1 Conservation and Expansion of Transcriptional Factor Repertoire in the

2 Fusarium oxysporum Species Complex

3

- 4 Houlin Yu¹, He Yang¹, Sajeet Haridas², Richard D. Hayes², Hunter Lynch¹,
- 5 Sawyer Andersen¹, Gengtan Li¹, Domingo Martínez-Soto¹, Shira Milo-Cochavi¹,
- 6 Dilay Hazal Ayhan¹, Yong Zhang¹, Igor V. Grigoriev²³, Li-Jun Ma^{1†}

7

- ⁸ ¹Department of Biochemistry and Molecular Biology, University of Massachusetts
- 9 Amherst, Amherst, MA 01003, USA.
- ¹⁰ ²Department of Energy Joint Genome Institute, Lawrence Berkeley National
- 11 Laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
- ¹² ³Department of Plant and Microbial Biology, University of California Berkeley,
- 13 Berkeley, CA 94598, USA

14

15 [†]Correspondence: Li-Jun Ma (lijun@biochem.umass.edu).

16

17 Running Head: TFome Analysis of *Fusarium oxysporum* Species Complex

18

20 ABSTRACT

- 21 The Fusarium oxysporum species complex (FOSC) includes both plant and
- 22 human pathogens that cause devastating plant vascular wilt diseases and
- 23 threaten public health. Each *F. oxysporum* genome comprises core
- 24 chromosomes (CCs) for housekeeping functions and accessory chromosomes
- 25 (ACs) that contribute to host-specific adaptation. This study inspected global
- 26 transcription factor profiles (TFomes) and their potential roles in coordinating
- 27 CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably,
- 28 we found a clear positive correlation between the sizes of TFome and proteome
- of an organism, and FOSC TFomes are larger due to the acquisition of ACs.
- 30 Among a total of 48 classified TF families, 14 families involved
- 31 in transcription/translation regulations and cell cycle controls are highly
- 32 conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are
- 33 most significantly expanded to 671 and 167 genes per family, including well-
- 34 characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-
- 35 specific interactions. Manual curation of characterized TFs increased the TFome
- 36 repertoires by 3%, including a disordered protein Ren1. Expression profiles
- 37 revealed a steady expression of conserved TF families and specific activation of
- 38 AC TFs. Functional characterization of these TFs could enhance our
- 39 understanding of transcriptional regulation involved in FOSC cross-kingdom
- 40 interactions, disentangle species-specific adaptation, and identify targets to
- 41 combat diverse diseases caused by this group of fungal pathogens.
- 42

43 KEYWORDS

- 44 *Fusarium oxysporum* species complex; transcription factors; TFome; accessory
- 45 chromosome; conservation; expansion
- 46
- 47

48 **INTRODUCTION**

49 The fungal species complex of Fusarium oxysporum (FOSC) has been used as a 50 model to study cross-kingdom fungal pathogenesis. Members within FOSC can 51 cause devastating fusarium wilt diseases among economically important crops 52 (Ma et al. 2013; Ma 2014; Michielse and Rep 2009; Ploetz 2015; Edel-Hermann 53 and Lecomte 2019; Pegg et al. 2019; Yang et al. 2020; Dean et al. 2012; 54 Rahman et al. 2021; Viljoen et al. 2020; Halpern et al. 2018) and is listed among 55 the top five most important plant pathogens that have a direct impact on the 56 global economy and food security (Dean et al. 2012). With strong host specificity, 57 plant pathogenic F. oxysporum strains are further grouped as formae speciales (Armstrong and Armstrong 1981). For instance, tomato pathogens are named F. 58 59 oxysporum f.sp. lycopersici, cotton pathogens F. oxysporum f.sp. vasinfectum 60 (Halpern et al. 2018), and banana pathogen F. oxysporum f.sp. cubense (Viljoen 61 et al. 2020). Recently, members within FOSC have also been reported to be 62 responsible for fusariosis, the top emerging opportunistic mycosis (Ma et al. 63 2013; Yang et al. 2020), and fusarium keratitis, one of the major causes of cornea infections in the developing world and the leading cause of blindness 64 65 among fungal keratitis patients (Kredics et al. 2015; Hassan et al. 2016). 66 Comparative genomics studies on this cross-kingdom pathogen revealed that the 67 FOSC genomes, both human and plant pathogens, are compartmented into two

68 components: the core chromosomes (CCs) and accessory chromosomes (ACs).

69 While CCs are conserved and vertically inherited to execute essential

70 housekeeping functions, horizontally transmitted ACs are lineage- or strain-

71 specific and related to fungal adaptation and pathogenicity, conferred by virulent

72 factors such as SIX (Secreted in Xylem) proteins (Ma et al. 2013; Yang et al.

73 2020; Rep et al. 2004; Yu et al. 2023). ACs and CCs must coordinate their gene

74 expression to coexist within the same genome.

75 A few characterized transcription factors (TFs) coordinate the crosstalk between

76 CCs and ACs, two compartments. One intriguing example is the cross-regulation

77 among F. oxysporum transcription factors Sge1 (SIX Gene Expression 1), Ftfs, 78 and effector genes. Sge1 is a highly conserved, CC-encoding TF. By name 79 definition, Sge1 regulates the expression of SIX proteins (Michielse et al. 2009; 80 van der Does et al. 2016). AC-encoding Ftf1 proteins (Ftf1 and its AC homologs) 81 and a CC-encoding Ftf2 (Ftf1 CC homolog) are reported in the reference genome 82 of F. oxysporum f.sp. lycopersici Fol4287 (van der Does et al. 2016). Constitutive 83 expression of either *Ftf1 genes* or *Ftf2* induced the expression of effector genes 84 (van der Does et al. 2016). Furthermore, It was documented that DNA binding 85 sites of Sge1 and Ftf1 are enriched among the cis-regulatory elements of in 86 planta transcriptionally up-regulated genes (van der Does et al. 2016). Another CCs and ACs cross-talking example is the alkaline pH-responsive transcription 87 88 factor PacC/Rim1p reported in F. oxysporum clinical strains (Zhang et al. 2020). 89 In addition to the full-length PacC ortholog (PacC O), located on a CC, the 90 clinical isolate NRRL32931 genome encodes three truncated *PacC* homologs,

91 named *PacC_a*, PacC_b, and *PacC_c* in ACs (Zhang et al. 2020).

92 To thoroughly understand the coordination of the crosstalk between genome 93 compartments and their contribution to the cross-kingdom fungal pathogenesis. 94 this study compared the repertoire of TFs (*i.e.*, TFome) among 15 F. oxysporum 95 and 15 other ascomycete fungal genomes, which was organized into 48 families 96 based on the InterPro classification of proteins. Remarkably, we discovered a 97 strong positive correlation (y = 0.07264x - 190.9, $r^2 = 0.9361$) between the 98 number of genes (x) and TFome size (y) of an organism. Primarily due to the 99 acquisition of ACs, we observed increased TFome sizes among FOSC genomes. 100 Fourteen out of 48 families involved in transcription/translation regulations and 101 cell cycle controls are highly conserved. Thirty, accounting for ³/₄ of all families, 102 are expanded in various degrees among FOSC genomes. Unique TF expansions 103 driven by ACs include members of Zn2-C6 fungal-type (Zn2-C6) and Zinc Finger 104 C2H2 (Znf C2H2) families. This comparative study first highlights the conserved 105 regulatory mechanisms of F. oxysporum, which are essential for variability and 106 plant colonization. With the foundation established by functional conservation,

- 107 this study further emphasizes potential modifications of existing regulatory
- 108 pathways by acquiring additional TFs. In combination with existing expression
- 109 data, this study may provide clues to the fine-tuning of networks in the
- 110 environmental adaptation of this group of diverse organisms to engage in
- 111 complex cross-kingdom interactions with different hosts.
- 112

113 MATERIALS AND METHODS

114 Generation of fungal TFomes

115 The annotation pipeline is briefly summarized in Figure S1A-B. The fungal 116 proteomes of 30 strains were downloaded from the JGI MycoCosm portal 117 (Grigoriev et al. 2014). Protein annotation was performed using InterProScan/5.38-118 76.0 (https://www.ebi.ac.uk/interpro/search/sequence/) (Jones et al. 2014). 119 Annotations of proteins putatively serve as TFs were filtered out using a table 120 containing InterPro terms related to transcriptional regulatory functions summarized by literature (Park et al. 2008; Shelest 2017), with further addition by 121 122 manual curation (Table S1). Orthologous analysis to probe orthologs of functionally 123 validated TFs (Table S3-4 and Table 3) in Fusarium was done with OrthoFinder 124 2.5.4 (https://github.com/davidemms/OrthoFinder) (Emms and Kelly 2019).

125 **RNA-seq analysis**

126 The RNA-seq datasets were previously described (Guo et al. 2021; Redkar et al. 127 2022) and deposited by those authors to the NCBI Short Read Archive with 128 accession number GSE87352 and to the ArrayExpress database at EMBL-EBI 129 (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-10597, 130 respectively. For data reprocessing, reads were mapped to reference genomes of 131 Arabidopsis [annotation version Araport11 (Cheng et al. 2017)], Fo5176 (Fokkens et al. 2021), Fo47 (Wang et al. 2020) and Fol4287 (Ma et al. 2010) using HISAT2 132 133 version 2.0.5 (Kim et al. 2019). Mapped reads were used to quantify the transcriptome by StringTie version 1.3.4 (Pertea et al. 2015), at which step TPM 134

(transcript per million) normalization was applied. Normalized read counts were
first averaged per condition and then transformed by log2 (normalized read count
+ 1) and Z-scaled, then visualized in pheatmap (version 1.0.12).

138 **Genome partition**

139 The genome partition results for chromosome-level assemblies were retrieved from previous reports for Fol4287 (Ma et al. 2010), Fol15 (Zhang 2019), Fo5176 140 141 (Fokkens et al. 2021), and Fo47 (Wang et al. 2020). Fo47 has a clear genome partition with 11 core chromosomes and one accessory chromosome, therefore 142 serving as the reference for the genome partition of other *F. oxysporum* 143 144 genomes. mummer/3.22 was applied to align scaffolds of genome assemblies 145 against 11 core chromosomes of the reference genome Fo47 using default 146 parameters. The scaffolds aligned to the core chromosomes of Fo47 with a 147 coverage larger than 5% were annotated as core scaffolds. The rest of the 148 scaffolds were partitioned as accessory scaffolds. Genes residing on core and

accessory scaffolds were annotated as core and accessory genes, respectively.

150 **Phylogenetics analysis**

Protein sequences were aligned via MAFFT/7.313 (Katoh and Standley 2013). 151 152 Then the igtree/1.6.3 (Minh et al. 2020; Nguyen et al. 2015) was run on the 153 sequence alignment to generate the phylogeny (by maximum likelihood method and bootstrapped using 1000 replicates) (Hoang et al. 2018) and was then 154 155 visualized via the Interactive Tree of Life (Letunic and Bork 2021), producing the 156 phylogram. OrthoFinder 2.5.4 (Emms and Kelly 2019) was used for orthogroup determination. To build a species phylogram, randomly selected 500 conserved 157 158 proteins (single-copy orthologs) were aligned first. Then the alignment was 159 concatenated, and phylogeny was determined and visualized using the above 160 methods.

161

163 **RESULTS**

Figure 1. Phylogeny of fungal genomes included in this study. Both left and right phylograms were constructed by concatenated alignment of randomly selected 500 single-copy orthologous proteins, followed by the maximum likelihood method with 1000 bootstraps. Left shows a phylogram of FOSC (represented by the reference genome Fol4287) together with the other 15 ascomycetes. The right shows a phylogram of members within FOSC, rooted by *F. verticillioides* (not shown). Only bootstrap values not equal to 100 are shown.

165

- 166 We compared 30 ascomycete fungal genomes (Figure 1 and Table 1), including
- 167 15 strains within the FOSC, nine sister species close to *F. oxysporum*, two yeast
- 168 genomes (Saccharomyces cerevisiae and Schizosaccharomyces pombe), four
- 169 other filamentous fungal species (Neurospora crassa, Aspergillus nidulans,
- 170 Aspergillus acristatulus, and Magnaporthe oryzae). To maintain consistency, the
- 171 protein sequences for all these genomes were retrieved from the MycoCosm
- 172 portal (Grigoriev et al. 2014).

173

174

Table 1. Fungal genomes used in this study

Fungal species or strains	MycoCosm identifier	Genome Size (MB)	No. of genes	TFome Size	Host	Reference
Saccharomyces cerevisiae	Sacce1	12.07	6575	284		(Goffeau et al. 1996)
Schizosaccharomyces pombe	Schpo1	12.61	5134	228		(Wood et al. 2002)
Aspergillus nidulans	Aspnid1	30.48	10680	635		(Galagan et al. 2005)
Aspergillus acristatulus	Aspacri1	32.59	11221	666		(Vesth et al. 2018)
Neurospora crassa	Neucr2	41.04	9730	447		(Galagan et al. 2003)
Magnaporthe oryzae	Magor1	40.49	12673	520	Rice	(Dean et al. 2005)
Fusarium solani	Fusso1	52.93	17656	1137	broad hosts	(Mesny et al. 2021)
F. pseudograminearum	Fusps1	36.33	12395	627	Wheat	(Gardiner et al. 2012)
F. graminearum	Fusgr1	36.45	13321	608	Wheat	(Cuomo et al. 2007)
F. venenatum	Fusven1	37.45	12845	802		(Mesny et al. 2021)
F. tricinctum	Fustr1	43.69	14106	925	Broad hosts	(Mesny et al. 2021)
F. verticillioides	Fusve2	41.78	15869	917	Corn	(Ma et al. 2010)
F. fujikuroi	Fusfu1	43.83	14813	901	Broad hosts	(Wiemann et al. 2013)
F. redolens	Fusre1	52.56	17051	1098	Broad hosts	(Mesny et al. 2021)
F. commune	Fusco1	48.37	15731	1012	Broad hosts	(Mesny et al. 2021)
F. oxysporum f.sp. cubense (II5)	FoxII5	49.43	16048	1047	Banana	(Zhang 2019)
F. oxysporum f. sp. radicis-lycopersici (CL57)	Fusoxrad1	49.36	18238	1151	Tomato	(Delulio et al. 2018)
F. oxysporum Fo47 (Fo47)	FusoxFo47_2	50.36	16207	1082		(Wang et al. 2020)
F. oxysporum f. sp. lycopersici (MN25)	Fusoxlyc1	48.64	17931	1119	Tomato	(Delulio et al. 2018)
F. oxysporum NRRL26365 (NRRL26365)	Fox26365_1	48.46	16047	1036	Human	(Yang 2020)
F. oxysporum f. sp. melonis (FoMelon)	Fusoxmel1	54.03	19661	1219	Melon	(Ma et al. 2014)
F. oxysporum f. sp. lycopersici (Fol4287)	Fusox2	61.36	20925	1292	Tomato	(Ma et al. 2010)
F. oxysporum NRRL32931 (NRRL32931)	Fusox32931	47.91	17280	1072	Human	(Zhang et al. 2020)
F. oxysporum MRL8996 (MRL8996)	FoxMRL8996	50.07	16631	1057	Human	(Zhang et al. 2020)
F. oxysporum f. sp. matthiolae (PHW726)	FoxPHW726_1	57.22	17996	1157	Brassica	(Yu et al. 2020)
F. oxysporum f. sp. vasinfectum (FoCotton)	Fusoxvas1	52.91	19143	1189	Cotton	(Delulio et al. 2018)
F. oxysporum f. sp. pisi (HDV247)	Fusoxpis1	55.19	19623	1229	Pea	(Williams et al. 2016)
F. oxysporum f. sp. raphani (PHW815)	Fusoxrap1	53.5	19306	1132	Brassica	(Delulio et al. 2018)
F. oxysporum f. sp. conglutinans (PHW808)	Fusoxcon1	53.58	19854	1142	Brassica	(Delulio et al. 2018)
F. oxysporum Fo5176 (Fo5176)	FoxFo5176	67.98	19130	1236	Arabidopsis	(Fokkens et al. 2021)

177

178	To have a comprehensive TFome annotation, we started with reported	

- 179 InterProScan (IPR) terms associated with fungal transcriptional regulation (Park
- 180 et al. 2008; Shelest 2017) and curated a mapping with updated IPR classification
- 181 (interproscan version: 5.38-76.0) (Blum et al. 2021). In addition, we searched the
- 182 IPR classification of protein families and obtained all other terms related to the
- 183 transcriptional regulation activity. This resulted in 234 TF-related IPR terms
- 184 (Table S1). Since most of the terms are initially defined in the mammalian
- 185 systems, it was not surprising to see that overall, our fungal genomes are only
- associated with 71 IPR terms out of the total 234 TF-related IPR terms (Table
- 187 S1, Materials and Methods, and Figure S1A-B for annotation pipeline). After
- 188 filtering out 13 and 10 terms for redundancy (two terms describing the identical

domain) and minimal presentation (< 4 among the 30 genomes), respectively,

190 this comparative TFome study focused on the rest 48 IPR terms, which

- represented a total of 27967 TFs (Table S1-S2). Notably, 12 out of 48 terms
- 192 were not reported to be affiliated with fungal transcriptional regulation by either
- 193 Park et al. 2008 or Shelest 2017 (Table S1), adding values to our manual IPR
- 194 term search.
- 195 Comparing the total number of genes in a genome (*x*) and the total number of
- 196 TFs within that genome (y), we observed a strong positive correlation (y =
- 197 0.07264x 190.9, r^2 = 0.9361) (Figure 2A). Among all genomes included in this
- 198 study, FOSC TFomes are the largest, with an average of 1144 TFs per genome
- 199 (Figure 2A, Table 1). After partitioning each FOSC genome into core and
- 200 accessory regions (see Materials and Methods for details), we observed a
- 201 positive correlation between the number of TFs encoded in the accessory
- 202 chromosomal region of each strain (defined as accessory TFs hereafter) with the
- size of accessory genomes (Mb) (y = 17.239x + 3.553) (Figure S2), suggesting
- that accessory chromosomes contribute directly to the expanded TFome.
- 205

Figure 2. TFome conservation and variation among ascomycete fungi: baseline description. (A) There is a positive correlation between the number of genes and TFome size of an organism. JGI fungal genome identifiers were used as labels. (B) Histogram illustrates the distribution of expansion indexes among different families. (C) Average number of TFs of two most drastically expanded families (Znf_C2H2 and Zn2-C6) within each genome set. Genome Set 1 (G1) includes two yeast genomes (*S. cerevisiae* and *S. pombe*). Genome Set 2 (G2) includes four filamentous fungal species (*N. crassa, A. nidulans, A. acristatulus,* and *M. oryzae*). Genome Set 3 (G3) includes nine sister species close to *F. oxysporum*. Genome Set 4 (G4) includes 15 FOSC genomes.

206 To understand genome regulation among FOSC, we developed an expansion

index score using two yeast lineages as the baseline (EI_y) :

$$EIy = \frac{Average \ number \ of \ TFs \ in \ FOSC + 1}{Average \ number \ of \ TFs \ in \ yeasts + 1}$$

209

Table 2. Expansion Index (*El_y*) of 48 TF families

Asterisk indicates the families without a presence in yeasts

IDD	Torm	E 1
	Term	Ely
Group 1	TOD	4
IPR000814		1
IPR003228		1
		1
	IAFIIZO Nah2	1
		1
IPR008570	Vps25	1
IPR008895		1
IPR007 196		1
IPR005612		1
IPR001289		1
IPR018004	APSES-type HTH	1
IPR003150		1
IPR033896	MADS_MEF2-like	1
IPR018501	וטט	1
Group 2		
IPR006856		0.8
IPR039515		0.9
IPR033897	MADS_SRF-like	0.95
IPR000232	HSF	0.98
Group 3	Toorpt rog UTU APSES type	1.04
IPR003103	Fork bood	1.04
		1.05
		1.11
IPR001905	ZIII_FHD	1.11
IPR003071		1.12
IPR004101		1.24
		1.20
IPR000079	SANT/Mub	1.3
IPR001003		1.32
IPP003120	Sta12	1.33
IPP003058		1.35
IPP001083		1.33
IPP00067	Zof NEX1	1.57
IDD006565	Bromodomain	1.4
IPR000303		1.52
IPP0018/1	Znf RING	1.0
IPP000571		1.04
IPP001878		1.74
IPP010666	Znf_CEF	1.05
IPP018060	HTH AraC*	2
IPP001356	Homeobox	2 28
IPP007604	CP2*	2.20
IPR007396	PAI2	2.73
IPR024061	NDT80	3.42
IPR011598	ЫН Н	3.48
IPR007880	HTH Pea*	3.40
IDD012007		3.55 4 1E
		4.10 5 0
IDD001138	7n2-06	15.00
11 100 1100	202-00	10.09

212 Based on this index value, we classified TF families into three major groups

- 213 (Table 2, Table S1). Group 1 contains 14 TF families with an expansion score of
- 1, indicating high conservation. Group 2 includes four families with an index
- score of less than 1, reflecting some level of gene family contraction. Group 3
- contains 30 families with an expansion index greater than 1, indicating gene
- 217 expansion.

218 2. Conserved TF families that are primarily associated with general/global 219 transcription factors

About 30% of the TF families, fourteen, are associated with strong orthologous

conservation in all genomes we included in this study (Figure 2B; Table 2; Table

- 222 S1). Because most of these conserved TF families are single-copied TF families,
- these 30% conserved TF families only account for less than 2% of the total
- TFomes. Based on a detailed study on *S. cerevisiae* and other model organisms,
- these TF families are involved in transcription/translation regulation and cell cyclecontrols.

227 2.1. Transcription/Translation regulation

- 228 Either TF families are related to transcription initiation and elongation, including
- 229 TATA box-binding protein (TBP), TBP-associated factors (TAFs), and RNA
- 230 polymerase II elongation regulator Vps25. CCAAT-Binding Factors (CBFs) are
- 231 related to ribosomal biogenesis. These families overall play conserved roles in
- 232 general transcriptional and translational regulation across *Ascomycota*.
- **Transcription initiation TBP** is one of the most conserved TF families, TBP
- binds directly to the TATA box to define the transcription start and initiate
- transcription facilitated by all three RNA polymerases. The function of TBP is so
- conserved as the yeast homolog can complement *TBP* mutations in humans
- 237 (Yamaguchi et al. 2001; Roberts and Winston 1996).

Transcription positive/negative regulators, including TAF12 and TAF_{II}28, are parts of the transcription factor $TF_{II}D$ complex. Interacting with TBP, TAFs form

- 240 the TF_{II}D complex and positively participate in the assembly of the transcription
- 241 preinitiation complex (Green 2000). Similarly, **TF_{II}H** works synergistically with
- 242 TF_{II}D to promote the transcription (Fribourg et al. 2000). In contrast, Negative
- cofactor 2 (**Ncb2**) inhibits the preinitiation complex assembly (Goppelt et al.
- 1996). Other factors include the **CNOT1**, a global regulator involved in
- transcription initiation and RNA degradation (Chalabi Hagkarim and Grand 2020),
- and **Vps72/YL1** that contributes to transcriptional regulation through chromatin
- remodeling as reported in the yeast (Liang et al. 2016; Latrick et al. 2016).
- 248 **Transcription elongation: Vps25** is a subunit of the ESCRT-II complex, which
- binds to RNA polymerase II elongation factor to exert transcriptional control in
- 250 mammalian systems (Kamura et al. 2001).
- 251 Translational regulation: CCAAT box is a common cis-acting element found in
- the promoter and enhancer regions of genes in the eukaryotes (Vuorio et al.
- 253 1990; Becker et al. 1991). CBFs are necessary for the 60S ribosomal subunit
- biogenesis and therefore involved in the translational control (Milkereit et al.
- 255 2001; Fromont-Racine et al. 2003; Edskes et al. 1998). This family, including
- Noc3, Noc4, and Mak21 in *S. cerevisiae*, has three members in each genome,
- and a clear single-copy orthologous relationship can be observed for each
- 258 member (Figure S3A).
- 259 2.2. Cell cycle control
- 260 Five TF families are related to cell cycle control, including cell cycle progression,
- 261 DNA repair, and machinery/cell integrity maintenance.
- 262 **APSES-type HTH** represents a family of fungal TFs involved in cell-cycle control 263 and is crucial to the development (Xin et al. 2020). Every genome maintains four 264 copies of genes encoding APSES-type HTH (Figure S3B), and they form single-265 copy orthologs in all genomes except yeasts. Genes in Clade 1, including StuA homologs, are targets of the cyclic AMP (cAMP)-dependent protein kinase A 266 267 (PKA) signal transduction pathway and were reported to be involved in dimorphic 268 switch (Pan and Heitman 2000; Gimeno and Fink 1994), fungal spore 269 development and the production of secondary metabolites (Lyse et al. 2011).

270 Genes in Clade 2 and Clade 3 include *S. cerevisiae* Swi4 and Swi6, which form a

271 protein complex and regulate genes essential during cell cycle progression from

G1 to S phase (Koch et al. 1993), as well as meiosis (Son et al. 2016b). Genes in

273 Clade 4 include homologs of *S. pombe* Bqt4 that connect telomeres to the

nuclear envelope (Chikashige et al. 2009). Since this family of TFs is highly

275 conserved across ascomycetes, similar functions can be proposed in *F*.

276 oxysporum.

277 DTT, represented by the S. cerevisiae homolog Itc1, is a subunit of ATP-

278 dependent lsw2p-ltc1p chromatin remodeling complex and is required for

279 repression of early meiotic gene expression during the mitotic growth (Sugiyama

and Nikawa 2001).

281 **RFX** represents a family of fungal TFs involved in DNA repair. Each strain

282 encodes two orthologous copies, except *F. venenatum* encodes two copies

283 within the RFX1 clade (Figure S3C). A major transcriptional repressor of DNA-

284 damage-regulated genes in S. cerevisiae, Rfx1, is involved in DNA damage

repair and replication checkpoint pathways (Lubelsky et al. 2005). In F.

286 *graminearum,* Rfx1 is essential for maintaining the genome integrity (Min et al.

287 2014). The other copy, Rsc9 in S. cerevisiae, is a chromatin structure-remodeling

288 complex RSC involved in transcription regulation and nucleosome positioning

289 (Cairns et al. 1996; Hsu et al. 2003).

290 **NFYA** can bind to the CCAAT box. All strains maintain one copy of this family.

291 The yeast homolog Hap2 induces the expression of mitochondrial electron

transport genes (Olesen et al. 1991). *F. verticillioides* NFYA Hap2 is essential for

²⁹³ fungal growth and the virulence on maize stalks (Ridenour and Bluhm 2014). The

294 conservativeness suggests the functional importance of these TFs across

295 Ascomycota, possibly linked to cellular machinery control (e.g. mitochondrial

296 electron transport chain).

297 MADS MEF2-like family includes S. cerevisiae Rlm1, a component of the protein

- 298 kinase C-mediated MAP kinase pathway involved in maintaining cell integrity
- 299 (Jung et al. 2002). Rlm1 has a paralog from the whole genome duplication in S.
- 300 cerevisiae, and all filamentous fungi encode one copy. In F. verticilioides, Mef2
- 301 plays a vital role in the sexual development (Ortiz and Shim 2013).
- 302

303 **3. Minimal gene family contractions in FOSC partially caused by whole**

304 genome duplication in yeast

305 Four TF families, MATalpha_HMGbox, NOT4, MADS_SRF-like, and HSF (Heat

306 Shock Factor), have an expansion score of less than 1, reflecting some level of

307 gene family contraction among members of FOSC compared to the two yeast

- 308 genomes (Figure S4).
- 309 **MATalpha_HMGbox** is a TF family that includes *S. cerevisiae* mating type
- 310 protein alpha 1, a transcription activator that activates mating-type alpha-specific
- 311 genes (Martin et al. 2010). All F. oxysporum Mat1-1 type strains contain this TF,
- 312 but Mat1-2 strains do not. The contraction reflects the heterothallic mating
- 313 strategy, even though sexual reproduction has not been observed in FOSC (Arie
- 314 et al. 2000).
- 315 **NOT4** is a component of the multifunctional CCR4-NOT complex, a global
- 316 transcriptional repressor of the RNA polymerase II transcription (Albert et al.
- 317 2002). This TF family remains a single copy in most genomes but is lost in some
- 318 filamentous fungal genomes, including *A. nidulans*, *F. redolens*, *F. oxysporum*
- 319 strains NRRL26365, MRL8666, and PHW726. It remains to be discovered why
- 320 this gene is lost in some of these strains.
- 321 The contractions of the other two TF families, **MADS SRF-like** and **HSF**, are
- 322 primarily caused by the whole genome duplication in yeast. In both cases, some
- 323 degree of expansion was found in FOSC compared to other filamentous fungi
- 324 (Figure S4).
- 325
- 326

Figure 3. Evolutional trajectory of heat shock factors (HSFs) suggesting genome expansion and adaptation. (A) Phylograms of HSFs were constructed by maximum likelihood method with 1000 bootstraps. Branches of *Fusarium* HSFs were colored in yellow. Accessory HSFs of FOSC are shared in red. (B) Number of accessory HSFs in some FOSC genomes. (C) Expression of *HSF* genes during plant colonization (hpi indicates hours post inoculation), compared to axenic growth. Transcriptome data was previously described in Guo et al. 2021. See Materials and Methods for details of data reprocessing and visualization.

- 337 MADS SRF-like is important for microconidium production and virulence in host
- 338 plants, as reported in *M. oryzae* (Ding et al. 2020), and is essential for
- 339 transcriptional regulation of growth-factor-inducible genes (Messenguy and
- 340 Dubois 2003). The average copy number of phytopathogenic FOSC strains is
- 341 2.73, and the Fo5176 genome has the highest copy number of 6, while most
- 342 other genomes only contain a single copy (Table S1).
- 343 **HSF** is a family of transcription factors that activate the production of many heat
- 344 shock proteins that prevent or mitigate protein misfolding under abiotic/biotic
- 345 stresses (Feder and Hofmann 1999). All non-FOSC filamentous fungi have three
- copies, while members of FOSC show expansion (*e.g.*, Fo47: 4, Fol4287: 5, II5:
- 4, HDV274: 4, and Fo5176: 4) (Figure 3A-B). Interestingly, all expanded HSFs
- 348 are phylogenetically close to Hsf1, which cluster together with the Hsf1 paralog of

349 Fusarium solani, suggesting their horizontal transfer origin (Figure 3A). We then 350 examined the Hsf1 expression during the plant colonization (Guo et al. 2021). 351 We found that the core copies of *Hsf1* of both strains Fo47 and Fo5176 were up-352 regulated during plant colonization. In contrast, the Hsf1 accessory copies of 353 these two strains were under opposite regulations, with Fo47 one being up-354 regulated and Fo5176 one being down-regulated post infection (Figure 3C), 355 suggesting distinct regulatory adaptations after expansion. Here we noted that 356 transcriptome data could be powerful in understanding the functional importance 357 of TFs (see Section 6 for systematic analysis). In filamentous fungi, there are 358 experimental reports for the other two clades. Sfl1 is essential for vegetative 359 growth, conidiation, sexual reproduction, and pathogenesis, as shown in M. 360 oryzae (Li et al. 2011); Skn7 is a regulator of the oxidative stress response and is 361 essential for pathogenicity in F. graminearum (Jiang et al. 2015). Not surprisingly, both genes of Fo5176 and Fo47 were upregulated during plant colonization 362 363 (Figure 3C).

364

365 4. Significant TFome expansion in FOSC driven by a small number of 366 exceedingly expanded TF families

367 4.1. Gain-of-function among filamentous ascomycete fungi

368 Three TF families, CP2 ($EI_v = 2.73$), HTH AraC ($EI_v = 2$), and HTH Psq ($EI_v = 2$) 369 3.53), are absent in both yeast genomes, suggesting a gain of function among 370 filamentous ascomycete fungi (Table S1). CP2 has been studied in animal and 371 fungal kingdoms with a function related to differentiation and development (Paré 372 et al. 2012). Both HTH AraC and HTH Psg belong to helix-turn-helix (HTH) 373 superfamily. First reported in bacteria, HTH AraC is a positive regulator 374 associated with the arabinose operon regulatory protein AraC (Schleif 2010; 375 Gallegos et al. 1993; Bustos and Schleif 1993). HTH Psq, as part of the 376 eukaryotic Pipsqueak protein family, reported in vertebrates, insects, nematodes, 377 and fungi, regulates the cell death (Siegmund and Lehmann 2002). Most FOSC 378 genomes have a single copy of HTH AraC, while the count of proteins containing

the HTH_Psq ranges from 0 to 9 in the FOSC and ranges from 0 to 3 in other

380 *Fusarium* relatives. Since the **HTH_Psq** domain also exists in transposases

381 (Siegmund and Lehmann 2002), and ACs in FOSC are transposon-rich, it

remains to be studied whether proteins containing the Psq domain are *bona fide*

- 383 TFs.
- 384

385 4.2. Seven exceedingly expanded TF families

386 Among others, seven TF families have expansion indexes greater than 2 (Table 387 2 and Figure 2B). Because of their drastic expansion, these seven families 388 overall account for more than 75% of the total TFome. These families include 389 Zn2-C6 (EI_v = 15.09), bZIP (EI_v = 5.80), and Znf C2H2 (EI_v = 4.15), Homeobox 390 $(E_{l_{y}} = 2.28)$, PAI2 $(E_{l_{y}} = 3.42)$, NDT80 $(E_{l_{y}} = 3.47)$, and bHLH $(E_{l_{y}} = 3.48)$. All 391 seven families show gradual expansion, reflected by the average copy number 392 increment (FOSC > non-FOSC Fusarium > non-Fusarium filamentous fungi > 393 yeasts, table S1). Furthermore, Zn2-C6 (44 in yeasts versus 671 in FOSC) and 394 Znf C2H2 (40 in veasts versus 167 in FOSC) have the most drastic number 395 increment along the evolutionary trajectory (Figure 2C and Table S1). Based on 396 both high expansion index and large number increment, we considered Zn2-C6 397 and Znf C2H2 as the most significantly expanded families.

The large copy number makes it hard to interpret functions from the protein
domain annotation. Here we describe a couple of TFs reported in *F. oxysporum*and other systems and will introduce orthologous analysis to further survey the
functionally validated TFs in the later section.

Zn2-C6, a fungal family TF (MacPherson et al. 2006), has the most significant expansion, reaching over 600 members among FOSC genomes and accounting for more than half of the total TFome. This group of TFs can form a homodimer and bind to the specific palindromic DNA sequence through direct contact with the major groove of the double-stranded DNA molecules (MacPherson et al. 2006). The versatility of this group of TFs can be achieved by domain shuffling and by changing the nucleotide binding specificity. In addition to the well409 documented Ftf1 (Niño-Sánchez et al. 2016; van der Does et al. 2016; Ramos et

- 410 al. 2007; Zuriegat et al. 2021; Zhao et al. 2020), five additional TFs within this
- 411 family have been characterized in *F. oxysporum*, including Ctf1 (Rocha et al.
- 412 2008), Ctf2 (Rocha et al. 2008), Fow2 (Imazaki et al. 2007), XInR (Calero-Nieto
- 413 et al. 2007) and Ebr1 (Jonkers et al. 2014). They are involved in the
- 414 development, metabolism, stress response, and pathogenicity.
- 415 **Znf_C2H2** is the most common DNA-binding motif found in the eukaryotic
- 416 transcription factors (Fedotova et al. 2017). Five *F. oxysprum* TFs have been
- 417 reported: Czf1 (Yun et al. 2019), Con7-1 (Ruiz-Roldán et al. 2015), PacC
- 418 (Caracuel et al. 2003; Zhang et al. 2020), *ZafA* (López-Berges 2020) and *St12*
- 419 (Asunción García-Sánchez et al. 2010; Rispail and Di Pietro 2009). Particularly,
- 420 PacC was linked to the pathogenicity of both plant and human host (Zhang et al.
- 421 **2020; Caracuel et al. 2003).**
- 422 Other five families include **bZIP**, **Homeobox**, **PAI2**, **Ndt80** and **bHLH**. **bZIP**
- 423 domain contains a region for sequence-specific DNA binding followed by a
- 424 leucine zipper region required for dimerization (Bader and Vogt 2006). Three F.
- 425 *oxysporum* bZIP TFs have been reported, including Atf1 (Li et al. 2013), Hapx
- 426 (López-Berges et al. 2012), and MeaB (López-Berges et al. 2010), all of which
- 427 are important for fungal pathogenicity. **Homeobox** is a DNA binding motif with a
- 428 helix-turn-helix structure. In *S. pombe, Phx1* is a transcriptional coactivator that
- 429 plays a role in yeast fission. In *M. oryzae, Hox* plays roles in the conidiation and
- 430 appressorium development (Kim et al. 2009). **PAI2** is involved in the negative
- 431 regulation of protease synthesis and sporulation of the *Bacillus subtilis* (Honjo et
- 432 al. 1990). Ndt80 is essential for completing meiosis in *S. cerevisiae* (Pierce et al.
- 433 2003; Tsuchiya et al. 2014) and Ustilago maydis (Doyle et al. 2016). It also
- 434 promotes the expression of sporulation genes that are essential for the fulfillment
- 435 of meiotic chromosome segregation (Hepworth et al. 1998). **bHLH** proteins form
- 436 a large superfamily of transcriptional regulators found in almost all eukaryotes
- 437 and function in critical developmental processes (Jones 2004). F. graminearum
- 438 Gra2 is involved in the biosynthesis of phytotoxin gramillin (Bahadoor et al.
- 439 2018). *P. digitatum* encoding SreA is required for anti-fungal resistance and full

440 virulence in citrus fruits (Liu et al. 2015).

441

442 *4.3.* other families

443 Other 20 TF families (expanded but with $EI_y \le 2$) account for 20% of the TFome;

444 on average, each of these 20 families contains 9.6 copies in each genome

445 examined (Table S1). These TFs are involved in chromatin remodeling and

446 pheromone response, among other functions.

- 447 Four TF families are functionally linked to chromatin remodeling, including
- 448 Bromodomain ($El_y = 1.52$), CBFA_NFYB ($El_y = 1.35$), Znf_RING-CH ($El_y = 1.11$),
- and ARID ($EI_y = 1.25$). Bromodomain containing Spt7 is a crucial part of the
- 450 SAGA complex in yeast. The SAGA complex is required to transcribe many
- 451 genes in the genome. The bromodomain that is part of this subunit can recognize
- 452 acetylated lysines of histones and eventually lead it to a more chromatin
- unwinding (Donczew et al. 2020). **CBFA_NFYB** is found in the proteins (*e.g.*, *S.*
- 454 *cerevisiae* DIs1) that regulate RNA polymerase II transcription through controlling
- 455 chromatin accessibility (e.g., telomeric silencing) (lida and Araki 2004).
- 456 **Znf_RING-CH** has a functional connection to chromatin modification (*e.g.*, *S.*
- 457 cerevisiae Rkr1) (Braun et al. 2007). ARID is a 100 amino acid motif found in
- 458 many eukaryotic TFs (Iwahara 2002). S. cerevisiae Swi1 plays a role in
- 459 chromatin remodeling and is required to transcribe a diverse set of genes,
- 460 including HO and Ty retrotransposons (Breeden and Nasmyth 1987; Hirschhorn
- 461 et al. 1992).
- 462
- 463 **Ste12** is a family of TFs that regulate fungal development and pathogenicity
- 464 (Rispail and Di Pietro 2010). These TFs are found only in the fungal kingdom.
- 465 Ste12 binds to the DNA sequence that mediates pheromone response. It is
- 466 involved in haploid mating and pseudohyphae formation in the diploid (Gancedo
- 467 2001). F. oxysporum Ste12 controls invasive growth and virulence downstream

of the Fmk1-mediated MAPK cascade (Rispail and Di Pietro 2009). Except for *S. pombe* (missing one), every genome encodes one copy.

470

471 Among others, **Znf NFX1** domain is found in the NK-X1, a repressor of the 472 human disease-associated gene HLA-DRA (Song et al. 1994). HMG box (high 473 mobility group box) in S. cerevisiae, Spp41, is involved in negative expression 474 regulation of spliceosome components (Maddock et al. 1994); Nhp6a is required for the fidelity of some tRNA genes (Braglia et al. 2007); Ixr1 is a transcriptional 475 476 repressor that regulates hypoxic genes (Vizoso-Vázquez et al. 2012). One 477 example of **Znf GATA** is Fep1, a transcription factor that represses the 478 expression of particular iron transporter genes under a high iron concentration 479 (Kim et al. 2016). S. cerevisiae Mbf1, belonging to Cro/C1-type HTH, is a

480 transcriptional coactivator (Takemaru et al. 1997).

481

482 **5.** Orthologous survey of TF families that were manually curated

483 To further understand expanded TFs and their impacts on transcriptional 484 regulation, we curated a list of 102 TFs reported in literature focusing on F. 485 oxysporum, F. graminearum, and other phytopathogenic fungi (Table S3 and 486 examples as described in the previous section). Compared to this list of curated 487 TFs using Orthofinder, we define 80 orthologous groups among Fusarium genomes (Table S4). 62 out of the 80 orthogroups have been identified using the 488 489 above IPR-annotated pipeline, which enables the dissection of vastly expanded 490 and high copy number TF families such as Zn2-C6 and Znf C2H2, which are 491 further mapped to 27 orthologous groups, including 17 in Zn2C6, 9 in Znf C2H2, 492 and 1 containing both Znf C2H2 and Zn2-C6 domains (Table S4).

493 This effort also results in additional annotation to 18 TF families (Table S4),

494 accounting for 32 genes per genome (3% of average *Fusarium* TFome size).

- 495 These newly annotated TFs include homologs of those without domain
- 496 annotation, *e.g.*, disordered proteins *F. oxysporum* Ren1 (Ohara et al. 2004) and

M. oryzae Som1 (Yan et al. 2011), and homologs of those with noncanonical TF
domains such as Ankyrin_rpt and WD40_repeat.

499 We then directly compared *F. oxysporum* with its *Fusarium* relatives to calculate

500 the expansion index as follows:

501
$$EIf = \frac{Average \ number \ of \ TFs \ in \ FOSC + 1}{Average \ number \ of \ TFs \ in \ FOSC \ sister \ species + 1}$$

502 The *El_f* ranged, with the highest score being 3.54 (Fug, AreA_GATA) and the

503 lowest being 0.5 (Fox1, Fork_head) (Table S4). Among these 80 orthogroups, 36

504 groups show high conservation ($EI_f = 1$) as they are single-copy orthologs across

505 Fusarium, among which ten were functionally validated in F. oxysporum (Table

506 S4). 24 groups have gene contraction in *F. oxysporum* ($EI_f < 1$). A total of 20

507 groups are expanded in *F. oxysporum* ($EI_f > 1$, Table 3, Table S4), including five

508 groups Fug1 (AreA_GATA, EI_f = 3.54), Cos1 (Znf_C2H2, EI_f = 2.8), Ftf1/Ftf2

509 (Zn2-C6, $EI_f = 2.7$), Ebr1/Ebr2 (Zn2-C6, $EI_f = 2.5$) and Ren1 (disordered, $EI_f = 2$),

510 with an EI_f value equal or greater than 2. We also identified PacC (EI_f = 1.57) as

511 the second most expanded group within the highly expanded Znf_C2H2 family.

512 We will further discuss these six groups (highlighted in bold, Table 3).

513

514

515

516

517

519

Table 3. Ortholog copy number and expansion index (*El*_{*t*}) of characterized and expanded TFs in *F. oxysporum*

TF	Reported species	References	Family	Overlap	Aver age_ Fo	Aver age_ non- Fo	Elf
Ftf1/Ftf2	F. oxysporum	(Niño-Sánchez et al. 2016)	Zn2-C6	Yes	4.80	1.11	2.75
Ebr1/Ebr2	F. oxysporum	(Jonkers et al. 2014)	Zn2-C6	Yes	5.27	1.56	2.45
Znf1	M. oryzae	(Yue et al. 2016)	Zn2-C6	Yes	6.47	2.78	1.98
Ctf2	F. oxysporum	(Bravo-Ruiz et al. 2013)	Zn2-C6	Yes	2.93	1.33	1.69
Fow2	F. oxysporum	(Imazaki et al. 2007)	Zn2-C6	Yes	2.07	1.00	1.53
Dep6	A. brassicicola	(Wight et al. 2009)	Zn2-C6	Yes	0.93	0.67	1.16
Pf2	A. brassicicola	(Jones et al. 2019)	Zn2-C6	Yes	1.20	1.00	1.10
Art1	F. verticilioides	(Oh et al. 2016)	Zn2-C6	Yes	1.00	0.89	1.06
Clta1	C. lindemuthianum	(Dufresne et al. 2000)	Zn2-C6	Yes	1.07	1.00	1.03
Fhs1	F. graminearum	(Son et al. 2016a)	Zn2-C6	Yes	1.07	1.00	1.03
Cos1	M. oryzae	(Li et al. 2013)	Znf_C2H2	Yes	1.80	0.00	2.80
PacC	F. oxysporum	(Caracuel et al. 2003)	Znf_C2H2	Yes	2.13	1.00	1.57
Fug1	F. verticillioides	(Ridenour and Bluhm 2017)	AreA_GATA	No	7.27	1.33	3.54
Ren1	F. oxysporum	(Ohara et al. 2004)	disordered	No	3.00	1.00	2.00
Tri10	F. graminearum	(Jiang et al. 2016)	Fun_TF	No	1.13	0.33	1.60
Ltf1	B. cinerea	(Schumacher et al. 2014)	Znf_GATA	Yes	4.00	2.44	1.45
Ndt80	U. maydis	(Doyle et al. 2016)	NDT80	Yes	1.73	1.11	1.29
Нар3р	F. verticillioides	(Ridenour and Bluhm 2014)	CBFA_NFYB	Yes	1.33	1.00	1.17
Sod1	F. oxysporum	(Wang et al. 2021)	SOD_Cu_Zn	No	1.47	1.22	1.11
Prf1	F. oxysporum	(Mendoza-Mendoza et al. 2009)	HMG_box	Yes	1.07	1.00	1.03

520

521 Both Ftf1/Ftf2 and Ebr1/Ebr2 belong to the Zn2-C6 family and contribute directly 522 to the fungal virulence (Michielse et al. 2009; van der Does et al. 2016; Ramos et 523 al. 2007). Deletion of accessory copy Ftf1 reduced the pathogenicity of F. 524 oxysporum f. sp. phaseoli (Ramos et al. 2007), highlighting the direct functional 525 involvement of AC TF in virulence. In Fol, deletion of either Ftf1 (AC encoding) or 526 Ftf2 (CC encoding) reduced the virulence towards the host (de Vega-Bartol et al. 527 2011; Niño-Sánchez et al. 2016). Constitutive expression of either Ftf1 or Ftf2 528 induced the expression of effector genes (van der Does et al. 2016). The core 529 copy Ftf2 is conserved among all *Fusarium* species, and the AC copy Ftf1 is only 530 found in *F. oxysporum* and *Fusarium redolens* (Figure 4). Ebr1 and paralogues 531 are responsible for virulence and general metabolism. In F. oxysporum, Ebr1 is

532 found as multiple homologs, whereas in *F. graminearum*, it is seen as a single copy (Jonkers et al. 2014). In F. oxysporum, three paralogous copies, Ebr2, 533 534 Ebr3, and Ebr4, are encoded in ACs and regulated by core copy Ebr1. The 535 importance of the core paralog has been shown by the reduced pathogenicity 536 and growth defects when it was knocked out (Jonkers et al. 2014). It is worth 537 noting that the *Ebr2* coding sequence driven by an *Ebr1* promoter was able to 538 rescue the *Ebr1* knockout mutation, indicating some functional redundancy of this 539 family.

- 540 Both **Cos1** and **PacC** belong to the Znf_C2H2 family. Mutation to *M. oryzae*
- 541 *Cos1* resulted in developmental failure of the conidiophores (Li et al. 2013).
- 542 Furthermore, mutation to *Cos1* aggravated the plant infection of leaf blades and
- sheaths, indicating a negative role in the pathogenicity (Zhou et al. 2009). PacC
- 544 is an important pH-responsive TF in *F. oxysporum* (Caracuel et al. 2003; Zhang
- 545 et al. 2020). PacC homologs are expanded in clinical strains (average accessory
- 546 copy number 3.7) of FOSC, compared to non-clinical strains (average accessory
- 547 copy number 0.5), while all *Fusarium* relatives' genomes examined only contain
- 548 a single copy of core PacC. Our previous study revealed that in *F*.
- 549 *oxysporum* clinical strains, the expression of one expanded *PacC* gene on ACs
- 550 was induced and the protein localized in the nucleus at mammalian physiological
- 551 pH (7.4), indicating a potential role in host adaptation (Zhang et al. 2020).
- 552 Interestingly, the induction of AC-encoding PacC genes was CC-encoding PacC
- 553 gene-dependent, as the induction disappeared in the CC-encoding *PacC*
- 554 knockout mutant, further supporting a cross-talking between core and accessory
- 555 TFs (Yang 2020). Similar to *EBR1*, the expression of AC *PacC* genes is much
- 556 lower than that of the CC *PacC* gene, and knockouts of one AC *PacC* gene
- affected a small subset of genes compared with the CC PacC knockout, which
- has a broader effect on cellular processes (Yang 2020).
- 559 **Fug1** has a role in pathogenicity (maize kernel colonization) and fumonisin
- 560 biosynthesis in *F. verticillioides* (Ridenour and Bluhm 2017). In addition, the
- 561 deletion of *Fug1* increased sensitivity to the antimicrobial compound 2-

562 benzoxazolinone and to hydrogen peroxide, which indicates that Fug1 plays a

- 563 role in mitigating stresses associated with the host defense (Ridenour and Bluhm
- 564 2017). Neither core copies nor accessory copies of these two genes were
- 565 experimentally examined in FOSC. Ren1 is a disordered protein with no IPR
- 566 functional domain. The expansion score EI_f = 2 suggests a unique expansion
- among FOSC. However, the only reported study on its function is in *F*.
- 568 oxysporum f. sp. melonis regulating the development of the conidiation (Ohara et
- 569 al. 2004).

6. Transcriptome analysis to probe the essential TFs during host

571 colonization

- 572 To understand the functional importance of FOSC TFs, we take advantage of two
- 573 recently reported transcriptomics datasets (Redkar et al. 2022; Guo et al. 2021),
- 574 including pathogenic interactions (Fo5176 infecting Arabidopsis and Fol4287
- 575 infecting tomato) and endophytic interactions (Fo47 colonizing Arabidopsis)
- 576 (Supplemental Dataset).

577 We first asked what proportion of genes was expressed in conserved and 578 expanded categories (Table S5). We found that almost all genes (58 out of 60) 579 within the conserved category (Group 1) were consistently expressed (TPM > 1580 across all conditions), supporting their general roles in controlling life processes. 581 Within the expanded category (Group 3), the proportion of genes being 582 consistently expressed ranges from 41% to 59% for core TFs, and ranges from 583 5% to 16% for accessory TFs. With a less strict filter (TPM > 1 at minimum 1 584 condition), we found that all genes within the conserved category were 585 expressed. Within the expanded category, the proportion of genes being 586 expressed accounts for 93% of core TFs across all strains and ranges from 49% 587 to 67% for accessory TFs. When we compared genes being consistently 588 expressed versus genes being expressed at a minimum one condition, the more 589 dramatic number increase for the expanded category (especially when we only 590 consider the accessory TFs) highlighted that the expanded category, especially

the accessory TFs, are more likely to be conditional expressed, furthersupporting their role in niche adaptation.

593 With the goal of examining the expression and probing important core and 594 accessory TFs, we aimed to develop filtering parameters. Since most validated 595 TFs were reported in the reference Fol4287 strain, we first reviewed for the 596 reported TFs, both core, and accessory, the expression pattern during Fol4287 597 infecting tomatoes (Table S6). Out of 27 TFs encoded on the core genome, 18 598 show up-regulation (defined by at least three out of four *in planta* conditions show 599 up-regulation compared to the axenic growth) during plant colonization from 1 600 day post-inoculation (dpi) to 7 dpi, consistent with their reported roles in 601 pathogenicity. The accessory *Ftf1* has been exclusively demonstrated to play 602 essential functions in fungal pathogenicity (Niño-Sánchez et al. 2016). Eight of 10 603 accessory *Ftfs* were upregulated using the same criteria during plant 604 colonization. Our results illustrate the power of using transcriptome data to probe 605 the functionally important players during plant colonization/infection.

We further developed strict criteria to filter important TFs from TFome (Figure S5), by which half (nine) of previously described upregulated core TFs meet the 'core' criteria, and all eight up-regulated accessory *Ftf*s meet the 'accessory' criteria (Table S6). We then apply such measures to the transcriptome of all the TFomes of Fol4287, Fo5176, and Fo47 to probe two types of TFs: 1) The conserved core TFs related to plant colonization; 2) Expanded accessory TFs related to host-specific pathogenicity.

Fol4287, Fo5176, and Fo47 upregulated 95, 62, and 44 core TFs during plant
colonization. Among them, ten copies are highly conserved (Table S7), as they
are single-copy orthologs across all 15 *F. oxysporum* strains. Two out of ten were
previously reported, *Fow2* and *Sfl1*. Fow2, Zn2C6 TF, is required for full
virulence but not hyphal growth and conidiation in *F. oxysporum* f. sp. *melonis*(Imazaki et al. 2007). The downstream targets of Fow2 remain unknown in *F. oxysporum*, thus meriting further analysis. Sfl1 has been described in the

620 previous section and is essential for vegetative growth, conidiation, sexual

621 reproduction, and pathogenesis, as shown in *M. oryzae* (Li et al. 2011). The

622 functions of FoSfl1 remain to be validated.

623 Fol4287, Fo5176, and Fo47 upregulated 29, 34, and 9 accessory TFs. *Ftf1* and 624 *Ren1* are particularly interesting (Figure 4 and Table S8). Though Ftfs have been 625 shown to play an essential role in pathogenicity in Fol, whether this pathway is 626 restricted to the same strain remains a question. Compared to Fol4287 which 627 contains ten accessory *Ftfs* and eight were upregulated during plant colonization. Fo5176 includes six copies of accessory *Ftfs*, but only one copy was 628 629 upregulated. Interestingly, eight upregulated Fol4287 and one upregulated 630 Fo5176 *Ftfs* are clustered together (Figure 4). The unique expansion with 631 regulatory adaptation (*i.e.*, fine-tuned expression regulation) seems to be 632 restricted to Fol4287 but not another pathogenic strain, Fo5176, when they infect 633 the hosts. Among Fo5176 expanded TFs, we identified Ren1. Compared to Fol4287 which encodes only one accessory *Ren1* that was not upregulated 634 635 during plant colonization, Fo5176 encodes seven accessory copies, among 636 which two were upregulated (Figure 4). Though functional validation is needed. 637 the strain-specific expansion followed by fine-tuned expression regulation when 638 infecting host species exists and likely contributes to the host-specific 639 pathogenicity.

640

641

- 642
- 643

Figure 4. Unique expansion of some TFs, driven by ACs, may provide clues to host-specific adaptation. RNA-seq data were previously described (Guo et al., 2021; Redkar et al., 2021). (A) Ftf1, the TF involved in the tomato pathogenicity is most significantly expanded (10 copies of accessory FTFs) in the tomato pathogen Fol4287 genome and the expression of eight out of 10 were induced during plant colonization. (B) Ren1 is most significantly expanded (seven copies of accessory RENs) in the Arabidopsis pathogen Fo5176 genome, and two of them were induced during plant colonization.

648 **DISCUSSION**

649 For a soilborne pathogen with strong host specificity like FOSC, the adjustment 650 of growth and cell cycle control in response to environmental cues is likely 651 essential for survival. At the same time, expanded families likely contribute to the 652 enhanced functions related to niche adaptation. TFs transmit external and 653 internal signals and regulate complex cellular signaling responses to the sensed 654 stimuli. Transmitted through the soil and vascular wounds of plants causing 655 vascular wilt (Gordon 2017), F. oxysporum must adapt to stresses encountered 656 both outside and inside its host. Therefore, it is not surprising to see that 657 genomes of FOSC have larger TFome than other fungi included in the study. The expansion of TFs among FOSC resulted in a positive correlation between the 658 659 total number of proteins and the size of the fungal TFome, which was also 660 observed before (Shelest 2017).

661 A total of 14 TF families that control the global transcriptional event, such as 662 TBP, are highly conserved within the ascomycete fungal lineages. Conserved 663 regulatory mechanisms revealed through this study suggest that the plant 664 colonization process could be a common process among FOSC strains 665 regardless of their host-specific pathogenesis. The notion was also supported by 666 recent studies that highlighted the ability of FOSC as a root colonizer facilitated 667 by the conserved genomics components (Martínez-Soto et al. 2022; Redkar et al. 668 2022).

669 In contrast to these stable TFs, 30 families are expanded in various degrees and 670 most significant expansions occurred in Zn2-C6 and Znf C2H2 TF families 671 among FOSC genomes. The number of Zn2-C6 TFs increases significantly (with 672 the highest expansion score) and makes up most of the TFs (56.7%) found within 673 the FOSC TFome. For example, *Ftf1*, a TF belonging to the Zn2-C6 and involved 674 in the tomato pathogenicity, is most significantly expanded (10 copies of 675 accessory Ftfs) in the tomato pathogen Fol4287 genome, and the expression of eight out of 10 was induced during plant colonization. The continuous expansion 676

677 suggests the functional importance of these understudied TFs, further supported

by the genetic studies (Niño-Sánchez et al. 2016; van der Does et al. 2016;

Ramos et al. 2007; Zuriegat et al. 2021; Zhao et al. 2020) and their induction

680 during host invasion revealed by our RNA-seq data.

681 Unique expansion of some TFs, driven by ACs, may provide a clue to host-682 specific interactions. Acquiring additional TFs will modify existing regulatory 683 pathways. No question, this will require the fine-tuning of existing networks for 684 this group of organisms to successfully adapt to different hosts under diverse 685 environments. A previous survey of kinome (the complete set of protein kinases 686 encoded in an organism's genome) among FOSC and other Ascomycetes 687 revealed a positive correlation between the size of the kinome and the size of the 688 genome (Delulio et al. 2018), exactly the same as we reported here for TFomes. 689 As kinases and TFs are key regulators that modulate all important signaling 690 pathways and are essential for the proper functions of almost all molecular and 691 cellular processes. Strong correlations among kinome and TFome suggest an 692 ordered, instead of chaotic, recruitment and establishment of ACs among FOSC

693 genomes.

694 This realization further emphasizes the importance of additional functional

695 studies. Reverse genetics is a powerful tool in defining the functional importance

696 of a TF. For example, TF Ren1, a disordered protein, was identified by genetic

and molecular characterization (Ohara et al. 2004). This TF is most significantly

698 expanded (seven copies of accessory *Ren*s) in the Arabidopsis pathogen

699 Fo5176 genome, and two of them were induced during plant colonization.

700 Experiments such as chromatin immunoprecipitation sequencing (CHIP-Seq) and

701 DNA affinity purification sequencing (DAP-seq) to profile the cis-regulatory

roce elements globally are high throughput approaches to define specific binding sites

703 (cis-regulatory elements) of TFs. DAP-seq was used successfully to profile the

Cistrome for the entire TFome of the bacterial organism (Baumgart et al. 2021),

holding the promise for a better understanding of transcriptional regulation in the

fungal model *F. oxysporum*. TFs can function individually or with other proteins in

a complex, and can act as an activator that promotes transcription or a repressor

- that blocks the recruitment of RNA polymerase. Therefore, defining specific
- 709 functions of these identified binding sites through DAP-seq can be difficult. Gene
- regulatory networks based on gene co-expression and other phenotypic and
- 711 multi-omics data as reported in Fusarium (Guo et al. 2016, 2020) can add more
- resolution to these complex regulatory processes. However, the ultimate
- vnderstanding of the regulatory roles of each TF will come from careful molecular
- 714 and biochemical characterization.
- A systematic understanding of transcriptional regulation is essential to get the
- fine-tuned footprint of the gene regulatory network. Our study not only offered a
- 717 comprehensive look at the regulation from the evolutionary perspective, but also
- provided an easily implemented computational pipeline to compare TFs and
- other functional groups in fungi. A better understanding of their functions would
- not only inform *Fusarium* biology but also could be extrapolated to other
- 721 filamentous fungi and complex basidiomycetes.
- 722

723 SUPPLEMENTAL MATERIALS

- 724 Table S1. TF-type DNA-binding domains used to filter TFome
- 725 Table S2. TFome annotations across 30 genomes
- 726 Table S3. Curated TFs in phytopathogens
- Table S4. Ortholog copy number of characterized TFs of phytopathogens across
- 728 **30** genomes
- 729 Table S5. Number of TFs being expressed
- 730 Table S6. Orthologs of reported TFs in Fol4287
- Table S7. Highly conserved TFs that are constantly upregulated during plant
- 732 colonization
- Table S8. Strain-specific accessory TFs that are upregulated during plant
- 734 colonization

735

- 736 Figure S1. TFome annotation pipelines
- 737 Figure S2. ACs contribute to the FOSC TFome expansion
- 738 Figure S3. Phylograms of three conserved families
- 739 Figure S4. Minimal gene family contractions in FOSC partially caused by whole
- 740 genome duplication in yeast
- Figure S5. The pipelines to probe the functional important TFs by RNA-seq data
- 742
- 743 Supplemental Dataset. Normalized read counts of RNA-seq datasets
- 744

745 **FUNDING**

- This project was supported by the Natural Science Foundation (IOS-165241), the
- 747 National Institutes of Health (R01EY030150), and the USDA National Institute of
- 748 Food and Agriculture (MAS00496). The work
- 749 (proposal:10.46936/10.25585/60001360) conducted by the U.S. Department of
- 750 Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of
- 751 Science User Facility, is supported by the Office of Science of the U.S.
- 752 Department of Energy operated under Contract No. DE-AC02-05CH11231. H.Y.
- 753 is also supported by Lotta M. Crabtree Fellowship and Constantine J. Gilgut
- 754 Fellowship. S.M.C. is also supported by the Vaadia-BARD Postdoctoral
- 755 Fellowship.
- 756

757 ACKNOWLEDGMENTS

- 758 We thank the Massachusetts Green High-Performance Computing Center for
- 759 providing high-performance computing capacity.
- 760

761 AUTHOR CONTRIBUTIONS

- 762 Conceptualization, H.Yu and L-J.M.; Methodology, Analysis and Interpretation, all
- authors; Resources, S.H., R.H. and I.G.; Writing H.Yu and L-J.M. with input
- from all authors; Supervision, L-J.M.; Funding Acquisition, L-J.M.

765 **CONFLICTS OF INTERESTS**

- The authors declare no conflict of interest. The sponsors had no role in the
- 767 design, execution, interpretation, or writing of the study.
- 768
- 769

770 **REFERENCES**

771 Armstrong, G.M., and Armstrong, J.K. (1981). Formae speciales and races of Fusarium 772 oxysporum causing wilt disease. In Fusarium: Disease, Biology, and Taxonomy, 773 P.E. Nelson, T.A. Toussoun, and R.J. Cook, eds (University Park, PA: 774 Pennsylvania State University Press), pp. 391–399. 775 Albert, T. K., Hanzawa, H., Legtenberg, Y. I. A., de Ruwe, M. J., van den Heuvel, F. A. 776 J., Collart, M. A., Boelens, R., and Timmers, H. Th. M. 2002. Identification of a 777 ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor 778 complex. The EMBO Journal. 21:355-364 779 Arie, T., Kaneko, I., Yoshida, T., Noguchi, M., Nomura, Y., and Yamaguchi, I. 2000. 780 Mating-type genes from asexual phytopathogenic ascomycetes Fusarium 781 oxysporum and Alternaria alternata. Mol Plant Microbe Interact. 13:1330-1339 782 Asunción García-Sánchez, M., Martín-Rodrigues, N., Ramos, B., de Vega-Bartol, J. J., 783 Perlin, M. H., and Díaz-Mínguez, J. M. 2010. fost12, the Fusarium oxysporum 784 homolog of the transcription factor Ste12, is upregulated during plant infection 785 and required for virulence. Fungal Genetics and Biology. 47:216-225 786 Bader, A. G., and Vogt, P. K. 2006. Leucine Zipper Transcription Factors: bZIP Proteins. 787 Pages 964–967 in: Encyclopedic Reference of Genomics and Proteomics in 788 Molecular Medicine, Springer, Berlin, Heidelberg. 789 Bahadoor, A., Brauer, E. K., Bosnich, W., Schneiderman, D., Johnston, A., Aubin, Y., 790 Blackwell, B., Melanson, J. E., and Harris, L. J. 2018. Gramillin A and B: Cyclic 791 Lipopeptides Identified as the Nonribosomal Biosynthetic Products of Fusarium 792 graminearum. J. Am. Chem. Soc. 140:16783-16791 793 Baumgart, L. A., Lee, J. E., Salamov, A., Dilworth, D. J., Na, H., Mingay, M., Blow, M. 794 J., Zhang, Y., Yoshinaga, Y., Daum, C. G., and O'Malley, R. C. 2021. Persistence 795 and plasticity in bacterial gene regulation. Nat Methods. 18:1499-1505 796 Becker, D. M., Fikes, J. D., and Guarente, L. 1991. A cDNA encoding a human CCAAT-797 binding protein cloned by functional complementation in yeast. Proc. Natl. Acad. 798 Sci. U.S.A. 88:1968–1972

799	Blum, M., Chang, HY., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A.,
800	Nuka, G., Paysan-Lafosse, T., Qureshi, M., Raj, S., Richardson, L., Salazar, G.
801	A., Williams, L., Bork, P., Bridge, A., Gough, J., Haft, D. H., Letunic, I.,
802	Marchler-Bauer, A., Mi, H., Natale, D. A., Necci, M., Orengo, C. A.,
803	Pandurangan, A. P., Rivoire, C., Sigrist, C. J. A., Sillitoe, I., Thanki, N., Thomas,
804	P. D., Tosatto, S. C. E., Wu, C. H., Bateman, A., and Finn, R. D. 2021. The
805	InterPro protein families and domains database: 20 years on. Nucleic Acids
806	Research. 49:D344–D354
807	Braglia, P., Dugas, S. L., Donze, D., and Dieci, G. 2007. Requirement of Nhp6 Proteins
808	for Transcription of a Subset of tRNA Genes and Heterochromatin Barrier
809	Function in Saccharomyces cerevisiae. Mol Cell Biol. 27:1545–1557
810	Braun, M. A., Costa, P. J., Crisucci, E. M., and Arndt, K. M. 2007. Identification of Rkr1,
811	a Nuclear RING Domain Protein with Functional Connections to Chromatin
812	Modification in Saccharomyces cerevisiae. Mol Cell Biol. 27:2800–2811
813	Bravo-Ruiz, G., Ruiz-Roldán, C., and Roncero, M. I. G. 2013. Lipolytic system of the
814	tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mol Plant Microbe
815	Interact. 26:1054–1067
816	Breeden, L., and Nasmyth, K. 1987. Cell cycle control of the yeast HO gene: Cis- and
817	Trans-acting regulators. Cell. 48:389–397
818	Bustos, S. A., and Schleif, R. F. 1993. Functional domains of the AraC protein. Proc.
819	Natl. Acad. Sci. U.S.A. 90:5638–5642
820	Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H.,
821	Tempst, P., Du, J., Laurent, B., and Kornberg, R. D. 1996. RSC, an Essential,
822	Abundant Chromatin-Remodeling Complex. Cell. 87:1249–1260
823	Calero-Nieto, F., Di Pietro, A., Roncero, M. I. G., and Hera, C. 2007. Role of the
824	Transcriptional Activator XlnR of Fusarium oxysporum in Regulation of
825	Xylanase Genes and Virulence. MPMI. 20:977–985
826	Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira,
827	F. I., and Di Pietro, A. 2003. The pH signalling transcription factor PacC controls
828	virulence in the plant pathogen Fusarium oxysporum: PacC controls virulence in
829	Fusarium. Molecular Microbiology. 48:765–779
830	Chalabi Hagkarim, N., and Grand, R. J. 2020. The Regulatory Properties of the Ccr4-Not
831	Complex. Cells. 9:2379
832	Cheng, CY., Krishnakumar, V., Chan, A. P., Thibaud-Nissen, F., Schobel, S., and
833	Town, C. D. 2017. Araport11: a complete reannotation of the Arabidopsis
834	thaliana reference genome. Plant J. 89:789–804
835	Chikashige, Y., Yamane, M., Okamasa, K., Tsutsumi, C., Kojidani, T., Sato, M.,
836	Haraguchi, T., and Hiraoka, Y. 2009. Membrane proteins Bqt3 and -4 anchor
837	telomeres to the nuclear envelope to ensure chromosomal bouquet formation.
838	Journal of Cell Biology. 187:413–427
839	Cuomo, C. A., Guldener, U., Xu, JR., Trail, F., Turgeon, B. G., Di Pietro, A., Walton, J.
840	D., Ma, LJ., Baker, S. E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo,
841	S., Chang, YL., DeCaprio, D., Gale, L. R., Gnerre, S., Goswami, R. S.,
842	Hammond-Kosack, K., Harris, L. J., Hilburn, K., Kennell, J. C., Kroken, S.,
843	Magnuson, J. K., Mannhaupt, G., Mauceli, E., Mewes, HW., Mitterbauer, R.,
844	Muehlbauer, G., Munsterkotter, M., Nelson, D., O'Donnell, K., Ouellet, T., Qi,

845	W., Quesneville, H., Roncero, M. I. G., Seong, KY., Tetko, I. V., Urban, M.,
846	Waalwijk, C., Ward, T. J., Yao, J., Birren, B. W., and Kistler, H. C. 2007. The
847	Fusarium graminearum Genome Reveals a Link Between Localized
848	Polymorphism and Pathogen Specialization. Science. 317:1400–1402
849	Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J.,
850	Thon, M., Kulkarni, R., Xu, JR., Pan, H., Read, N. D., Lee, YH., Carbone, I.,
851	Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S.,
852	Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, MH.,
853	Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, LJ., Nicol, R., Purcell, S.,
854	Nusbaum, C., Galagan, J. E., and Birren, B. W. 2005. The genome sequence of
855	the rice blast fungus Magnaporthe grisea. Nature. 434:980–986
856	Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A.,
857	Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D.
858	2012. The Top 10 fungal pathogens in molecular plant pathology: Top 10 fungal
859	pathogens. Molecular Plant Pathology. 13:414–430
860	DeIulio, G. A., Guo, L., Zhang, Y., Goldberg, J. M., Kistler, H. C., and Ma, LJ. 2018.
861	Kinome Expansion in the Fusarium oxysporum Species Complex Driven by
862	Accessory Chromosomes A.P. Mitchell, ed. mSphere. 3:e00231-18,
863	/msphere/3/3/mSphere231-18.atom
864	Ding, Z., Xu, T., Zhu, W., Li, L., and Fu, Q. 2020. A MADS-box transcription factor
865	FoRlm1 regulates aerial hyphal growth, oxidative stress, cell wall biosynthesis
866	and virulence in Fusarium oxysporum f. sp. cubense. Fungal Biology. 124:183–
867	193
868	van der Does, H. C., Fokkens, L., Yang, A., Schmidt, S. M., Langereis, L., Lukasiewicz,
869	J. M., Hughes, T. R., and Rep, M. 2016. Transcription Factors Encoded on Core
870	and Accessory Chromosomes of Fusarium oxysporum Induce Expression of
871	Effector Genes E.H. Stukenbrock, ed. PLoS Genet. 12:e1006401
872	Donczew, R., Warfield, L., Pacheco, D., Erijman, A., and Hahn, S. 2020. Two roles for
873	the yeast transcription coactivator SAGA and a set of genes redundantly regulated
874	
	by TFIID and SAGA. eLife. 9:e50109
875	by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an
875 876	by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation,
875 876 877	by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68
875 876 877 878	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like
875 876 877 878 879	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of
875 876 877 878 879 880	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant
875 876 877 878 879 880 881	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Collectorichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590
875 876 877 878 879 880 881 882	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Collectorichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum</i>
875 876 877 878 879 880 881 882 883	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum Formae Speciales</i> and Races. Phytopathology. 109:512–530
875 876 877 878 879 880 881 882 883 884 884	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum Formae Speciales</i> and Races. Phytopathology. 109:512–530 Edskes, H. K., Ohtake, Y., and Wickner, R. B. 1998. Mak21p of Saccharomyces
875 876 877 878 879 880 881 882 883 884 885 884	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum Formae Speciales</i> and Races. Phytopathology. 109:512–530 Edskes, H. K., Ohtake, Y., and Wickner, R. B. 1998. Mak21p of Saccharomyces cerevisiae, a Homolog of Human CAATT-binding Protein, Is Essential for 60 S
875 876 877 878 879 880 881 882 883 884 883 884 885 886 886	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Collectorichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum Formae Speciales</i> and Races. Phytopathology. 109:512–530 Edskes, H. K., Ohtake, Y., and Wickner, R. B. 1998. Mak21p of Saccharomyces cerevisiae, a Homolog of Human CAATT-binding Protein, Is Essential for 60 S Ribosomal Subunit Biogenesis. Journal of Biological Chemistry. 273:28912–28020
875 876 877 878 879 880 881 882 883 884 885 886 887 888	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum Formae Speciales</i> and Races. Phytopathology. 109:512–530 Edskes, H. K., Ohtake, Y., and Wickner, R. B. 1998. Mak21p of Saccharomyces cerevisiae, a Homolog of Human CAATT-binding Protein, Is Essential for 60 S Ribosomal Subunit Biogenesis. Journal of Biological Chemistry. 273:28912–28920
875 876 877 878 879 880 881 882 883 884 883 884 885 886 887 888	 by TFIID and SAGA. eLife. 9:e50109 Doyle, C. E., Kitty Cheung, H. Y., Spence, K. L., and Saville, B. J. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genetics and Biology. 94:54–68 Dufresne, M., Perfect, S., Pellier, AL., Bailey, J. A., and Langin, T. 2000. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant Cell. 12:1579–1590 Edel-Hermann, V., and Lecomte, C. 2019. Current Status of <i>Fusarium oxysporum Formae Speciales</i> and Races. Phytopathology. 109:512–530 Edskes, H. K., Ohtake, Y., and Wickner, R. B. 1998. Mak21p of Saccharomyces cerevisiae, a Homolog of Human CAATT-binding Protein, Is Essential for 60 S Ribosomal Subunit Biogenesis. Journal of Biological Chemistry. 273:28912–28920 Emms, D. M., and Kelly, S. 2019. OrthoFinder: phylogenetic orthology inference for the supervision for the supervision of the supervision for the supervision of the supervision for the sup

800	Eader M. E. and Hafmann C. E. 1000 HEAT SHOCK DROTEINIS MOLECHILAD
890 891	CHAPERONES, AND THE STRESS RESPONSE: Evolutionary and Ecological
892	Physiology. Annu. Rev. Physiol. 61:243–282
893	Fedotova, A. A., Bonchuk, A. N., Mogila, V. A., and Georgiev, P. G. 2017. C2H2 Zinc
894 895	Finger Proteins: The Largest but Poorly Explored Family of Higher Eukaryotic Transcription Factors Acta Naturae 9:47–58
896	Fokkens I Guo I Dora S Wang B Ve K Sánchez-Rodríguez C and Croll D
890	2021 A Chromosome-Scale Genome Assembly for the Eusarium oxysporum
808	Strain Eo5176 To Establish a Model Arabidonsis Eungal Dathosystem :7
800	Fribourg S. Kollonbarger F. Dognioux H. Doterszmen A. Von Dorsselaar A
000	Theory I C Ealy I M Mores D and Kieffer P 2000 Structurel
900	Characterization of the Cystoine rich Domain of TEILH n/4 Subunit Journal of
901 002	Piological Chamistry, 275:21062, 21071
902	Elological Chemistry. 2/3:31905–319/1 Fromont Daging M. Songer P. Soverny, C. and Faciale, F. 2002. Bibasama assembly
903	in eukaryotes. Gene. 313:17-42
905	Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, F. U., Read, N. D., Jaffe, D.,
906	FitzHugh, W., Ma, LJ., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels,
907	R., Wang, S., Nielsen, C. B., Butler, J., Endrizzi, M., Qui, D., Ianakiev, P., Bell-
908	Pedersen, D., Nelson, M. A., Werner-Washburne, M., Selitrennikoff, C. P.,
909	Kinsey, J. A., Braun, E. L., Zelter, A., Schulte, U., Kothe, G. O., Jedd, G.,
910	Mewes, W., Staben, C., Marcotte, E., Greenberg, D., Roy, A., Foley, K., Naylor,
911	J., Stange-Thomann, N., Barrett, R., Gnerre, S., Kamal, M., Kamvysselis, M.,
912	Mauceli, E., Bielke, C., Rudd, S., Frishman, D., Krystofova, S., Rasmussen, C.,
913	Metzenberg, R. L., Perkins, D. D., Kroken, S., Cogoni, C., Macino, G.,
914	Catcheside, D., Li, W., Pratt, R. J., Osmani, S. A., DeSouza, C. P. C., Glass, L.,
915	Orbach, M. J., Berglund, J. A., Voelker, R., Yarden, O., Plamann, M., Seiler, S.,
916	Dunlap, J., Radford, A., Aramayo, R., Natvig, D. O., Alex, L. A., Mannhaupt, G.,
917	Ebbole, D. J., Freitag, M., Paulsen, I., Sachs, M. S., Lander, E. S., Nusbaum, C.,
918	and Birren, B. 2003. The genome sequence of the filamentous fungus Neurospora
919	crassa. Nature. 422:859–868
920	Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, LJ., Wortman, J. R., Batzoglou, S., Lee,
921	SI., Baştürkmen, M., Spevak, C. C., Clutterbuck, J., Kapitonov, V., Jurka, J.,
922	Scazzocchio, C., Farman, M., Butler, J., Purcell, S., Harris, S., Braus, G. H.,
923	Draht, O., Busch, S., D'Enfert, C., Bouchier, C., Goldman, G. H., Bell-Pedersen,
924	D., Griffiths-Jones, S., Doonan, J. H., Yu, J., Vienken, K., Pain, A., Freitag, M.,
925	Selker, E. U., Archer, D. B., Peñalva, M. Á., Oakley, B. R., Momany, M., Tanaka,
926	T., Kumagai, T., Asai, K., Machida, M., Nierman, W. C., Denning, D. W.,
927	Caddick, M., Hynes, M., Paoletti, M., Fischer, R., Miller, B., Dyer, P., Sachs, M.
928	S., Osmani, S. A., and Birren, B. W. 2005. Sequencing of Aspergillus nidulans
929	and comparative analysis with A. fumigatus and A. oryzae. Nature. 438:1105–
930	1115
931	Gallegos, MT., Michán, C., and Ramos, J. L. 1993. The XylS/AraC family of
932	regulators. Nucl Acids Res. 21:807–810
933	Gancedo, J. M. 2001. Control of pseudohyphae formation in Saccharomyces cerevisiae.
934	FEMS Microbiology Reviews. 25:107–123

935	Gardiner, D. M., McDonald, M. C., Covarelli, L., Solomon, P. S., Rusu, A. G., Marshall,
936	M., Kazan, K., Chakraborty, S., McDonald, B. A., and Manners, J. M. 2012.
937	Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence
938	Genes in Fungi Infecting Cereal Hosts. PLOS Pathogens. 8:e1002952
939	Gimeno, C. J., and Fink, G. R. 1994. Induction of Pseudohyphal Growth by
940	Overexpression of PHD1, a Saccharomyces cerevisiae Gene Related to
941	Transcriptional Regulators of Fungal Developmentt. MOL. CELL. BIOL. 14:13
942	Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert,
943	F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami,
944	Y., Philippsen, P., Tettelin, H., and Oliver, S. G. 1996. Life with 6000 Genes.
945	Science. 274:546–567
946	Goppelt, A., Stelzer, G., Lottspeich, F., and Meisterernst, M. 1996. A mechanism for
947	repression of class II gene transcription through specific binding of NC2 to TBP-
948	promoter complexes via heterodimeric histone fold domains. The EMBO Journal.
949	15:3105–3116
950	Gordon, T. R. 2017. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu. Rev.
951	Phytopathol. 55:23–39
952	Green, M. R. 2000. TBP-associated factors (TAF II s): multiple, selective transcriptional
953	mediators in common complexes. Trends in Biochemical Sciences. 25:59-63
954	Grigoriev, I. V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R.,
955	Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak,
956	I., and Shabalov, I. 2014. MycoCosm portal: gearing up for 1000 fungal genomes.
957	Nucl. Acids Res. 42:D699–D704
958	Guo, L., Ji, M., and Ye, K. 2020. Dynamic network inference and association
959	computation discover gene modules regulating virulence, mycotoxin and sexual
960	reproduction in Fusarium graminearum. BMC Genomics. 21:179
961	Guo, L., Yu, H., Wang, B., Vescio, K., DeIulio, G. A., Yang, H., Berg, A., Zhang, L.,
962	Edel-Hermann, V., Steinberg, C., Kistler, H. C., and Ma, LJ. 2021.
963	Metatranscriptomic Comparison of Endophytic and Pathogenic Fusarium –
964	Arabidopsis Interactions Reveals Plant Transcriptional Plasticity. MPMI.
965	34:1071–1083
966	Guo, L., Zhao, G., Xu, J., Kistler, H. C., Gao, L., and Ma, L. 2016. Compartmentalized
967	gene regulatory network of the pathogenic fungus <i>Fusarium graminearum</i> . New
968	Phytol. 211:527–541
969	Halpern, H. C., Bell, A. A., Wagner, T. A., Liu, J., Nichols, R. L., Olvey, J., Woodward,
970	J. E., Sanogo, S., Jones, C. A., Chan, C. T., and Brewer, M. T. 2018. First Report
971	of Fusarium Wilt of Cotton Caused by Fusarium oxysporum f. sp. vasinfectum
972	Race 4 in Texas, U.S.A. Plant Disease. 102:446–446
973	Hassan, A. S., Al-Hatmi, A. M. S., Shobana, C. S., van Diepeningen, A. D., Kredics, L.,
974	Vágvölgyi, C., Homa, M., Meis, J. F., de Hoog, G. S., Narendran, V.,
975	Manikandan, P., and IHFK Working Group. 2016. Antifungal Susceptibility and
976	Phylogeny of Opportunistic Members of the Genus Fusarium Causing Human
977	Keratomycosis in South India. Med. Myco. 54:287–294
9/8	Hepworth, S. K., Friesen, H., and Segall, J. 1998. ND180 and the Meiotic Recombination
979	Checkpoint Regulate Expression of Middle Sporulation-Specific Genes in
980	Saccharomyces cerevisiae. Mol Cell Biol. 18:5750–5761

981	Hirschhorn, J. N., Brown, S. A., Clark, C. D., and Winston, F. 1992. Evidence that
982	SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin
983	structure. Genes & Development. 6:2288–2298
984	Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. 2018.
985	UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology
986	and Evolution. 35:518–522
987	Honjo, M., Nakayama, A., Fukazawa, K., Kawamura, K., Ando, K., Hori, M., and
988	Furutani, Y. 1990. A novel Bacillus subtilis gene involved in negative control of
989	sporulation and degradative-enzyme production. Journal of Bacteriology.
990	172:1783–1790
991	Hsu, J., Huang, J., Meluh, P. B., and Laurent, B. C. 2003. The Yeast RSC Chromatin-
992	Remodeling Complex Is Required for Kinetochore Function in Chromosome
993	Segregation. Mol Cell Biol. 23:3202–3215
994	Iida, T., and Araki, H. 2004. Noncompetitive Counteractions of DNA Polymerase ε and
995	ISW2/yCHRAC for Epigenetic Inheritance of Telomere Position Effect in
996	Saccharomyces cerevisiae. Mol Cell Biol. 24:217–227
997	Imazaki, I., Kurahashi, M., Iida, Y., and Tsuge, T. 2007. Fow2, a Zn(II)2Cys6-type
998	transcription regulator, controls plant infection of the vascular wilt fungus
999	Fusarium oxysporum. Mol Microbiol. 63
1000	Iwahara, J. 2002. The structure of the Dead ringer-DNA complex reveals how AT-rich
1001	interaction domains (ARIDs) recognize DNA. The EMBO Journal. 21:1197–1209
1002	Jiang, C., Zhang, C., Wu, C., Sun, P., Hou, R., Liu, H., Wang, C., and Xu, JR. 2016.
1003	TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON)
1004	production by cAMP signalling in Fusarium graminearum. Environmental
1005	Microbiology. 18:3689–3701
1006	Jiang, C., Zhang, S., Zhang, Q., Tao, Y., Wang, C., and Xu, JR. 2015. FgSKN 7 and
1007	FgATF I have overlapping functions in ascosporogenesis, pathogenesis and stress
1008	responses in <i>F usarium graminearum</i> : Overlapping functions between <i>FgSKN7</i>
1009	and FgATFT. Environ Microbiol. 17:1245–1260
1010	Jones, D. A. B., John, E., Rybak, K., Phan, H. T. T., Singh, K. B., Lin, SY., Solomon,
1011	P. S., Oliver, R. P., and Tan, KC. 2019. A specific fungal transcription factor
1012	controls effector gene expression and orchestrates the establishment of the
1013	necrotrophic pathogen lifestyle on wheat. Sci Rep. 9:15884
1014	Jones, P., Binns, D., Chang, HY., Fraser, M., Li, W., McAnulla, C., McWilliam, H.,
1015	Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas,
1016	A., Scheremetjew, M., Yong, SY., Lopez, R., and Hunter, S. 2014. InterProScan
1017	5: genome-scale protein function classification. Bioinformatics. 30:1230–1240
1010	Jones, S. 2004. An overview of the basic henx-loop-henx proteins. Genome Biology. 10
1019	Jonkers, W., Aayamongkhon, H., Haas, W., Onvani, C., van der Does, H. C., Broz, K., Bon M. Alabouvotta, C. Stainbarg, C. and Kistlar, H. C. 2014, EPRI ganamia
1020	expension and its role in virulence of Euggrium species, EPPL in virulence of
1021	Eusarium species Environ Microbiol 16:1082, 2003
1022	Lung U.S. Sobering A.K. Romeo M. L. and Levin D.F. 2002 Regulation of the
1023	veast Rlm1 transcription factor by the Mnk1 cell wall integrity MAD kinase
1024	Reporters for cell wall integrity signalling. Molecular Microbiology 46:781–780
1023	Reporters for een wan integrity signating. Molecular Microbiology. 40./81–787

1026	Kamura, T., Burian, D., Khalili, H., Schmidt, S. L., Sato, S., Liu, W. J., Conrad, M. N.,
1027	Conaway, R. C., Conaway, J. W., and Shilatifard, A. 2001. Cloning and
1028	characterization of ELL-associated proteins EAP45 and EAP20. a role for yeast
1029	EAP-like proteins in regulation of gene expression by glucose. J Biol Chem.
1030	276:16528–16533
1031	Katoh, K., and Standley, D. M. 2013. MAFFT Multiple Sequence Alignment Software
1032	Version 7: Improvements in Performance and Usability. Molecular Biology and
1033	Evolution. 30:772–780
1034	Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. 2019. Graph-based
1035	genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat
1036	Biotechnol. 37:907–915
1037	Kim, HJ., Lee, KL., Kim, KD., and Roe, JH. 2016. The iron uptake repressor Fep1
1038	in the fission yeast binds Fe-S cluster through conserved cysteines. Biochemical
1039	and Biophysical Research Communications. 478:187–192
1040	Kim, S., Park, SY., Kim, K. S., Rho, HS., Chi, MH., Choi, J., Park, J., Kong, S.,
1041	Park, J., Goh, J., and Lee, YH. 2009. Homeobox Transcription Factors Are
1042	Required for Conidiation and Appressorium Development in the Rice Blast
1043	Fungus Magnaporthe oryzae G.P. Copenhaver, ed. PLoS Genet. 5:e1000757
1044	Koch, C., Moll, T., Neuberg, M., Ahorn, H., and Nasmyth, K. 1993. A Role for the
1045	Transcription Factors Mbp1 and Swi4 in Progression from G1 to S Phase.
1046	Science. 261:1551–1557
1047	Kredics, L., Narendran, V., Shobana, C. S., Vágvölgyi, C., Manikandan, P., and Indo-
1048	Hungarian Fungal Keratitis Working Group. 2015. Filamentous fungal infections
1049	of the cornea: a global overview of epidemiology and drug sensitivity. Mycoses.
1050	58:243–260
1051	Latrick, C. M., Marek, M., Ouararhni, K., Papin, C., Stoll, I., Ignatyeva, M., Obri, A.,
1052	Ennifar, E., Dimitrov, S., Romier, C., and Hamiche, A. 2016. Molecular basis and
1053	specificity of H2A.Z-H2B recognition and deposition by the histone chaperone
1054	YL1. Nat Struct Mol Biol. 23:309–316
1055	Letunic, I., and Bork, P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for
1056	phylogenetic tree display and annotation. Nucleic Acids Research. 49:W293–
1057	W296
1058	Li, G., Zhou, X., Kong, L., Wang, Y., Zhang, H., Zhu, H., Mitchell, T. K., Dean, R. A.,
1059	and Xu, JR. 2011. MoSfl1 Is Important for Virulence and Heat Tolerance in
1060	Magnaporthe oryzae A. Idnurm, ed. PLoS ONE. 6:e19951
1061	Li, X., Han, X., Liu, Z., and He, C. 2013. The function and properties of the
1062	transcriptional regulator COS1 in Magnaporthe oryzae. Fungal Biology. 117:239-
1063	249
1064	Liang, X., Shan, S., Pan, L., Zhao, J., Ranjan, A., Wang, F., Zhang, Z., Huang, Y., Feng,
1065	H., Wei, D., Huang, L., Liu, X., Zhong, Q., Lou, J., Li, G., Wu, C., and Zhou, Z.
1066	2016. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling
1067	subunit YL1. Nat Struct Mol Biol. 23:317-323
1068	Liu, J., Yuan, Y., Wu, Z., Li, N., Chen, Y., Qin, T., Geng, H., Xiong, L., and Liu, D.
1069	2015. A Novel Sterol Regulatory Element-Binding Protein Gene (sreA) Identified
1070	in Penicillium digitatum Is Required for Prochloraz Resistance, Full Virulence
1071	and erg11 (cyp51) Regulation R.A. Cramer, ed. PLoS ONE. 10:e0117115

1072	López-Berges, M. S. 2020. ZafA-mediated regulation of zinc homeostasis is required for
1073	virulence in the plant pathogen <i>Fusarium oxysporum</i> . Molecular Plant Pathology.
1074	21:244–249
1075	López-Berges, M. S., Capilla, J., Turrà, D., Schafferer, L., Matthijs, S., Jöchl, C.,
1076	Cornelis, P., Guarro, J., Haas, H., and Di Pietro, A. 2012. HapX-Mediated Iron
1077	Homeostasis Is Essential for Rhizosphere Competence and Virulence of the
1078	Soilborne Pathogen Fusarium oxysporum. The Plant Cell. 24:3805-3822
1079	López-Berges, M. S., Rispail, N., Prados-Rosales, R. C., and Di Pietro, A. 2010. A
1080	Nitrogen Response Pathway Regulates Virulence Functions in Fusarium
1081	oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB. Plant Cell.
1082	22:2459–2475
1083	Lubelsky, Y., Reuven, N., and Shaul, Y. 2005. Autorepression of Rfx1 Gene Expression:
1084	Functional Conservation from Yeast to Humans in Response to DNA Replication
1085	Arrest. Mol Cell Biol. 25:10665–10673
1086	Lysøe, E., Pasquali, M., Breakspear, A., and Kistler, H. C. 2011. The Transcription
1087	Factor FgStuAp Influences Spore Development, Pathogenicity, and Secondary
1088	Metabolism in Fusarium graminearum. MPMI. 24:54-67
1089	Ma, LJ. 2014. Horizontal chromosome transfer and rational strategies to manage
1090	Fusarium vascular wilt diseases: Translating genomics for Fusarium vascular
1091	wilts. Molecular Plant Pathology. 15:763–766
1092	Ma, LJ., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, MJ., Di
1093	Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P.
1094	M., Kang, S., Shim, WB., Woloshuk, C., Xie, X., Xu, JR., Antoniw, J., Baker,
1095	S. E., Bluhm, B. H., Breakspear, A., Brown, D. W., Butchko, R. A. E., Chapman,
1096	S., Coulson, R., Coutinho, P. M., Danchin, E. G. J., Diener, A., Gale, L. R.,
1097	Gardiner, D. M., Goff, S., Hammond-Kosack, K. E., Hilburn, K., Hua-Van, A.,
1098	Jonkers, W., Kazan, K., Kodira, C. D., Koehrsen, M., Kumar, L., Lee, YH., Li,
1099	L., Manners, J. M., Miranda-Saavedra, D., Mukherjee, M., Park, G., Park, J.,
1100	Park, SY., Proctor, R. H., Regev, A., Ruiz-Roldan, M. C., Sain, D.,
1101	Sakthikumar, S., Sykes, S., Schwartz, D. C., Turgeon, B. G., Wapinski, I., Yoder,
1102	O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C. A., Kistler, H. C., and
1103	Rep, M. 2010. Comparative genomics reveals mobile pathogenicity chromosomes
1104	in Fusarium. Nature. 464:367–373
1105	Ma, LJ., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F.,
1106	Gardiner, D. M., Manners, J. M., and Kazan, K. 2013. Fusarium Pathogenomics.
1107	Annu. Rev. Microbiol. 67:399–416
1108	Ma, LJ., Shea, T., Young, S., Zeng, Q., and Kistler, H. C. 2014. Genome Sequence of
1109	Fusarium oxysporum f. sp. melonis Strain NRRL 26406, a Fungus Causing Wilt
1110	Disease on Melon. Genome Announcements. 2:e00730-14, 2/4/e00730-14
1111	MacPherson, S., Larochelle, M., and Turcotte, B. 2006. A Fungal Family of
1112	Transcriptional Regulators: the Zinc Cluster Proteins. Microbiol Mol Biol Rev.
1113	70:583–604
1114	Maddock, J. R., Weidenhammer, E. M., Adams, C. C., Lunz, R. L., and Woolford, J. L.
1115	1994. Extragenic suppressors of Saccharomyces cerevisiae prp4 mutations
1116	identify a negative regulator of PRP genes. Genetics. 136:833–847

1117	Martin, T., Lu, SW., Tilbeurgh, H. van, Ripoll, D. R., Dixelius, C., Turgeon, B. G., and
1118	Debuchy, R. 2010. Tracing the Origin of the Fungal al Domain Places Its
1119	Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type
1120	Evolution. PLOS ONE. 5:e15199
1121	Martínez-Soto, D., Yu, H., Allen, K. S., and Ma, LJ. 2022. Differential colonization of
1122	the plant vasculature between endophytic versus pathogenic Fusarium oxysporum
1123	strains. MPMI.
1124	Mendoza-Mendoza, A., Eskova, A., Weise, C., Czajkowski, R., and Kahmann, R. 2009.
1125	Hap2 regulates the pheromone response transcription factor prf1 in Ustilago
1126	maydis. Molecular Microbiology. 72:683–698
1127	Mercier, A., Watt, S., Bähler, J., and Labbé, S. 2008. Key Function for the CCAAT-
1128	Binding Factor Php4 To Regulate Gene Expression in Response to Iron
1129	Deficiency in Fission Yeast. Eukaryot Cell. 7:493-508
1130	Mesny, F., Miyauchi, S., Thiergart, T., Pickel, B., Atanasova, L., Karlsson, M., Hüttel,
1131	B., Barry, K. W., Haridas, S., Chen, C., Bauer, D., Andreopoulos, W., Pangilinan,
1132	J., LaButti, K., Riley, R., Lipzen, A., Clum, A., Drula, E., Henrissat, B., Kohler,
1133	A., Grigoriev, I. V., Martin, F. M., and Hacquard, S. 2021. Genetic determinants
1134	of endophytism in the Arabidopsis root mycobiome. Nat Commun. 12:7227
1135	Messenguy, F., and Dubois, E. 2003. Role of MADS box proteins and their cofactors in
1136	combinatorial control of gene expression and cell development. Gene. 316:1-21
1137	Michielse, C. B., and Rep, M. 2009. Pathogen profile update: Fusarium oxysporum.
1138	Molecular Plant Pathology. 10:311–324
1139	Michielse, C. B., van Wijk, R., Reijnen, L., Manders, E. M. M., Boas, S., Olivain, C.,
1140	Alabouvette, C., and Rep, M. 2009. The Nuclear Protein Sge1 of Fusarium
1141	oxysporum Is Required for Parasitic Growth B.J. Howlett, ed. PLoS Pathog.
1142	5:e1000637
1143	Milkereit, P., Gadal, O., Podtelejnikov, A., Trumtel, S., Gas, N., Petfalski, E., Tollervey,
1144	D., Mann, M., Hurt, E., and Tschochner, H. 2001. Maturation and Intranuclear
1145	Transport of Pre-Ribosomes Requires Noc Proteins. Cell. 105:499–509
1146	Min, K., Son, H., Lim, J. Y., Choi, G. J., Kim, JC., Harris, S. D., and Lee, YW. 2014.
1147	Transcription Factor RFX1 Is Crucial for Maintenance of Genome Integrity in
1148	Fusarium graminearum. Eukaryot Cell. 13:427–436
1149	Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von
1150	Haeseler, A., and Lanfear, R. 2020. IQ-TREE 2: New Models and Efficient
1151	Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and
1152	Evolution. 37:1530–1534
1153	Nguyen, LT., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. 2015. IQ-TREE: A
1154	Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood
1155	Phylogenies. Molecular Biology and Evolution. 32:268–274
1156	Niño-Sánchez, J., Casado-Del Castillo, V., Tello, V., De Vega-Bartol, J. J., Ramos, B.,
1157	Sukno, S. A., and Diaz Minguez, J. M. 2016. The <i>FTF</i> gene family regulates
1158	virulence and expression of SIX effectors in <i>Fusarium oxysporum</i> . Molecular
1159	Plant Pathology. 1/:1124–1139
1160	Un, M., Son, H., Choi, G. J., Lee, C., Kim, JC., Kim, H., and Lee, YW. 2016.
1101	ranscription factor ARTI mediates starch hydrolysis and mycotoxin production

1162	in Fusarium graminearum and F. verticillioides. Molecular Plant Pathology.
1163	$1/(-7)^{-1}/68$
1164	Ohara, I., Inoue, I., Namiki, F., Kunoh, H., and Isuge, I. 2004. <i>RENT</i> is Required for
1105	Development of Microconidia and Macroconidia, but Not of Chiamydospores, in the Plant Dethe genie Function Superior communication (Constitute 104)
1100	the Plant Pathogenic Fungus <i>Fusarium oxysporum</i> . Genetics. 166:113–124
110/	Olesen, J. I., Fikes, J. D., and Guarente, L. 1991. The Schizosaccharomyces pombe
1168	nomolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent
1109	Ortiz C. S. and Shim W. D. 2012. The role of MADS have transposition factors in
1171	Oruz, C. S., and Shiffi, WB. 2015. The role of MADS-box transcription factors in
11/1	secondary metabolism and sexual development in the marze pathogen rusarium
1172	Pan V and Haitman I 2000 Solv Pagulates Vasst Psoudohymbol Differentiation via a
1173	Transcription Factor Cascada That Paculates Call Call Adhesion Mal Call Piol
1174	20.8364_8372
1175	Paré A Kim M Juarez M T Brody S and McGinnis W 2012 The Functions of
1170	Grainy Head-Like Proteins in Animals and Fungi and the Evolution of Anical
1178	Extracellular Barriers LE Statich ed PLoS ONE 7:e36254
1179	Park, J., Park, J., Jang, S., Kim, S., Kong, S., Choi, J., Ahn, K., Kim, J., Lee, S., Kim, S.,
1180	Park, B., Jung, K., Kim, S., Kang, S., and Lee, YH. 2008. FTFD: an informatics
1181	pipeline supporting phylogenomic analysis of fungal transcription factors.
1182	Bioinformatics. 24:1024–1025
1183	Pegg, K. G., Coates, L. M., O'Neill, W. T., and Turner, D. W. 2019. The Epidemiology
1184	of Fusarium Wilt of Banana. Front. Plant Sci. 10:1395
1185	Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, TC., Mendell, J. T., and Salzberg,
1186	S. L. 2015. StringTie enables improved reconstruction of a transcriptome from
1187	RNA-seq reads. Nat Biotechnol. 33:290–295
1188	Pierce, M., Benjamin, K. R., Montano, S. P., Georgiadis, M. M., Winter, E., and
1189	Vershon, A. K. 2003. Sum1 and Ndt80 Proteins Compete for Binding to Middle
1190	Sporulation Element Sequences That Control Meiotic Gene Expression. Mol Cell
1191	Biol. 23:4814–4825
1192	Ploetz, R. C. 2015. Fusarium Wilt of Banana. Phytopathology. 105:1512–1521
1193	Rahman, M. Z., Ahmad, K., Siddiqui, Y., Saad, N., Hun, T. G., Mohd Hata, E., Rashed,
1194	O., Hossain, M. I., and Kutawa, A. B. 2021. First Report of Fusarium wilt disease
1195	on Watermelon Caused by Fusarium oxysporum f. sp. niveum (FON) in Malaysia.
1196	Plant Dis.
1197	Ramos, B., Alves-Santos, F. M., García-Sánchez, M. A., Martin-Rodrigues, N., Eslava,
1198	A. P., and Diaz-Minguez, J. M. 2007. The gene coding for a new transcription
1199	factor (ftf1) of Fusarium oxysporum is only expressed during infection of
1200	common bean. Fungal Genetics and Biology. 44:864–876
1201	Redkar, A., Sabale, M., Schudoma, C., Zechmann, B., Gupta, Y. K., Lopez-Berges, M.
1202	5., venturini, G., Ginenez-Ibanez, S., Turra, D., Solano, K., and Di Pietro, A. 2022 Conserved secreted offectors contribute to enderbytic growth and multihest
1203	2022. Conserved secreted effectors contribute to endophytic growth and multinost
1204	Prant compationity in a vascular with fullgus. The Flath Cell. :Koaci /4 Ren M. Van Der Does H. C. Meijer M. Van Wijk P. Houterman D. M. Dakkar U.
1205	I De Koster C G and Cornelissen B I C 2004 A small overeine_rich
1200	protein secreted by Fusarium oxysporum during colonization of vylem vessels is
1207	protoni scoretea by i asariani oxysporani daring colonization of xytem vessels is

1208	required for I-3-mediated resistance in tomato: Cysteine-rich protein required for
1209	I-3-mediated resistance. Molecular Microbiology. 53:1373–1383
1210	Ridenour, J. B., and Bluhm, B. H. 2014. The HAP complex in Fusarium verticillioides is
1211	a key regulator of growth, morphogenesis, secondary metabolism, and
1212	pathogenesis. Fungal Genetics and Biology. 69:52–64
1213	Ridenour, J. B., and Bluhm, B. H. 2017. The novel fungal-specific gene FUG1 has a role
1214	in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides.
1215	Molecular Plant Pathology. 18:513–528
1216	Rispail, N., and Di Pietro, A. 2009. Fusarium oxysporum Ste12 Controls Invasive
1217	Growth and Virulence Downstream of the Fmk1 MAPK Cascade. MPMI.
1218	22:830-839
1219	Rispail, N., and Di Pietro, A. 2010. The homeodomain transcription factor Ste12:
1220	Connecting fungal MAPK signaling to plant pathogenicity. Communicative &
1221	Integrative Biology. 3:327–332
1222	Roberts, S. M., and Winston, F. 1996. SPT20/ADA5 encodes a novel protein functionally
1223	related to the TATA-binding protein and important for transcription in
1224	Saccharomyces cerevisiae. Mol Cell Biol. 16:3206–3213
1225	Rocha, A. L. M., Di Pietro, A., Ruiz-Roldán, C., and Roncero, M. I. G. 2008. Ctf1, a
1226	transcriptional activator of cutinase and lipase genes in Fusarium oxysporum is
1227	dispensable for virulence. Molecular Plant Pathology. 9:293–304
1228	Ruiz-Roldán, C., Pareja-Jaime, Y., González-Reyes, J. A., and G. Roncero, M. I. 2015.
1229	The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and
1230	Virulence in Fusarium oxysporum. MPMI. 28:55-68
1231	Schleif, R. 2010. AraC protein, regulation of the l-arabinose operon in Escherichia coli,
1232	and the light switch mechanism of AraC action. FEMS Microbiol Rev. 34:779-
1233	796
1234	Schumacher, J., Simon, A., Cohrs, K. C., Viaud, M., and Tudzynski, P. 2014. The
1235	Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the
1236	Necrotrophic Plant Pathogen Botrytis cinerea. PLOS Genetics. 10:e1004040
1237	Shelest, E. 2017. Transcription Factors in Fungi: TFome Dynamics, Three Major
1238	Families, and Dual-Specificity TFs. Front. Genet. 8:53
1239	Siegmund, T., and Lehmann, M. 2002. The Drosophila Pipsqueak protein defines a new
1240	family of helix-turn-helix DNA-binding proteins. Dev Genes Evol. 212:152–157
1241	Son, H., Fu, M., Lee, Y., Lim, J. Y., Min, K., Kim, JC., Choi, G. J., and Lee, YW.
1242	2016a. A novel transcription factor gene FHS1 is involved in the DNA damage
1243	response in Fusarium graminearum. Sci Rep. 6:21572
1244	Son, M., Lee, Y., and Kim, KH. 2016b. The Transcription Cofactor Swi6 of the
1245	Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-
1246	Induced Phenotypic Alterations. The Plant Pathology Journal. 32:281–289
1247	Song, Z., Krishna, S., Thanos, D., Strominger, J. L., and Ono, S. J. 1994. A novel
1248	cysteine-rich sequence-specific DNA-binding protein interacts with the conserved
1249	X-box motif of the human major histocompatibility complex class II genes via a
1250	repeated Cys-His domain and functions as a transcriptional repressor. J Exp Med.
1251	180:1763–1774

1252	Sugiyama, M., and Nikawa, JI. 2001. The Saccharomyces cerevisiae Isw2p-Itc1p
1253	Complex Represses INO1 Expression and Maintains Cell Morphology. J
1254	Bacteriol. 183:4985–4993
1255	Takemaru, K., Li, FQ., Ueda, H., and Hirose, S. 1997. Multiprotein bridging factor 1
1256	(MBF1) is an evolutionarily conserved transcriptional coactivator that connects a
1257	regulatory factor and TATA element-binding protein. Proc. Natl. Acad. Sci.
1258	U.S.A. 94:7251–7256
1259	Tsuchiya, D., Yang, Y., and Lacefield, S. 2014. Positive Feedback of NDT80 Expression
1260	Ensures Irreversible Meiotic Commitment in Budding Yeast M. Lichten, ed.
1261	PLoS Genet. 10:e1004398
1262	de Vega-Bartol, J. J., Martín-Dominguez, R., Ramos, B., García-Sánchez, MA., and
1263	Díaz-Mínguez, J. M. 2011. New Virulence Groups in Fusarium oxysporum f. sp.
1264	phaseoli : The Expression of the Gene Coding for the Transcription Factor ftf1
1265	Correlates with Virulence. Phytopathology. 101:470-479
1266	Vesth, T. C., Nybo, J. L., Theobald, S., Frisvad, J. C., Larsen, T. O., Nielsen, K. F., Hoof,
1267	J. B., Brandl, J., Salamov, A., Riley, R., Gladden, J. M., Phatale, P., Nielsen, M.
1268	T., Lyhne, E. K., Kogle, M. E., Strasser, K., McDonnell, E., Barry, K., Clum, A.,
1269	Chen, C., LaButti, K., Haridas, S., Nolan, M., Sandor, L., Kuo, A., Lipzen, A.,
1270	Hainaut, M., Drula, E., Tsang, A., Magnuson, J. K., Henrissat, B., Wiebenga, A.,
1271	Simmons, B. A., Mäkelä, M. R., de Vries, R. P., Grigoriev, I. V., Mortensen, U.
1272	H., Baker, S. E., and Andersen, M. R. 2018. Investigation of inter- and
1273	intraspecies variation through genome sequencing of Aspergillus section Nigri.
1274	Nat Genet. 50:1688–1695
1275	Viljoen, A., Mostert, D., Chiconela, T., Beukes, I., Fraser, C., Dwyer, J., Murray, H.,
1276	Amisse, J., Matabuana, E. L., Tazan, G., Amugoli, O. M., Mondjana, A., Vaz, A.,
1277	Pretorius, A., Bothma, S., Rose, L. J., Beed, F., Dusunceli, F., Chao, CP., and
1278	Molina, A. B. 2020. Occurrence and spread of the banana fungus Fusarium
1279	oxysporum f. sp. cubense TR4 in Mozambique. South African Journal of Science.
1280	116:1–11
1281	Vizoso-Vázquez, A., Lamas-Maceiras, M., Becerra, M., González-Siso, M. I., Rodríguez-
1282	Belmonte, E., and Cerdán, M. E. 2012. Ixr1p and the control of the
1283	Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol. 94:173–
1284	
1285	Vuorio, 1., Maity, S. N., and de Crombrugghe, B. 1990. Purification and molecular
1286	cloning of the "A" chain of a rat heteromeric CCAA I-binding protein. Sequence
128/	identity with the yeast HAP3 transcription factor. Journal of Biological
1288	Chemistry. 265:22480–22486 Warz D. Vy, H. E. V. Danz, O. Steinbarg, C. Alabaryatta, C. Edal Harmann, V.
1289	wang, B., Yu, H., Jia, Y., Dong, Q., Steinberg, C., Alabouvette, C., Edel-Hermann, V.,
1290	A security of Eugenium server server Strain Es 47, a Eugen Enderbete and
1291	Assembly of <i>Fusarium oxysporum</i> Strain F047, a Fungal Endophyte and Discontrol A cont. MDML, MDML 05, 20, 0116
1292	Biocontrol Agent. MPMI. :MPMI-05-20-0110
1273	wang, Q., Fokniei, A., and Coleman, J. J. 2021. The Extracellular Superoxide Dismutase
1294	and Contributes to Eurgel Dethogonicity. Front Diant Sci. 12:608861
1275	Wiemann D. Sieher C. M.K. Bargon K. W. von Studt I. Nichows E. M. Faring I.
1290	I Huß K Michielse C D Albermann S Wasner D Devener S V
127/	J., Hub, K., Michleise, C. D., Alberhiann, S., Wagner, D., Dergner, S. V.,

1298	Connolly, L. R., Fischer, A., Reuter, G., Kleigrewe, K., Bald, T., Wingfield, B.
1299	D., Ophir, R., Freeman, S., Hippler, M., Smith, K. M., Brown, D. W., Proctor, R.
1300	H., Münsterkötter, M., Freitag, M., Humpf, HU., Güldener, U., and Tudzynski,
1301	B. 2013. Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice
1302	Pathogen Fusarium fujikuroj Reveal Complex Regulation of Secondary
1303	Metabolism and Novel Metabolites, PLOS Pathogens, 9:e1003475
1304	Wight W D Kim K -H Lawrence C B and Walton I D 2009 Biosynthesis and
1305	role in virulence of the historie deacetylase inhibitor depudecin from Alternaria
1306	brassicicola Mol Plant Microbe Interact 22:1258–1267
1307	Williams A H Sharma M Thatcher L F Azam S Hane I K Sperschneider I
1308	Kidd B N Anderson I P Ghosh R Garg G Lichtenzveig I Kistler H C
1309	Shea T. Young S. Buck S-A. G. Kamphuis I. G. Saxena R. Pande S. Ma
1310	L-L Varshney R K and Singh K B 2016 Comparative genomics and
1311	prediction of conditionally dispensable sequences in legume_infecting Fusarium
1312	oxysporum formae speciales facilitates identification of candidate effectors BMC
1312	Genomics 17.191
1313	Wood V Gwilliam R Rajandream M-A Lyne M Lyne R Stewart A Soouros
1315	I Peat N Havles I Baker S Basham D Bowman S Brooks K Brown
1316	D Brown S Chillingworth T Churcher C Collins M Connor R Cronin
1317	A Davis P Feltwell T Fraser A Gentles S Goble A Hamlin N Harris
1318	D Hidalgo I Hodgson G Holroyd S Hornshy T Howarth S Huckle E
1319	I Hunt S Jagels K James K Jones I. Jones M Leather S McDonald S
1320	McLean I Mooney P Moule S Mungall K Murnhy I Niblett D Odell
1320	C Oliver K O'Neil S Pearson D Ouail M A Rabbinowitsch F
1321	Rutherford K Rutter S Saunders D Seeger K Sharn S Skelton I
1322	Simmonds M Squares R Squares S Stevens K Taylor K Taylor R G
1323	Tivey A Walsh S Warren T Whitehead S Woodward I Volckaert G
1325	Aert R Robben I Grymonprez B Weltiens I Vanstreels E Rieger M
1326	Schäfer M Müller-Auer S Gabel C Fuchs M Fritze C Holzer E Moest
1320	D Hilbert H Borzym K Langer I Beck A Lehrach H Reinhardt R
1328	Pohl T M Eger P Zimmermann W Wedler H Wambutt R Purnelle B
1329	Goffeau, A., Cadieu, E., Dréano, S., Gloux, S., Lelaure, V., Mottier, S., Galibert,
1330	F. Aves, S. L. Xiang, Z., Hunt, C., Moore, K., Hurst, S. M., Lucas, M., Rochet,
1331	M., Gaillardin, C., Tallada, V. A., Garzon, A., Thode, G., Daga, R. R., Cruzado,
1332	L. Jimenez, J., Sánchez, M., del Rey, F., Benito, J., Domínguez, A., Revuelta, J.
1333	L. Moreno, S. Armstrong, J. Forsburg, S. L. Cerrutti, L. Lowe, T. McCombie
1334	W R Paulsen I Potashkin I Shnakovski G V Usserv D Barrell B G
1335	and Nurse P 2002 The genome sequence of Schizosaccharomyces nombe
1336	Nature 415:871–880
1337	Xin C. Zhang I. Nian S. Wang G. Wang Z. Song Z. and Ren G. 2020 Analogous
1338	and Diverse Functions of APSES-Type Transcription Factors in the
1339	Morphogenesis of the Entomonathogenic Fungus Metarhizium rilevi N -Y Zhou
1340	ed Appl Environ Microbiol 86:e02928-19
1341	Yamaguchi Y Narita T Inukai N Wada T and Handa H 2001 SPT Genes: Key
1342	Players in the Regulation of Transcription Chromatin Structure and Other
1343	Cellular Processes Journal of Biochemistry 120.185_101
1010	Central 110005505, Journal of Dioeneninstry, 127,105 171

1344	Yan, X., Li, Y., Yue, X., Wang, C., Que, Y., Kong, D., Ma, Z., Talbot, N. J., and Wang,
1345	Z. 2011. Two Novel Transcriptional Regulators Are Essential for Infection-
1346	related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe
1347	oryzae. PLOS Pathogens. 7:e1002385
1348	Yang, H. 2020. ACCESSORY GENES CONTRIBUTE TO REWIRING THE
1349	TRANSCRIPTIONAL NETWORK IN FUSARIUM OXYSPORUM. Doctoral
1350	Dissertations.
1351	Yang, H., Yu, H., and Ma, LJ. 2020. Accessory Chromosomes in Fusarium oxysporum.
1352	Phytopathology®. :PHYTO-03-20-006
1353	Yu, H., Ayhan, D. H., Diener, A. C., and Ma, LJ. 2020. Genome Sequence of Fusarium
1354	oxysporum f. sp. matthiolae, a Brassicaceae Pathogen. MPMI. 33:569-572
1355	Yu, H., Ayhan, D. H., Martínez-Soto, D., Cochavi, S. M., and Ma, LJ. 2023. Accessory
1356	Chromosomes of the Fusarium oxysporum Species Complex and Their
1357	Contribution to Host Niche Adaptation. Pages 371–388 in: Plant Relationships,
1358	The Mycota. B. Scott and C. Mesarich, eds. Springer International Publishing,
1359	Cham.
1360	Yue, X., Que, Y., Xu, L., Deng, S., Peng, Y., Talbot, N. J., and Wang, Z. 2016. ZNF1
1361	Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium
1362	Differentiation by the Rice Blast Fungus Magnaporthe oryzae. Mol Plant Microbe
1363	Interact. 29:22–35
1364	Yun, Y., Zhou, X., Yang, S., Wen, Y., You, H., Zheng, Y., Norvienyeku, J., Shim, WB.,
1365	and Wang, Z. 2019. Fusarium oxysporum f. sp. lycopersici C2H2 transcription
1366	factor FolCzf1 is required for conidiation, fusaric acid production, and early host
1367	infection. Curr Genet. 65:773–783
1368	ZHANG, Y. 2019. EVOLUTION OF THE PATHOGENIC FUSARIUM OXYSPORUM
1369	THROUGH THE LENS OF COMPARATIVE GENOMICS. Doctoral
1370	Dissertations.
1371	Zhang, Y., Yang, H., Turra, D., Zhou, S., Ayhan, D. H., DeIulio, G. A., Guo, L., Broz,
1372	K., Wiederhold, N., Coleman, J. J., Donnell, K. O., Youngster, I., McAdam, A. J.,
1373	Savinov, S., Shea, T., Young, S., Zeng, Q., Rep, M., Pearlman, E., Schwartz, D.
1374	C., Di Pietro, A., Kistler, H. C., and Ma, LJ. 2020. The genome of opportunistic
1375	fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific
1376	chromosomes. Commun Biol. 3:1–12
1377	Zhao, S., An, B., Guo, Y., Hou, X., Luo, H., He, C., and Wang, Q. 2020. Label free
1378	proteomics and systematic analysis of secretome reveals effector candidates
1379	regulated by SGE1 and FTF1 in the plant pathogen Fusarium oxysporum f. sp.
1380	cubense tropical race 4. BMC Genomics. 21:275
1381	Zhou, Z., Li, G., Lin, C., and He, C. 2009. Conidiophore Stalk-less I Encodes a Putative
1382	Zinc-Finger Protein Involved in the Early Stage of Conidiation and Mycelial
1383	Infection in Magnaporthe oryzae. MPMI. 22:402–410
1384	Zuriegat, Q., Zheng, Y., Liu, H., Wang, Z., and Yun, Y. 2021. Current progress on
1385	pathogenicity-related transcription factors in Fusarium oxysporum. Mol Plant
1386	Pathol. 22:882–895
1387	