2012), and MeaB (López-Berges et al. 2010), all of which 426 

are important for fungal pathogenicity. Homeobox is a DNA binding motif with a 427 

helix-turn-helix structure. In S. pombe, Phx1 is a transcriptional coactivator that 428 

plays a role in yeast fission. In M. oryzae, Hox plays roles in the conidiation and 429 

appressorium development (Kim et al. 2009). PAI2 is involved in the negative 430 

regulation of protease synthesis and sporulation of the Bacillus subtilis (Honjo et 431 

al. 1990). Ndt80 is essential for completing meiosis in S. cerevisiae (Pierce et al. 432 

2003; Tsuchiya et al. 2014) and Ustilago maydis (Doyle et al. 2016). It also 433 

promotes the expression of sporulation genes that are essential for the fulfillment 434 

of meiotic chromosome segregation (Hepworth et al. 1998). bHLH proteins form 435 

a large superfamily of transcriptional regulators found in almost all eukaryotes 436 

and function in critical developmental processes (Jones 2004). F. graminearum 437 

Gra2 is involved in the biosynthesis of phytotoxin gramillin (Bahadoor et al. 438 

2018). P. digitatum encoding SreA is required for anti-fungal resistance and full 439 
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virulence in citrus fruits (Liu et al. 2015).   440 

 441 

4.3. other families  442 

Other 20 TF families (expanded but with EIy <= 2) account for 20% of the TFome; 443 

on average, each of these 20 families contains 9.6 copies in each genome 444 

examined (Table S1). These TFs are involved in chromatin remodeling and 445 

pheromone response, among other functions. 446 

Four TF families are functionally linked to chromatin remodeling, including 447 

Bromodomain (EIy = 1.52), CBFA_NFYB (EIy = 1.35), Znf_RING-CH (EIy = 1.11), 448 

and ARID (EIy = 1.25). Bromodomain containing Spt7 is a crucial part of the 449 

SAGA complex in yeast. The SAGA complex is required to transcribe many 450 

genes in the genome. The bromodomain that is part of this subunit can recognize 451 

acetylated lysines of histones and eventually lead it to a more chromatin 452 

unwinding (Donczew et al. 2020). CBFA_NFYB is found in the proteins (e.g., S. 453 

cerevisiae Dls1) that regulate RNA polymerase II transcription through controlling 454 

chromatin accessibility (e.g., telomeric silencing) (Iida and Araki 2004). 455 

Znf_RING-CH has a functional connection to chromatin modification (e.g., S. 456 

cerevisiae Rkr1) (Braun et al. 2007).  ARID is a 100 amino acid motif found in 457 

many eukaryotic TFs (Iwahara 2002). S. cerevisiae Swi1 plays a role in 458 

chromatin remodeling and is required to transcribe a diverse set of genes, 459 

including HO and Ty retrotransposons (Breeden and Nasmyth 1987; Hirschhorn 460 

et al. 1992).  461 

 462 

Ste12 is a family of TFs that regulate fungal development and pathogenicity 463 

(Rispail and Di Pietro 2010). These TFs are found only in the fungal kingdom. 464 

Ste12 binds to the DNA sequence that mediates pheromone response. It is 465 

involved in haploid mating and pseudohyphae formation in the diploid (Gancedo 466 

2001). F. oxysporum Ste12 controls invasive growth and virulence downstream 467 
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of the Fmk1-mediated MAPK cascade (Rispail and Di Pietro 2009). Except for S. 468 

pombe (missing one), every genome encodes one copy. 469 

 470 

Among others, Znf_NFX1 domain is found in the NK-X1, a repressor of the 471 

human disease-associated gene HLA-DRA (Song et al. 1994). HMG_box (high 472 

mobility group box) in S. cerevisiae, Spp41, is involved in negative expression 473 

regulation of spliceosome components (Maddock et al. 1994); Nhp6a is required 474 

for the fidelity of some tRNA genes (Braglia et al. 2007); Ixr1 is a transcriptional 475 

repressor that regulates hypoxic genes (Vizoso-Vázquez et al. 2012). One 476 

example of Znf_GATA is Fep1, a transcription factor that represses the 477 

expression of particular iron transporter genes under a high iron concentration 478 

(Kim et al. 2016). S. cerevisiae Mbf1, belonging to Cro/C1-type HTH, is a 479 

transcriptional coactivator (Takemaru et al. 1997).  480 

 481 

5. Orthologous survey of TF families that were manually curated 482 

To further understand expanded TFs and their impacts on transcriptional 483 

regulation, we curated a list of 102 TFs reported in literature focusing on F. 484 

oxysporum, F. graminearum, and other phytopathogenic fungi (Table S3 and 485 

examples as described in the previous section). Compared to this list of curated 486 

TFs using Orthofinder, we define 80 orthologous groups among Fusarium 487 

genomes (Table S4). 62 out of the 80 orthogroups have been identified using the 488 

above IPR-annotated pipeline, which enables the dissection of vastly expanded 489 

and high copy number TF families such as Zn2-C6 and Znf_C2H2, which are 490 

further mapped to 27 orthologous groups, including 17 in Zn2C6, 9 in Znf_C2H2, 491 

and 1 containing both Znf_C2H2 and Zn2-C6 domains (Table S4). 492 

This effort also results in additional annotation to 18 TF families (Table S4), 493 

accounting for 32 genes per genome (3% of average Fusarium TFome size). 494 

These newly annotated TFs include homologs of those without domain 495 

annotation, e.g., disordered proteins F. oxysporum Ren1 (Ohara et al. 2004) and 496 
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M. oryzae Som1 (Yan et al. 2011), and homologs of those with noncanonical TF 497 

domains such as Ankyrin_rpt and WD40_repeat. 498 

We then directly compared F. oxysporum with its Fusarium relatives to calculate 499 

the expansion index as follows: 500 

𝐸𝐼𝑓 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑇𝐹𝑠	𝑖𝑛	𝐹𝑂𝑆𝐶 + 1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑇𝐹𝑠	𝑖𝑛	𝐹𝑂𝑆𝐶	𝑠𝑖𝑠𝑡𝑒𝑟	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 + 1 501 

The EIf ranged, with the highest score being 3.54 (Fug, AreA_GATA) and the 502 

lowest being 0.5 (Fox1, Fork_head) (Table S4). Among these 80 orthogroups, 36 503 

groups show high conservation (EIf = 1) as they are single-copy orthologs across 504 

Fusarium, among which ten were functionally validated in F. oxysporum (Table 505 

S4). 24 groups have gene contraction in F. oxysporum (EIf < 1). A total of 20 506 

groups are expanded in F. oxysporum (EIf > 1, Table 3, Table S4), including five 507 

groups Fug1 (AreA_GATA, EIf = 3.54), Cos1 (Znf_C2H2, EIf = 2.8), Ftf1/Ftf2 508 

(Zn2-C6, EIf = 2.7), Ebr1/Ebr2 (Zn2-C6, EIf = 2.5) and Ren1 (disordered, EIf = 2), 509 

with an EIf value equal or greater than 2. We also identified PacC (EIf = 1.57) as 510 

the second most expanded group within the highly expanded Znf_C2H2 family. 511 

We will further discuss these six groups (highlighted in bold, Table 3). 512 

 513 

 514 

 515 

 516 

 517 

 518 
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 519 

TF Reported species References Family Overlap 

Aver
age_
Fo 

Aver
age_
non-
Fo EIf 

Ftf1/Ftf2 F. oxysporum (Niño-Sánchez et al. 2016) Zn2-C6 Yes 4.80 1.11 2.75 

Ebr1/Ebr2 F. oxysporum (Jonkers et al. 2014) Zn2-C6 Yes 5.27 1.56 2.45 

Znf1 M. oryzae (Yue et al. 2016) Zn2-C6 Yes 6.47 2.78 1.98 

Ctf2 F. oxysporum (Bravo-Ruiz et al. 2013) Zn2-C6 Yes 2.93 1.33 1.69 

Fow2 F. oxysporum (Imazaki et al. 2007) Zn2-C6 Yes 2.07 1.00 1.53 

Dep6 A. brassicicola (Wight et al. 2009) Zn2-C6 Yes 0.93 0.67 1.16 

Pf2 A. brassicicola (Jones et al. 2019) Zn2-C6 Yes 1.20 1.00 1.10 

Art1 F. verticilioides (Oh et al. 2016) Zn2-C6 Yes 1.00 0.89 1.06 

Clta1 C. lindemuthianum (Dufresne et al. 2000) Zn2-C6 Yes 1.07 1.00 1.03 

Fhs1 F. graminearum (Son et al. 2016a) Zn2-C6 Yes 1.07 1.00 1.03 

Cos1 M. oryzae (Li et al. 2013) Znf_C2H2 Yes 1.80 0.00 2.80 

PacC F. oxysporum (Caracuel et al. 2003) Znf_C2H2 Yes 2.13 1.00 1.57 

Fug1 F. verticillioides (Ridenour and Bluhm 2017) AreA_GATA No 7.27 1.33 3.54 

Ren1 F. oxysporum  (Ohara et al. 2004) disordered No 3.00 1.00 2.00 

Tri10 F. graminearum (Jiang et al. 2016) Fun_TF No 1.13 0.33 1.60 

Ltf1 B. cinerea (Schumacher et al. 2014) Znf_GATA Yes 4.00 2.44 1.45 

Ndt80 U. maydis (Doyle et al. 2016) NDT80 Yes 1.73 1.11 1.29 

Hap3p F. verticillioides (Ridenour and Bluhm 2014) CBFA_NFYB Yes 1.33 1.00 1.17 

Sod1 F. oxysporum (Wang et al. 2021) SOD_Cu_Zn No 1.47 1.22 1.11 

Prf1 F. oxysporum (Mendoza-Mendoza et al. 2009) HMG_box Yes 1.07 1.00 1.03 
 520 

Both Ftf1/Ftf2 and Ebr1/Ebr2 belong to the Zn2-C6 family and contribute directly 521 

to the fungal virulence (Michielse et al. 2009; van der Does et al. 2016; Ramos et 522 

al. 2007). Deletion of accessory copy Ftf1 reduced the pathogenicity of F. 523 

oxysporum f. sp. phaseoli (Ramos et al. 2007), highlighting the direct functional 524 

involvement of AC TF in virulence. In Fol, deletion of either Ftf1 (AC encoding) or 525 

Ftf2 (CC encoding) reduced the virulence towards the host (de Vega-Bartol et al. 526 

2011; Niño-Sánchez et al. 2016). Constitutive expression of either Ftf1 or Ftf2 527 

induced the expression of effector genes (van der Does et al. 2016). The core 528 

copy Ftf2 is conserved among all Fusarium species, and the AC copy Ftf1 is only 529 

found in F. oxysporum and Fusarium redolens (Figure 4). Ebr1 and paralogues 530 

are responsible for virulence and general metabolism. In F. oxysporum, Ebr1 is 531 

Table 3. Ortholog copy number and expansion index (EIf) of characterized and expanded 
TFs in F. oxysporum 
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found as multiple homologs, whereas in F. graminearum, it is seen as a single 532 

copy (Jonkers et al. 2014). In F. oxysporum, three paralogous copies, Ebr2, 533 

Ebr3, and Ebr4, are encoded in ACs and regulated by core copy Ebr1. The 534 

importance of the core paralog has been shown by the reduced pathogenicity 535 

and growth defects when it was knocked out (Jonkers et al. 2014). It is worth 536 

noting that the Ebr2 coding sequence driven by an Ebr1 promoter was able to 537 

rescue the Ebr1 knockout mutation, indicating some functional redundancy of this 538 

family.  539 

Both Cos1 and PacC belong to the Znf_C2H2 family. Mutation to M. oryzae 540 

Cos1 resulted in developmental failure of the conidiophores (Li et al. 2013). 541 

Furthermore, mutation to Cos1 aggravated the plant infection of leaf blades and 542 

sheaths, indicating a negative role in the pathogenicity (Zhou et al. 2009).  PacC 543 

is an important pH-responsive TF in F. oxysporum (Caracuel et al. 2003; Zhang 544 

et al. 2020). PacC homologs are expanded in clinical strains (average accessory 545 

copy number 3.7) of FOSC, compared to non-clinical strains (average accessory 546 

copy number 0.5), while all Fusarium relatives’ genomes examined only contain 547 

a single copy of core PacC. Our previous study revealed that in F. 548 

oxysporum clinical strains, the expression of one expanded PacC gene on ACs 549 

was induced and the protein localized in the nucleus at mammalian physiological 550 

pH (7.4), indicating a potential role in host adaptation (Zhang et al. 2020). 551 

Interestingly, the induction of AC-encoding PacC genes was CC-encoding PacC 552 

gene-dependent, as the induction disappeared in the CC-encoding PacC 553 

knockout mutant, further supporting a cross-talking between core and accessory 554 

TFs (Yang 2020). Similar to EBR1, the expression of AC PacC genes is much 555 

lower than that of the CC PacC gene, and knockouts of one AC PacC gene 556 

affected a small subset of genes compared with the CC PacC knockout, which 557 

has a broader effect on cellular processes (Yang 2020). 558 

Fug1 has a role in pathogenicity (maize kernel colonization) and fumonisin 559 

biosynthesis in F. verticillioides (Ridenour and Bluhm 2017). In addition, the 560 

deletion of Fug1 increased sensitivity to the antimicrobial compound 2-561 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527873doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527873
http://creativecommons.org/licenses/by/4.0/


benzoxazolinone and to hydrogen peroxide, which indicates that Fug1 plays a 562 

role in mitigating stresses associated with the host defense (Ridenour and Bluhm 563 

2017). Neither core copies nor accessory copies of these two genes were 564 

experimentally examined in FOSC. Ren1 is a disordered protein with no IPR 565 

functional domain. The expansion score EIf = 2 suggests a unique expansion 566 

among FOSC. However, the only reported study on its function is in F. 567 

oxysporum f. sp. melonis regulating the development of the conidiation (Ohara et 568 

al. 2004). 569 

6. Transcriptome analysis to probe the essential TFs during host 570 

colonization 571 

To understand the functional importance of FOSC TFs, we take advantage of two 572 

recently reported transcriptomics datasets (Redkar et al. 2022; Guo et al. 2021), 573 

including pathogenic interactions (Fo5176 infecting Arabidopsis and Fol4287 574 

infecting tomato) and endophytic interactions (Fo47 colonizing Arabidopsis) 575 

(Supplemental Dataset).  576 

We first asked what proportion of genes was expressed in conserved and 577 

expanded categories (Table S5). We found that almost all genes (58 out of 60) 578 

within the conserved category (Group 1) were consistently expressed (TPM > 1 579 

across all conditions), supporting their general roles in controlling life processes. 580 

Within the expanded category (Group 3), the proportion of genes being 581 

consistently expressed ranges from 41% to 59% for core TFs, and ranges from 582 

5% to 16% for accessory TFs. With a less strict filter (TPM > 1 at minimum 1 583 

condition), we found that all genes within the conserved category were 584 

expressed. Within the expanded category, the proportion of genes being 585 

expressed accounts for 93% of core TFs across all strains and ranges from 49% 586 

to 67% for accessory TFs. When we compared genes being consistently 587 

expressed versus genes being expressed at a minimum one condition, the more 588 

dramatic number increase for the expanded category (especially when we only 589 

consider the accessory TFs) highlighted that the expanded category, especially 590 
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the accessory TFs, are more likely to be conditional expressed, further 591 

supporting their role in niche adaptation. 592 

With the goal of examining the expression and probing important core and 593 

accessory TFs, we aimed to develop filtering parameters. Since most validated 594 

TFs were reported in the reference Fol4287 strain, we first reviewed for the 595 

reported TFs, both core, and accessory, the expression pattern during Fol4287 596 

infecting tomatoes (Table S6). Out of 27 TFs encoded on the core genome, 18 597 

show up-regulation (defined by at least three out of four in planta conditions show 598 

up-regulation compared to the axenic growth) during plant colonization from 1 599 

day post-inoculation (dpi) to 7 dpi, consistent with their reported roles in 600 

pathogenicity. The accessory Ftf1 has been exclusively demonstrated to play 601 

essential functions in fungal pathogenicity (Niño-Sánchez et al. 2016). Eight of 10 602 

accessory Ftfs were upregulated using the same criteria during plant 603 

colonization. Our results illustrate the power of using transcriptome data to probe 604 

the functionally important players during plant colonization/infection. 605 

We further developed strict criteria to filter important TFs from TFome (Figure 606 

S5), by which half (nine) of previously described upregulated core TFs meet the 607 

‘core’ criteria, and all eight up-regulated accessory Ftfs meet the ‘accessory’ 608 

criteria (Table S6). We then apply such measures to the transcriptome of all the 609 

TFomes of Fol4287, Fo5176, and Fo47 to probe two types of TFs: 1) The 610 

conserved core TFs related to plant colonization; 2) Expanded accessory TFs 611 

related to host-specific pathogenicity. 612 

Fol4287, Fo5176, and Fo47 upregulated 95, 62, and 44 core TFs during plant 613 

colonization. Among them, ten copies are highly conserved (Table S7), as they 614 

are single-copy orthologs across all 15 F. oxysporum strains. Two out of ten were 615 

previously reported, Fow2 and Sfl1. Fow2, Zn2C6 TF, is required for full 616 

virulence but not hyphal growth and conidiation in F. oxysporum f. sp. melonis 617 

(Imazaki et al. 2007). The downstream targets of Fow2 remain unknown in F. 618 

oxysporum, thus meriting further analysis. Sfl1 has been described in the 619 
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previous section and is essential for vegetative growth, conidiation, sexual 620 

reproduction, and pathogenesis, as shown in M. oryzae (Li et al. 2011). The 621 

functions of FoSfl1 remain to be validated. 622 

Fol4287, Fo5176, and Fo47 upregulated 29, 34, and 9 accessory TFs. Ftf1 and 623 

Ren1 are particularly interesting (Figure 4 and Table S8). Though Ftfs have been 624 

shown to play an essential role in pathogenicity in Fol, whether this pathway is 625 

restricted to the same strain remains a question. Compared to Fol4287 which 626 

contains ten accessory Ftfs and eight were upregulated during plant colonization, 627 

Fo5176 includes six copies of accessory Ftfs, but only one copy was 628 

upregulated. Interestingly, eight upregulated Fol4287 and one upregulated 629 

Fo5176 Ftfs are clustered together (Figure 4). The unique expansion with 630 

regulatory adaptation (i.e., fine-tuned expression regulation) seems to be 631 

restricted to Fol4287 but not another pathogenic strain, Fo5176, when they infect 632 

the hosts. Among Fo5176 expanded TFs, we identified Ren1. Compared to 633 

Fol4287 which encodes only one accessory Ren1 that was not upregulated 634 

during plant colonization, Fo5176 encodes seven accessory copies, among 635 

which two were upregulated (Figure 4). Though functional validation is needed, 636 

the strain-specific expansion followed by fine-tuned expression regulation when 637 

infecting host species exists and likely contributes to the host-specific 638 

pathogenicity. 639 

 640 

 641 

 642 

 643 

 644 
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 645 

 646 

  647 

Figure 4. Unique expansion of some TFs, driven by ACs, may provide clues to 
host-specific adaptation. RNA-seq data were previously described (Guo et al., 2021; 
Redkar et al., 2021). (A) Ftf1, the TF involved in the tomato pathogenicity is most 
significantly expanded (10 copies of accessory FTFs) in the tomato pathogen Fol4287 
genome and the expression of eight out of 10 were induced during plant colonization. (B) 
Ren1 is most significantly expanded (seven copies of accessory RENs) in the 
Arabidopsis pathogen Fo5176 genome, and two of them were induced during plant 
colonization.   
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DISCUSSION  648 

For a soilborne pathogen with strong host specificity like FOSC, the adjustment 649 

of growth and cell cycle control in response to environmental cues is likely 650 

essential for survival. At the same time, expanded families likely contribute to the 651 

enhanced functions related to niche adaptation. TFs transmit external and 652 

internal signals and regulate complex cellular signaling responses to the sensed 653 

stimuli. Transmitted through the soil and vascular wounds of plants causing 654 

vascular wilt (Gordon 2017), F. oxysporum must adapt to stresses encountered 655 

both outside and inside its host. Therefore, it is not surprising to see that 656 

genomes of FOSC have larger TFome than other fungi included in the study. The 657 

expansion of TFs among FOSC resulted in a positive correlation between the 658 

total number of proteins and the size of the fungal TFome, which was also 659 

observed before (Shelest 2017).  660 

A total of 14 TF families that control the global transcriptional event, such as 661 

TBP, are highly conserved within the ascomycete fungal lineages. Conserved 662 

regulatory mechanisms revealed through this study suggest that the plant 663 

colonization process could be a common process among FOSC strains 664 

regardless of their host-specific pathogenesis. The notion was also supported by 665 

recent studies that highlighted the ability of FOSC as a root colonizer facilitated 666 

by the conserved genomics components (Martínez-Soto et al. 2022; Redkar et al. 667 

2022).  668 

In contrast to these stable TFs, 30 families are expanded in various degrees and 669 

most significant expansions occurred in Zn2-C6 and Znf_C2H2 TF families 670 

among FOSC genomes. The number of Zn2-C6 TFs increases significantly (with 671 

the highest expansion score) and makes up most of the TFs (56.7%) found within 672 

the FOSC TFome. For example, Ftf1, a TF belonging to the Zn2-C6 and involved 673 

in the tomato pathogenicity, is most significantly expanded (10 copies of 674 

accessory Ftfs) in the tomato pathogen Fol4287 genome, and the expression of 675 

eight out of 10 was induced during plant colonization. The continuous expansion 676 
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suggests the functional importance of these understudied TFs, further supported 677 

by the genetic studies (Niño-Sánchez et al. 2016; van der Does et al. 2016; 678 

Ramos et al. 2007; Zuriegat et al. 2021; Zhao et al. 2020) and their induction 679 

during host invasion revealed by our RNA-seq data.  680 

Unique expansion of some TFs, driven by ACs, may provide a clue to host-681 

specific interactions. Acquiring additional TFs will modify existing regulatory 682 

pathways. No question, this will require the fine-tuning of existing networks for 683 

this group of organisms to successfully adapt to different hosts under diverse 684 

environments. A previous survey of kinome (the complete set of protein kinases 685 

encoded in an organism's genome) among FOSC and other Ascomycetes 686 

revealed a positive correlation between the size of the kinome and the size of the 687 

genome (DeIulio et al. 2018), exactly the same as we reported here for TFomes. 688 

As kinases and TFs are key regulators that modulate all important signaling 689 

pathways and are essential for the proper functions of almost all molecular and 690 

cellular processes. Strong correlations among kinome and TFome suggest an 691 

ordered, instead of chaotic, recruitment and establishment of ACs among FOSC 692 

genomes. 693 

This realization further emphasizes the importance of additional functional 694 

studies. Reverse genetics is a powerful tool in defining the functional importance 695 

of a TF. For example, TF Ren1, a disordered protein, was identified by genetic 696 

and molecular characterization (Ohara et al. 2004). This TF is most significantly 697 

expanded (seven copies of accessory Rens) in the Arabidopsis pathogen 698 

Fo5176 genome, and two of them were induced during plant colonization. 699 

Experiments such as chromatin immunoprecipitation sequencing (CHIP-Seq) and 700 

DNA affinity purification sequencing (DAP-seq) to profile the cis-regulatory 701 

elements globally are high throughput approaches to define specific binding sites 702 

(cis-regulatory elements) of TFs. DAP-seq was used successfully to profile the 703 

Cistrome for the entire TFome of the bacterial organism (Baumgart et al. 2021), 704 

holding the promise for a better understanding of transcriptional regulation in the 705 

fungal model F. oxysporum. TFs can function individually or with other proteins in 706 
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a complex, and can act as an activator that promotes transcription or a repressor 707 

that blocks the recruitment of RNA polymerase. Therefore, defining specific 708 

functions of these identified binding sites through DAP-seq can be difficult. Gene 709 

regulatory networks based on gene co-expression and other phenotypic and 710 

multi-omics data as reported in Fusarium (Guo et al. 2016,  2020) can add more 711 

resolution to these complex regulatory processes. However, the ultimate 712 

understanding of the regulatory roles of each TF will come from careful molecular 713 

and biochemical characterization.  714 

A systematic understanding of transcriptional regulation is essential to get the 715 

fine-tuned footprint of the gene regulatory network. Our study not only offered a 716 

comprehensive look at the regulation from the evolutionary perspective, but also 717 

provided an easily implemented computational pipeline to compare TFs and 718 

other functional groups in fungi. A better understanding of their functions would 719 

not only inform Fusarium biology but also could be extrapolated to other 720 

filamentous fungi and complex basidiomycetes.  721 
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