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Abstract

Background: Modeling of single cell RNA-sequencing (scRNA-seq) data remains

challenging due to a high percentage of zeros and data heterogeneity, so

improved modeling has strong potential to benefit many downstream data

analyses. The existing zero-inflated or over-dispersed models are based on

aggregations at either the gene or the cell level. However, they typically lose

accuracy due to a too crude aggregation at those two levels.

Results: We avoid the crude approximations entailed by such aggregation

through proposing an Independent Poisson Distribution (IPD) particularly at each

individual entry in the scRNA-seq data matrix. This approach naturally and

intuitively models the large number of zeros as matrix entries with a very small

Poisson parameter. The critical challenge of cell clustering is approached via a

novel data representation as Departures from a simple homogeneous IPD (DIPD)

to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters.

Our experiments using real data and crafted experiments show that using DIPD

as a data representation for scRNA-seq data can uncover novel cell subtypes that

are missed or can only be found by careful parameter tuning using conventional

methods.

Conclusions: This new method has multiple advantages, including (1) no need

for prior feature selection or manual optimization of hyperparameters; (2)

flexibility to combine with and improve upon other methods, such as Seurat.

Another novel contribution is the use of crafted experiments as part of the

validation of our newly developed DIPD-based clustering pipeline. This new

clustering pipeline is implemented in the R (CRAN) package scpoisson.

Keywords: Single cell; RNA-seq; Poisson distribution; Data representation
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Background

Single cell RNA-sequencing (scRNA-seq) estimates the transcriptome at the indi-

vidual cell level. ScRNA-seq can directly measure cell-to-cell heterogeneity, which is

more challenging using bulk RNA sequencing. First applied in 2009 [1], scRNA-seq

has become the preferred tool to identify cell sub-populations and to investigate

cellular heterogeneity [2, 3, 4, 5, 6, 7], gene regulatory networks [8, 9], stochastic

fluctuations in transcription [10, 11], and so on. Due to the unique features of the

data distribution in scRNA-seq, it’s essential to develop statistical methods which

accurately model scRNA-seq data for many important downstream analyses includ-

ing differential expression analysis and clustering of cells.

Existing methods typically model the scRNA-seq data at the gene level for differ-

ential expression analysis to find biomarkers, and at the sample level for clustering

of cells to find cell subtypes; however they typically lose accuracy due to a too

crude aggregation at those two levels. This aggregation has led to attempts to ex-

plicitly model the apparent resulting zero-inflation or over-dispersion. We propose

more precisely addressing these issues by modeling the distribution of each individ-

ual entry of the data matrix. A major challenge is that scRNA-seq data typically

contain a large number of zero counts for gene/cell combinations (often exceed-

ing 90%) [12]. This is due to both biological reasons that some genes are only

expressed in a cluster of cells, and technical limitations such as low RNA capture

rates, low efficiency library construction, cell disintegration and RNA degradation.

There also exists a severe threshold effect in detection sensitivity of gene expres-

sion in scRNA-seq. Typically higher expressed genes in a cell tend to have a higher

probability to be detected [13, 14, 4, 15]. These characteristics can lead to large

discrepancies among sequencing libraries for different cells, i.e. batch effects, and

render many global normalization approaches ineffective. Various approaches have

been proposed to address barriers that limit the interpretation of scRNA-seq data

[16, 17, 18, 19, 20, 21, 22, 23]. On the “wet-bench” side, unique molecular identifier

(UMI) was introduced [24]. UMI reduces biases introduced by the extreme signal

amplification that is necessary for scRNA-seq. Some researchers have argued that

if the UMI technology works properly, there is no need to account for zero-inflation

[25, 22, 26]. This is an encouraging perspective; however, these classical probability

models are again only crude aggregations focusing on either cells or genes.
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To improve the accuracy of statistical modeling and gain more precise inference,

we propose the novel and principled approach of studying individual entries of the

gene-by-cell matrix. This approach is based on the Independent Poisson Distri-

bution (IPD) statistical framework, where every gene in each cell follows its own

Poisson distribution. Working with such a model is challenging because the max-

imum likelihood estimate of each Poisson parameter is simply the corresponding

count, which is too noisy to be useful. To solve this problem which presents for the

validation of the IPD model we first start with several biologically homogeneous

data sets derived from single clonal cell lines [27]. Next, we perform parameter

estimation using generalized principal component analysis (GLM-PCA) [25] as a

noise reduction method. While this approach has clear potential to eliminate noise

when keeping important biological signals, it is challenging in most applications

because the critical number of GLM-PCA components is not known. However, a

fundamental exception to this principal nicely arises in the validation of the IPD

model. This is because if we can find (by trial and error) a number of components

which result in a fit of the standard univariate Poisson distribution to collections of

matrix entries having very similar parameters, then the goodness of fit of the IPD

is verified. The fit of Poissoneity to sets of similar matrix entries is studied using

Quantile-to-Quantile plots (Q-Q plots), together with simulated envelopes indicat-

ing natural variation, in addition to over-dispersion and zero-inflation hypothesis

tests.

Based on this newly proposed IPD framework which focuses on individual entries

of the scRNA-seq data matrix, we further develop procedures based on the compu-

tation of Departure from the IPD (DIPD) as a data representation to replace the

scRNA-seq count data by the logistic transformation of probabilities of Departure

to ensure modeling accuracy and to effectively deal with zeros. The output will be

a data matrix of the same dimension of scRNA-seq with continuous values. This

enables our development of other new computational approaches including cluster-

ing and other downstream tasks through the novel concept of DIPD. The DIPD is

initialized by a rough two-way parameter approximation of the data. Next, different

cell types are captured by departures from the näıve two-way approximation. Then

the data is bisected using Poisson departure as the distance measure. The cluster-

ing algorithm terminates, when there is no significant deviation from Poissoneity
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for any cell group. For some data [28] this approach gives results similar to those

using other pipelines. For others [29] it shows an improvement. Overall, for addi-

tional downstream tasks, the DIPD matrix is proposed as a new data representation

(model departure).

In sum, the IPD statistical framework has the potential to capture meaningful

biological properties at a higher resolution than prior normalization methods, with-

out the need for more complicated probability distributions. We demonstrate the

usefulness of model departure DIPD as a novel data representation by conducting

downstream analysis, such as clustering of cells. Our newly developed DIPD-based

clustering pipeline is validated in multiple experimental data. Another important

contribution of this paper is the use of the novel method called crafted experiments

for the comparison of the DIPD with other methods in a principled way. While

we demonstrate the value of our proposed model departure data representation for

clustering, we anticipate it will be useful for additional downstream tasks, such as

differential expression analysis, gene set tests and trajectory analysis, because it

provides a useful replacement of the conventional data matrix.

Results

Validation of Poissoneity for scRNA-seq data

Poissoneity postulates that each matrix entry (gene by cell) comes from an in-

dependent Poisson distribution. As stated in Methods, the Poisson parameter for

each matrix entry can be estimated using GLM-PCA [25]. However, the success of

that estimation requires a good choice of the number of latent vectors L, which is

generally quite challenging. The model validation context we consider here allows

an unusual approach to that challenge. In particular, finding a value of L which

gives a good fit of the resulting IPD model establishes its validity. That goodness of

fit is quantified here using both Q-Q envelope visualization and formal hypothesis

testing.

To study the Poissoneity of scRNA-seq data, we first explore the simplest case:

cells picked at random from a clonal cell line processed as a single batch (Plate 3

[27]) with L = 10 (for the reasons given in section Methods). In Fig. 1, panels a, b

and c display the distribution histograms. For a given Poisson parameter λ = 0.5,

λ = 2 or λ = 20, the gold bars represent distributions based on 200 aggregated UMI
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entries with the estimated Poisson parameters closest to λ. Their distributions ap-

proximately follow the theoretical Poisson(λ) distributions (gray bars). In contrast,

the distributions from entries of genes whose gene averages are closest to λ (blue

bars), do not.

Fig. 1 panels d, e and f show the corresponding Q-Q envelope plots (see Methods).

These provide an alternative display of the distribution of the data. For all three

λ choices, the gold lines (based on aggregated matrix entries) are within the gray

envelopes of variation, indicating good fits using the Poisson distributions. The

gene-level entries (blue line) do not lie within the Q-Q envelope indicating a poor

Poisson fit. Furthermore, the manner in which the blue curves leave the envelope

show both the typically expected zero-inflation (departure below on the left) and

over-dispersion (departing above on the right). This demonstrates that individual

raw UMI count entries follow Poisson distributions, but genes, whose averages are

often used for normalization, do not.

The hypothesis testing (based on aggregated matrix entries) have p-values p =

0.155 for λ = 0.5, p = 0.056 for λ = 2 and p = 0.004 for λ = 20 from over-dispersion

tests; and p = 0.278 for λ = 0.5, p = 0.389 for λ = 2 and p = 1.000 for λ = 20

from the zero-inflation tests. These are consistent with the visual representation.

An exception is λ = 20 (for the over-dispersion test). Here, (Fig. 1, panel f) the

UMI-based individual entries distribution (gold) goes outside the gray variation

envelope at the top for high values. This is due to a sampling effect. Relatively few

matrix entries have parameter estimates close to λ = 20, i.e. sampled entries come

from a mixture of Poissons due to variation in the underlying parameters. If we

decreased the number of aggregated entries to 100, then the over-dispersion test is

not significant (p = 0.129) even when λ = 20. This result indicates a high quality

of fit for the IPD statistical framework and is consistent with the notion that UMI

count-based scRNA-seq data can be modeled by independent Poisson distributions

at the individual gene-cell entry level.

Further goodness of fit investigations

Next, we use these goodness of fit tools (for matrix entries with similar Poisson

parameters) to study batch variation (Fig. 2). Each plate represents a technical

replicate (batch) or different biological condition as defined in Methods. Within
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each plate, we took λ ranging from 0.1 to 20, on 200 aggregated matrix entries

(Poisson parameters are again estimated using GLM-PCA [25] with L = 10) to

test for Poissoneity using Q-Q envelope plots and hypothesis testing. Based on

this extended data we find that: first, UMI data fall within the variation envelope

(gray lines) on Q-Q envelope plots, suggesting that the Poisson distribution fit the

matrix entries; second, inflated zeros are not detectable for UMI entries based on

zero-inflation tests (p > 0.05); third, no over-dispersion is detectable for UMI entries

based on dispersion hypothesis testing (p > 0.05). The exception is λ = 20, which

can be explained as a mixture of Poisson as discussed above.

One of the experiments deliberately violated the single cell assumption in a novel

direction. Plate 8 (green) had two cells per well, i.e. per library. It shows over-

dispersion at L = 10 (p = 0.049 when λ = 5 and p = 0.007 when λ = 20). This is

consistent with the experimental design. It had a stronger signal for low abundance

transcripts as twice as much RNA was present per well, which resulted in more

biological variation. This different signal to noise ratio is handled by increasing L

to 15. Compare the light (L = 10) and dark green (L = 15) curves in Fig. 2 panels

e and f. At L = 15, the curves are within the envelopes and the over-dispersion

tests have p-values p = 0.882 when λ = 5 and p = 0.087 when λ = 20, indicating

no over-dispersion.

Another experiment has an equal mixture of two different cell lines (Plates 5A

and 6A). In Fig. 2 panel f, the Q-Q envelope plot shows strong deviations at the

bottom for low values at L = 10 when λ = 20 (orange curve; p < 0.001 for the

over-dispersion test even decrease the number of selected entries to 100). This is

because for this more heterogeneous data set, L = 10 components are inadequate

to capture the biological variation. The fit is improved by increasing the number

of latent vectors to L = 20 (the dark red curve; p = 0.054 for the over-dispersion

test when λ = 20). These experiments show that deviations from cell homogeneity,

either as a violation of the single cell assumption or as a result of a mixture of cells

with different transcription profiles can be detected as departures from the IPD

model. This property can be compensated for by increasing the number of latent

variables L or it can be exploited by a clustering algorithm using Poisson model

departure as the distance metric. This algorithm is described below.
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Poisson departure data representation

Here, we introduce a novel data representation (DIPD) based on a departure from

the IPD. The initial step is based on a crude two-way parameter approximation,

where variation across cells is modeled by a cell-level parameter, and variation

across genes is modeled by a gene-level parameter (as defined in equation (3)).

This initialization step in itself does not appropriately account for cell heterogene-

ity. In the next step, the interesting cell structure is captured by departures from

the näıve two-way approximation in both genes and cells, and the original count

matrix is replaced by a Poisson departure matrix. In the departure matrix, each

entry is quantified by the relative location of that original count with respect to

the tentative Poisson distribution, whose parameter comes from the initial two-way

approximation. The departure measure is captured by a Poisson Cumulative Distri-

bution Function (CDF), which leaves the unexpectedly small counts nearly 0 and

unusually large counts close to 1. Next, the departure measure is put on a more

statistically amenable scale using the logit function. As a result, unexpectedly large

counts give large positive values and unexpectedly small counts give large negative

values.

Fig. 3 shows the heatmap visualizations (two cell lines data defined in the fol-

lowing section) based on DIPD (panel a) or Seurat after normalization and scaling

(panel b) as data representations. Note the different scale ranges. The black lines

in the sidebars depicted the top 2,000 most variable genes identified by Seurat. The

DIPD-based representation kept all genes, as they may become relevant for defining

sub-clusters, and also may be associated with important meta information. Such

meta-information may include drug susceptibility or the availability of a clinical

or histochemical assay to measure protein expression. The opportunity to iden-

tify genes of high clinical value is lost in approaches that select features based on

statistical properties alone. In this simple case with two distinct cell lines, both rep-

resentations perform similarly as depicting the differentially expressed (DE) genes

between the two cell lines. We will show that the DIPD-based data matrix outper-

forms Seurat normalized counts as a novel data representation in a later section.
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Cell type clustering based on Poisson departure

A major application of this data representation is cell clustering using DIPD. This

can be used directly as input into other algorithms. It also opens the possibility for

a novel clustering algorithm, as illustrated in Fig. 4. This algorithm, referred to as

Hclust-Departure, operates as follows: Starting with the UMI count matrix (UMI ),

a very crude two-way parameter approximation (more details in Methods) is used

to estimate Poisson parameters (Λ̃). Cell heterogeneity is not assumed at this step.

Next, each UMI count is replaced by the DIPD (D) measure from the näıve model.

This DIPD-based matrix serves as the input for the clustering step. Clustering with

k = 2 is applied and the two-way approximation and DIPD-based data matrix is

recalculated separately for each of the two subclusters. This process is repeated

until (a) the split is no longer statistically significant; (b) the maximum allowable

number of splitting steps is reached; or (c) any current cluster has less than 10 cells.

Statistical significance is calculated using Sigclust2 [30]. For a homogeneous cluster

of cells, all the departure entries (D) are similar, and therefore Sigclust2 should not

find significant clusters.

To investigate the performance of Hclust-Departure, we compared it with a com-

monly used package, Seurat (version 3.1.1) [31].

Single clonal cell line

First, homogeneous data from a single clonal cell line (Plate 3) is tested [27]. There

are no known clusters. This data serves as a negative control because the cells have

been maintained under optimal growth conditions to minimize variations within the

cell population. Applying Hclust-Departure to the DIPD-based matrix resulted in

no significant splits (p = 0.933), consistent with the experimental design (panel a

in Additional file 1). Seurat also identified only one cluster (resolution parameter

0.8, panel b in Additional file 1).

Two cell lines, equal mixture

Combining the data from two clonal cell lines (Plates 5A and 6A) in an equal mix-

ture provided a positive control, as the two cancer cell lines were from independent

patients, but of the same lineage [27]. Hclust-Departure resulted in two clusters,

consistent with the known cell lines. Seurat also identified two clusters under the

default setting (resolution parameter 0.8) as expected (Fig. 3).
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Three cell lines, unequal mixture

Next, we applied Hclust-Departure, to data comprised of three mixture cell lines, at

a ratio of 1:3:6 [32]. Hclust-Departure identified three clusters (panel a in Additional

file 2). Using the default setting, Seurat identified 7 clusters. By tuning the Seurat

resolution parameter from the default 0.8 to 0.1, overfitting was resolved (panel b

in Additional file 2) and both approaches identified the three biologically defined

clusters.

Multiple cell lineages, unequal mixture

To increase the complexity of the data further, data from the lymphoid organs of

a mouse [28] was analyzed. These represent the complex lineages and populations

of the hematopoietic system: T and B cells, which mediate the adaptive immune

response, as well as dendritic cells (DCs), macrophages, mast cells, etc., which me-

diate the innate immune response as well as red blood cells (erythrocytes). Within

each of these broad classes, multiple subclasses are recognized.

The results are visualized using t-distributed Stochastic Neighbor Embedding

(t-SNE) [33] and Uniform Manifold Approximation and Projection (UMAP) [34]

in Fig. 5 panels a, c and panels b, d. Hclust-Departure (panels a and b) is used

without dimensionality reduction or feature selection. Seurat (panels c and d) is

applied using the top 2,000 most variable features as defined by default. The cell

type labels are manually assigned to each cluster using known lineage markers.

The clusters discovered by Hclust-Departure are consistent with those identified

by Seurat. Furthermore, Hclust-Departure identifies several significant subclusters

within common Seurat labels (namely B-cells (light/dark green clusters), NK cells

(light/dark gold clusters) and erythrocytes (light gray/black clusters)).

To evaluate the biological plausibility of the additional clusters identified by

Hclust-Departure, we identified differentially transcribed genes using the t-test (clus-

ter size larger or equal to 30) or the Wilcoxon rank-sum test (cluster size less than

30) (Fig. 6). The genes colored in red are statistically significant after FDR adjust-

ment (p < 0.05), and have a large mean difference. The genes colored in orange have

a significant difference but the mean difference is small. Those colored in black do

not differ among clusters. Known cellular identity-specific differentiation markers

are annotated by name. Their difference in departure representation is consistent
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with the existence of two functionally distinct populations as recognized by Hclust-

Departure.

Fig. 6 panel a depicts two types of DCs corresponding to the coral and blue clusters

in Fig. 5. DCs are antigen-presenting cells and are classified into two major subtypes:

myeloid DCs (mDC) and plasmacytoid DCs (pDC) [35]. Cluster one downregulates

the histocompatibility complex (HLA) class II molecules and Cystatin C (CST3 ),

LYZ, TMSB4X ; the other does not. Thus, the distribution of biologically defined

lineage markers validated this unsupervised clustering result.

Fig. 6 panel b depicts two clusters of B cells (corresponding to the light green

and dark green clusters in Fig. 5 panels a and b). B cells are classically known for

their ability to produce antibodies, yet they are capable of a variety of functions

including antigen presentation, production of several cytokines and the suppression

of IL-10 secretion [36]. Comparatively high levels of lineage defining plasma B cell

transcripts such as MZB1 and FKBP11 and LTB (an early B cell differentiating

factor) differentiate the two clusters confirming that two clusters, rather than one,

was consistent with the known biology.

Fig. 6 panel c focuses on Natural Killer (NK) cells (corresponding to the light

and dark gold clusters in Fig. 5 panels a and b). NK cells are one of the major

subpopulations of lymphocytes and components of innate immunity. Again key

lineage markers were differentially expressed among the two NK cells clusters such

as CD56 and CD16 [37]. The presence of ZNF90, UBA52 and FAU suggests that

those cells were in an active transcriptional state. The absence of TUBB indicates

that the cell was in a state of mature NK cell expression.

Fig. 6 panel d depicts the subdivision of erythroid cells. There are two types

of erythroid cells: embryonic and mature. These are traditionally differentiated by

the downregulation of several hemoglobin genes including HBB, HBA2 and HBA1

which are expressed during terminal differentiation [38]. The expression of YBX1,

a transcriptional factor and SERBP1, an anti-apoptotic gene, further support the

notion that these cells were in the early stages of erythrocytic development.

In sum, Hclust-Departure identifies biologically plausible populations from this

complex mixture of cells, establishing equivalent performance to existing scRNA-seq

algorithms. It also identifies additional subtypes. Obviously, other algorithms can be

tuned to fit previously known subpopulations. However, the choice of correct tuning
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parameters for those methods is necessarily heuristic, specific to each data set, and

not necessarily reproducible or robust. By comparison, Hclust-Departure has no

tunable parameters, other than the significance level and neither has Sigclust2.

Hybrid Approach: model departure and Louvain clustering

A key difference between Hclust-Departure and other pipelines is the actual clus-

tering algorithm. We therefore combine the DIPD data representation with the

Louvain algorithm as implemented in Seurat.

To validate this combination, we used a different, very complex and very well stud-

ied data set with known ground truth. These are the Peripheral Blood Mononuclear

Cells (PBMCs) data sets defined by [29]. The Zhengmix8eq data set contains 3,994

cells of eight cell types in equal proportions, some of which are quite distinct and

some very similar (Fig. 7 panel a). Unsupervised clustering using Seurat with log-

normalized transcription using 15 PCs and resolution parameter 0.8 recapitulate the

Fluorescence-Activated Cell Sorting (FACS) labels (Fig. 7 panel b), but miss the

distinction between T helper, T regulatory, and T memory cells. Hclust-Departure

without dimension reduction performs slightly better (Fig. 7 panel c). Table 1 shows

the confusion matrix. We also explored the more advanced normalization method

SCTransform [18]. This method uses the residuals from Negative Binomial regres-

sion with the default parameters maintained for clustering. The results do not differ

from the default normalization and are included in Additional file 3. None of the

pipelines is completely consistent with the FACS labels in identifying subtypes of

T cells. This may be due to the limited accuracy of the algorithms or it may be due

to FACS labels not correctly signifying the underlying biological complexity, as T

cell differentiation can be very fluid. Finally, DIPD-based data representation com-

bined with Louvain clustering performs better than any of the pure pipelines (Fig. 7

panel d). The hybrid method correctly identifies the T cell subsets and subgroups

of monocytes (red cluster). This result suggests that modeling UMI counts by de-

parture from Poissoneity has advantages over other normalization/transformation

methods independent of the particular clustering algorithm.

To further define the performance of the hybrid approach, different parameters

were explored using either DIPD-based representation (D) or log-normalized data

as input. These were (a) the number of principal components (15, 20, 25 or 30)
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and (b) the resolution parameter in the clustering step (0.6, 0.8, 1.0 and 1.2 for

the larger eight cell-type data set Zhengmix8eq; and 0.05, 0.1, 0.2, 0.3, 0.5 and 0.8

for the other two four cell-type data sets Zhengmix4eq and Zhengmix4uneq [29]).

These experiments used the full D matrix or the top 2,000 most variable genes.

Performance is assessed using the Adjusted Rand Index (ARI) [39] and the purity

measure of [40] (Fig. 8). Except for Zhengmix4uneq (Fig. 8, panels b and e), DIPD

matrix D as input outperforms Seurat using normalized counts as input; however,

there are parameter constellations that lead to dramatic performance degradation

independent of the data representation. In sum, DIPD-based data representation D

combined with Louvain clustering outperforms other normalization steps for UMI

data.

Further validation of the hybrid approach

Even though the experiments above point to DIPD-based data representation D

and Louvain clustering as the optimal combination, a direct comparison between

algorithms that use different data representations and have multiple tunable param-

eters is difficult using experimental data sets with possibly unknown subpopulations:

overfitting cannot be decided on experimental data. An alternate approach is sim-

ulation based on theoretical distributions alone. This also is challenging because

many aspects of the deep biological variation in scRNA-seq data are unknown and

beyond current in silico modeling capabilities. These limitations motivate the use

of crafted experiments. Here, carefully chosen perturbations are overlaid onto real

data. Crafted experiments maintain the complexity of the real data, but control the

signal versus noise by considering a range of perturbations from weak to strong. We

performed two different types of crafted experiments.

Variation in library size (total UMI counts per cell) is a driver of non-relevant

variation in scRNA-seq. To explore this issue we artificially magnified the library

size and compared different data representations (Fig. 9 panels a and b). As noted

above, many pipelines use multiplication and scaling to adjust for the library size

effects. This poses a problem for data containing many zeros. This experiment

again used the Zhengmix4eq data. To model library size effects, cells with a large

or small library size were perturbed to be even larger or smaller (see Methods

for details). We compare data representations from DIPD (yellow), log-normalized



Pan et al. Page 13 of 38

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

counts (blue) and SCTransform (green), all using the Louvain algorithm under the

same parameter setting (the number of principal components was set to 15 and

the resolution parameter to 0.2). Note that DIPD-based data representation does

not implement feature selection, but the other methods select the most variable

genes (top 2,000 for log-normalized representation and top 3,000 for SCTransform

by default). As before, ARI and purity are used to quantitate performance, and

both agree. At F < 0.5 (weak signal), all data representations perform similarly. At

F > 0.5 (stronger signal), performance using log-normalized data declines, whereas

SCTransform and model departure remain accurate. These results suggest that log-

normalization as the sole pre-processing step is sensitive to library size effects.

Next, we crafted artificial clusters by perturbing some large count genes from

the homogeneous luminal epithelial cell line data set (defined in [32]). Artificial

clusters were created by adding counts to a sub-matrix of the UMI count data

matrix (top 500 genes with the largest total counts across cells and 250 randomly

chosen cells (from 541 total)). For each entry of that sub-matrix, random counts

from the Poisson distribution with parameter F × λ̃gc were added to the current

UMI count xgc, where λ̃gc comes from the two-way approximation (see Methods).

Small (or large) values of F indicate weak (or strong) signals. These perturbed

cells were regarded as an artificial cluster separated from the remaining cells, where

an accurate identification was expected for increasing values of F . The random

selection was repeated ten times. Again, we used the same parameter settings for

all data representations (15 PCs and a Louvain resolution parameter of 0.2).

Fig. 9 panels c and d show the mean ARI and the mean purity with standard

deviation. Both measures agree. For F < 0.5, none of the data representations dis-

tinguish the perturbed cells. For F > 0.5, DIPD (orange) identifies more perturbed

cells, compared to log-normalization (blue), and SCTransform (green). This may be

due to the feature selection step limiting the sensitivity at small perturbations. For

log-normalized expression, only 27.2% to 45.6% out of the perturbed 500 genes are

in the top 2,000 selected genes. Feature-selection based clustering is not as stable

as including all the genes across different randomly perturbed cells, as indicated

by the larger standard deviations. The SCTransform (green) performs the worst in

this particular experiment. This again seems to be because 36.2% to 45.8% of the

perturbed genes are among the 3,000 (default) selected genes for this method. This
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experiment supports the contention that important, local information may be lost

during the feature selection step.

Discussion

We develop an alternative data representation, DIPD, for scRNA-seq data as well

as a clustering algorithm based on this data representation. DIPD is applicable to

scRNA-seq data that incorporates experimental UMI correction. With an appro-

priate number of latent vectors in the GLM-PCA parameter estimation, the IPD

statistical framework gives reasonable fits for diverse UMI data sets. Departures

from the IPD statistical framework (i.e. DIPD) can be incorporated into existing

scRNA-seq analysis pipelines and give improved overall performance independent

of the particular clustering algorithm.

Working on the scale of probabilities rather than counts offers numerous advan-

tages. First, due to the characteristics of scRNA-seq data (many zeros and low

counts in most matrix entries), working in probability space is a more appropriate

way to represent the underlying data structures. The DIPD-based data matrix, pro-

vides a useful tool to uncover cell heterogeneity from observed counts into a model

departure from the hypothesized Poisson parameter matrix, as input to any sub-

sequent analyses. The large number of zeros in scRNA-seq data, which have been

considered in row or column based analyses to be zero-inflation, is more precisely

viewed as a large number of very small Poisson probabilities. Similarly, the pre-

viously reported over-dispersion is explained by variation in the set of individual

Poisson parameters within the framework (Fig. 1).

Implementing Sigclust2 in clustering provides an explicit hypothesis testing for

each cluster, which avoids parameter tuning. A direct comparison of different data

representations demonstrated that DIPD had an improved performance over con-

ventional log-normalized data (Fig. 7, 8). A hybrid approach combining DIPD with

the Louvain clustering algorithm gave the best performance (Fig. 9). Using all the

data represented as model departure allowed for the detection of weaker signals

compared to feature selection based clustering.

A limitation of this pipeline is computational speed because it uses the full feature

set. Computational speed vs. the number of features to be included in the model
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represents a trade-off of any unsupervised learning approach. It is not specific to

this data representation.

At this point, we have only begun to identify biological scenarios that favor this

data representation over others. It is necessary to explore additional scenarios where

the DIPD and Hclust-Departure show differences compared to other approaches.

This may identify properties of scRNA-seq data beyond over-dispersion and zero

inflation.

The idea of departure based data representation could also be used for other data

types based on other distributions, for example, the Assay of Transposase Accessible

Chromatin sequencing (ATAC-seq) data based on Binomial distributions.

Conclusions

Most of the existing scNRA-seq analysis methods suffer from a too crude aggrega-

tion at either gene or cell level. We proposed shifting the focus from modeling counts

to modeling probabilities and avoided the crude approximations by our IPD sta-

tistical framework. We investigated the validity of this model using some carefully

designed experiments. As a result, we achieved improved cell clustering performance

using a novel data representation based on departures from the estimated Poisson

distributions without prior feature selection or manual optimization of hyperpa-

rameters. The idea of our DIPD as data representation can also be combined with

other clustering methods, such as the Louvain algorithm implemented in Seurat.

This novel data representation is useful in better understanding the mechanism of

scRNA-seq.

Methods

Data Description

The main performance of the Poisson independent framework for data representa-

tion is illustrated using multiple data sets representing different scRNA-seq cate-

gories. These are described in the next subsections. They are in increasing order

of biological complexity: (i) single cell line data, (ii) three cell line mixture data,

(iii) normal human PBMC data, (iv) data from a mouse tissue infected with the

human immunodeficiency virus (HIV). The data represented a variety of technical

platforms.
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Single clonal cell line data

To study a scRNA-seq data set which is as homogeneous (and thus Poisson) as

possible, single cell line experiments were considered. The first data set is on the

experiments of [27]. This data set uses flow-cytometry to place individual cells into

wells of a plate. This approach carefully controls the occurrence of doubletons and

conversely allowed us to artificially create wells containing doubletons. The exper-

iment is based on two cancer cell lines, which were obtained from human Primary

Effusion Lymphoma, called JSC-1 and BCBL-1. These cell lines are clonal and have

been in culture for many years. Based on extensive biological characterization each

culture is homogeneous, and within a cell line each cell is identical.

The overall experimental design is nested, generating different levels of batch

variation. Batch category one represents technical replicates called plates. Cells

within a plate are from the same cell line, collected at the same time and hence are

homogeneous in that sense. Batch category two represents data of experiment or

biological replicates. The full data set contains 10 plates, (1, . . . , 4, 5A, 5B, 6A, 6B,

7, . . . , 10). The data were pre-processed as described in [27]. Specifically, filtering

was done such that each cell had greater than 5,000 total UMI counts and greater

than 1,500 detected cellular transcripts. Only protein coding transcripts that were

detected in more than 0.5% of all cells were retained. The data set used here had a

total of 621 cells and 12,689 genes.

This carefully constructed data enabled us to validate the Poissoneity under dif-

ferent scenarios, i.e. different degrees of batch variation. The data are summarized

in Table 2. For instance, Plates 1 and 2 were from the same cell line but performed

on different dates (biological replicates); Plates 3 and 4 also used the same cell line,

but were performed on the same date (technical replicates). They were expected to

be more similar as technical variation is smaller than biological variation. Data la-

beled Plate 5A and 5B represent cells where the scRNA-seq libraries from the same

cell was sequenced in two independent runs. Thus these were the most similar data

sets. The only variation should be due to randomness from the Poisson distribution.

Plates 6A and 6B were from an entirely different cell line JSC-1, and were expected

to give a radically different expression signature from the BCBL-1 cell line. Plate 8

investigated the impact of doubletons by intentionally putting two cells per well.
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Three cell lines mixture data

This data set was generated from a mixture of three cell lines by 10X Genomics

as in [41] and cleaned by [32]. There are three cell lines in this data set: human

dermal fibroblasts-skin, breast cancer luminal epithelial cell line, and breast cancer

basal-like epithelial cell line. These were mixed at a ratio of 1:3:6. The cell of origin

label for each cell was retained. The data were pre-processed as discussed in [32].

This data set contains 2,609 cells with known labels and 21,247 genes.

PBMC data

This scRNA-seq data was generated using 10X Genomics originally from [42]. Cells

contained in this data are peripheral blood mononuclear cells (PBMC) from Homo

sapiens. The cells were sorted based on cell-surface markers using Fluorescence-

Activated Cell Sorting (FACS). Randomly selected cells from this experiment were

assembled by [29] as test data sets to measure the clustering performance of different

software packages. In particular, three experimental data sets were assembled, each

with different mixture characteristics: Zhengmix4eq (4 cell types of equal propor-

tions including 3,994 cells and 15,568 genes) Zhengmix4uneq (4 cell types of unequal

proportions as 1:2:4:6, including 6,498 cells and 16,443 genes) and Zhengmix8eq (8

cell types of equal proportions including 3,994 cells and 15,716 genes).

Multiple cell lineages data

This data set was based on a study by [28]. This study sampled mouse spleen tissue

and obtained scRNA-seq data sets using the 10X Genomics platform. We used one

of the mice (Sample A5) which is comprised of 1,476 cells and 12,822 genes. Seurat

data cleaning and cell clustering by default parameters were used in the original

report and provided computational cell type labels (more details in [28]).

Existing Methods

We first discuss the GLM-PCA algorithm, which is applied in parameter estimation

for our assessment of the IPD framework. Then we give a brief review of the Seurat

pipeline, for data pre-processing steps and cell clustering as an example for the

state-of-the-art in RNA-seq data analysis.
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GLM-PCA algorithm

GLM-PCA is an algorithm for computing an analog of PCA in the context of

generalized linear models (GLM) (see [25] for details). A typical organization for a

scRNA-seq data set is a matrix of counts, where columns denote cells (indexed by

c = 1, 2, ..., C), and rows denote genes (indexed by g = 1, 2, ..., G). Let xgc denote

one matrix entry, and let nc =
∑

g

xgc denote the total counts for the cell c. The

GLM-PCA calculation using the Poisson distribution treats the counts as a random

variable: Xgc ∼ Poisson(λgc), i.e.

P (Xgc = xgc) =
e−λgcλ

xgc

gc

xgc!
(1)

A useful model for λgc is

log λgc = log nc + αg +

L
∑

l

ξglρcl, (2)

where αg is a gene specific parameter, where ξgl and ρcl are factor scores and

loadings with latent dimension L. The scores and loadings have a similar interpre-

tation as in Euclidean PCA, and capture the biological variability after cell and

gene specific offsets are removed. The relationships between the Poisson and other

count models are considered in [43].

Seurat algorithm

Seurat (Version 3.1.1, [31]) is an R package developed for scRNA-seq data analysis.

It enables users to study the cell-to-cell heterogeneity from transcriptome data.

Seurat also integrates diverse types of single cell data sets (see more details in [23, 44,

31]). At each step in the computation pipeline, there are multiple hyperparameters

to consider. These provide the users with flexibility, but are selected heuristically.

Recommendations for these parameters are arrived at empirically and are varied

depending on the input data set. Here we briefly review the standard workflow as

described in [28].

quality control: Genes with less than three positive counts overall were excluded;

cells where the unique gene counts (the number of detected genes) were above 2500
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or below 200 were excluded; cells with total mitochondrial gene counts greater than

5% of the overall total were excluded.

normalization by cell: The gene expression for each cell (xgc) was divided by

the cell total counts (nc) and this quotient was multiplied by a scale factor of 10,000

(default).

transformation: The natural log transformation was applied.

feature selection: The standardized variance (more details in [31]) was calcu-

lated for each gene, and the top 2,000 (default) genes with the highest cell-to-cell

variation were retained.

scaling: The expression of each gene was scaled to have a mean of 0 and vari-

ance of 1 across cells. A variation of standard scaling includes regularized negative

binomial regression, which is called SCTransform [18].

linear dimension reduction: The data was represented by the first 15 principal

components obtained by Euclidian PCA.

clustering: Cell clustering was done with a graph-based clustering approach using

the Louvain algorithm and visualized using t-SNE or UMAP methods.

Novel Methods

In the following section, we describe the approach for assessment of the validity of

the IPD statistical framework. We propose DIPD as a novel data representation,

which is a measurement of the relative location of that UMI counts with respect to

the independent Poisson distribution at the individual entry level. The cell hetero-

geneity can be better reflected at the scale of continuous possibilities than in the

original scale with excess zeros. Therefore, we further develop a departure-based

cell clustering algorithms to identify cell subpopulations.

Independent Poisson statistical framework

We work with scRNA-seq data with individual matrix entries through an IPD statis-

tical framework, where each matrix entry (xgc) is a UMI count indicating expression

of gene g for cell c. In particular, we model that as a Poisson random variable Xgc,

which is independent over genes and cells. The Poisson probability function is given

in equation (1).
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In this framework, the maximum likelihood estimate of λgc is the UMI count xgc,

which is not useful because of the large amount of natural Poisson variation. This

motivates combining information and one approach is the GLM-PCA algorithm.

The challenge to measuring the goodness-of-fit is that can not be done using only

one data point. We approach this by aggregating matrix entries xgc which have

similar Poisson parameters λgc, i.e. choosing a reasonable number of entries (in this

paper we use 200, which allows assessing the “Poissoneity” without introducing

too much variation in the actual underlying parameters) with estimated Poisson

parameters closest to some given values, and regard the UMI counts from these 200

entries as independent and identically distributed random samples generated from

the Poisson distribution with that parameter. Such nearly homogeneous examples

are considered using both Q-Q plots and hypothesis tests. Specifics for measuring

“Poissoneity” are described in the next sections.

Note that when using formula (2) to get parameter estimates, the choice of latent

dimensions L was important. When L was too small, the model was not flexible

enough to appropriately handle biological effects such as cell cycle. So the Poisson

distribution did not provide a good fit to the 200 entries. When L was too large, the

model was too flexible and was driven by Poisson variation, resulting in overfitting

and thus a different poor description of the data. If our underlying IPD framework

assumption was correct, there will be a choice of L, where we get a good fit of the

Poisson distribution. So the existence of such an L was a validation of our underlying

IPD framework. We approach this by attempting multiple values of L and assessing

if their results were a reasonable fit. This suitable value can be different for different

data sets.

Q-Q plot for small discrete counts

Visualization methods are useful for assessing the “Poissoneity” of scRNA-seq

data.

In general, the Q-Q (Quantile to Quantile) plot provides a useful visualization

for comparing two distributions. These distributions can be either continuous or

discrete, and a common application is to compare a data set represented by its

Cumulative Distribution Function (CDF), with a hypothesized probability distri-
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bution, also represented by its (theoretical) CDF. The Q-Q plot shows the respective

quantiles (the input or argument of the two CDFs) on the vertical and horizontal

axes, corresponding to all the probabilities between 0 and 1. The closeness of the

graph to the 45◦ line indicates the closeness of the two probability distributions.

This is illustrated in panel a in Additional file 4 in the case of two very discrete

distributions (with very low counts of the type commonly encountered in scRNA-

seq data). Using the notation pi = P (X = i) for the distribution P on the vertical

axis, and qi = P (X = i) for the distribution Q on the horizontal axis. Note that pi

and qi can either be values from a theoretical distribution such as the Poisson, or

can represent empirical probabilities derived from count data as proportions. In this

illustration example, define P as p0 = 1/3, p1 = 1/2, p2 = 1/6 and Q as q0 = 2/3

and q1 = 1/3.

Because of the strongly discrete nature of these distributions, the standard Q-Q

plot, shown as black dots in panel a in Additional file 4 is quite hard to visually

interpret. They do reflect the few integer values taken on by these random variables,

but essentially ignore the important probabilities driving the difference between

these distributions.

We provided a more informative version of the Q-Q plot by using the idea of con-

tinuity correction, which provides a useful bridge between continuous and discrete

distributions. For example, this idea was the key to the Normal approximation of

the Binomial. The main idea was to approximate an integer valued discrete distri-

bution, with a continuous probability distribution, as seen in panel b in Additional

file 4. The simple version shown there was a step function, with steps at the half

integers, where the height of each rectangle was the corresponding probability. The

CDF of a continuity corrected discrete distribution was piecewise linear with knots

at the half integers (essentially a linear interpolation), as illustrated in panel c (for

the distribution in panel b). The Q-Q plot comparing respective quantiles of the

two distributions was shown as the blue curve in panel a. Because both CDFs were

piecewise linear, this curve was as well, with knots at the union of the CDF knots.

In the case of checking an empirical CDF against a potential theoretical model

CDF, a useful device for understanding the natural variation in a Q-Q plot was the

Q-Q envelope. This visualization identifies which observed aspects were important

and which were artifacts of sampling variation. This idea modeled the hypothesized
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sampling process by simulating repeated samples of the same size from the candidate

theoretical distribution, and overlaying the envelope of resulting CDFs (also using

the idea of continuity correction). In the case of conventional Q-Q plots (shown as

black dots in panel a Additional file 4), this gave a useless visual impression in low

count discrete settings. But as seen in Results section, the continuity corrected Q-Q

envelopes are very useful.

Over-dispersion test

In the case of the Poisson distribution, an insightful test was the dispersion test. An

important property of the Poisson distribution was the mean equals the variance.

However, many mixtures of Poisson, such as the Negative Binomial, have a variance

which was larger than the mean, called over-dispersion.

Under the null hypothesis that H0 : X ∼ Poisson(λ), we have E(X) = V ar(X) =

λ. The over-dispersion alternative is V ar(X) = (1+α)λ, (α > 0). A test statistic was

derived (more details in [45]) for measuring this, which is asymptotically normal.

This test is conducted using the dispersion test from the R package AER (v1.2-9;

[46])

Zero-inflation test

A much different departure from the Poisson that can arise in certain applications

was zero-inflation, where the number of observed zeros was larger than the expected

number of zeros. We implemented this test with the R package vcdExtra (v0.7-5;

[47]), which was based on a score test proposed by [48] using a test statistic with

an asymptotic Chi-square distribution.

Model departure as data representation

Again, from our IPD framework, each gene expression measurement for each cell

(i.e. each matrix entry) comes from an independent Poisson distribution with pa-

rameter λgc. A näıve starting point for the application of that framework is viewing

cell and gene differences in a purely additive way, i.e. a two-way approximation,

expressed as

λ̃gc = eµ+αg+βc , (3)
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where g indexes gene and c indexes cell. Of course, there is much richer biological

structure beyond this, which we will represent in terms of departures from this

approximation of each matrix entry.

Fitting of a simple two-way approximation The model (3) is fit to the data using

maximum likelihood. In order to make parameter estimation identifiable, restrict

that
∑

g

eαg = G and
∑

c

eβc = C.

There is a closed solution, which is:

µ̂ = log

∑

g,c

xgc

G× C

α̂g = log(

∑

c

xgc

C
)− µ̂

β̂c = log(

∑

g

xgc

G
)− µ̂

(4)

It’s straightforward to prove that the first derivative at parameter estimates de-

fined above are all zero.

We used the above two-way approximation as an initial model, which gave a

first order approximation of both library effects and also gene by gene variation.

Phenomena, such as cell clustering, were effectively captured by studying the de-

parture from that first order approximation. In other words, features of interest

were captured by the difference between the observed UMI counts and the counts

expected from the two-way approximation. In particular, the matrix entries that

showed significant departure played an important role in cell clustering. The key

idea of our departure representation of scRNA-seq data is to replace each count xgc

by a number that reflects how well it is explained by the Poisson distribution from

the simple two-way approximation. Clustering such numbers is effective at finding

structure beyond the two-way fit, such as discriminating cell types. We started by

representing departure in terms of where the given count xgc lay in the Poisson(λ̃gc)

distribution. A näıve approach to this would be to use the UMI count xgc in the

CDF of the Poisson(λ̃gc) distribution, i.e. F (xgc; λ̃gc) = P (X ≤ xgc|λ̃gc). While

this probability was very effective (i.e. probabilities close to zero or close to one indi-

cate a strong departure) for large values of λ̃gc, it was less effective for small values

of λ̃gc, because the probability had a lower bound of P (X = 0|λ̃gc) = e−λ̃gc ≈ 1



Pan et al. Page 24 of 38

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

(as often encountered in scRNA-seq data). This problem was caused by the con-

ventional CDF representation as P (X ≤ x). While it was typically not done, CDFs

could also be represented as P (X < x), which for our purposes goes too far in the

other direction (P (X = 0|λ̃gc) = e−λ̃gc ≈ 0). Hence, we chose to use the average

form of the CDF, i.e.

F̃ (xgc; λ̃gc) =
P (X ≤ xgc|λ̃gc) + P (X < xgc|λ̃gc)

2
.

By doing this, our representation of unexpectedly small UMI counts was nearly 0

and unexpectedly large UMI counts was close to 1.

Another consequence of the generally skewed shape of the Poisson distribution

(at least for small values of λ̃gc) was that these probabilities tend to be quite

asymmetric at the two ends of the distribution. A straightforward device for more

balanced treatment of the departures from the Poisson fit was to take the matrix

entries to be the logit transform of these CDF based probabilities:

D = logit(F̃ (xgc; λ̃gc)) = ln(
F̃ (xgc; λ̃gc)

1− F̃ (xgc; λ̃gc)
)

Since exactly 0 and 1 were not allowed for the logit transformation, set any matrix

entries with F̃ (xgc; λ̃gc) below 10−10 as logit(10−10), and F̃ (xgc; λ̃gc) above (1 −

10−10) as logit(1− 10−10).

The logit transformed data takes on very negative (or positive) values if the UMI

count is much lower (or higher) than expected from the simple two-way approxi-

mation. The collection of cells with such novel data representation can be plugged

into a standard clustering algorithm (in this paper we choose hierarchical clustering

with Euclidean distance and Ward´s linkage).

Crafted experiments For each matrix entry UMI count xgc, we calculated the

perturbed value by generating a random count from the Poisson distribution with

parameter
∣

∣

∣
eµ̂+α̂g+(1+F )×β̂c − λ̃gc

∣

∣

∣
as pgc, where µ̂, α̂g, β̂c and λ̃gc are parameters

defined in the two-way approximation and estimated by equation (4). The value

for F controls the strength of the library size magnification. Then we perturbed

each matrix entry as (xgc + sign(β̂c) × pgc)+, where the subscript of plus denotes

the positive part. This magnified the library size effects as the cells with originally

positive (or negative) cell effect β̂c become even larger (or smaller).
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Cell clustering algorithm

The proposed clustering starts with the DIPD-based matrix computed for the com-

plete data set. Hierarchical clustering using Euclidean distance and Ward´s linkage

is recommended from a top-down viewpoint. At each step, we re-calculated the

two-way approximation again within each subcluster, and the potential for further

splitting is calculated using Sigclust2 [30], a method to assess statistical significance

at each split based on a Monte Carlo simulation procedure. A non-significant result

suggests cells are reasonably homogeneous and may come from the same cell type.

In addition, to avoid over splitting, we further require setting a maximum allowable

number of splitting steps J (default is 10, which leads to at most 210 = 1024 total

number of clusters) and minimal allowable cluster size S (the number of cells in

a cluster allowed for further splitting, default is 10) beforehand. Thus the process

was stopped when any of the conditions was satisfied: (1) the split was no longer

statistically significant; (2) the maximum allowable number of splitting steps was

reached; (3) any current cluster had less than 10 cells. This process was done in

a recursive way. Algorithm 1 and Fig. 4 outline the procedure using hierarchical

clustering in a recursive way based on departure representation.

We do not need to set the number of clusters beforehand. Thinking of the number

of clusters in a multi-scale way as in [32], a coarser scale clustering can be obtained

by stopping the clustering process at any stage in between.
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Algorithm 1: Hierarchical Clustering using DIPD

Result: cluster label for every input cell

Initialize:

maxSplit J (the maximum allowable number of splitting steps, default 10)

split index j = 1

splitResult R (C × J empty matrix, with cells to cluster as rows, split index

as columns)

minSize S (the minimal allowable cluster size, default 10)

complete UMI counts data to cluster dat1

/* iterate over j in a recursive way */

Function:

hclustDepart(datj, j)

Input : UMI counts sub matrix (datj) with cells in a current cluster; split

index j

Output : splitResult R, with rij denoting the cluster label for the cell i at

split step j

1 set Dj to be DIPD-based data matrix calculated from the input UMI count

sub matrix datj

2 apply hierarchical clustering based on Dj using Euclidean distance and

Ward´s linkage

3 use sigclust2 to find p-value (p) for first split

4 if p > 0.05 or j > J or number of cells in current cluster ≤ S then

5 output R [all cells, j] = NA

6 else

7 split Dj into two clusters (D1j , D2j) based on hierarchical clustering

8 set dat1j and dat2j to be corresponding UMI counts matrix of two clusters

9 output R [cells in cluster1, j] = 1; R [cells in cluster2, j] = 2

10 hclustDepart(datj = dat1j, j = j + 1)

11 hclustDepart(datj = dat2j, j = j + 1)

12 end
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Additional file 1.pdf file

A heatmap view of the data representations of a single cell line data set (Plate 3 [27]). Data representations based

on (a) DIPD and (b) Seurat normalized and scaled counts before feature selection. The black colored lines in the

sidebars on the right represent the top 2,000 most variable genes kept by the Seurat pipeline. Visually, both data

representations demonstrate this data set is homogeneous.

Additional file 2.pdf file

A heatmap view of the data representations of a mixture cell lines data set (three mixture cell lines data [32]). Data

representations based on (a) DIPD and (b) Seurat normalized and scaled counts before feature selection. The black

colored lines in the sidebars on the right represent the top 2,000 most variable genes kept by the Seurat pipeline.

Visually, both data representations effectively demonstrate the differentially expressed genes among the three cell

lines. However, highly expressed genes within single cells, as depicted by the bright red spots, may potentially play a

role in clustering but many are filtered out by Seurat.

Additional file 3.pdf file

The UMAP plot visualizing the clustering performance in the Zhengmix8eq data set [29] using Seurat SCTransform

(15 PCs and resolution parameter 0.8). Each color represents an identified cluster. Similar as the clustering results

from Seurat with log-normalized counts, it performs well in identifying the more distinct cell types (NK cells in

green, Monocytes in red and B cells in blue), but fails to distinguish T subtypes.



Pan et al. Page 31 of 38

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Figure 1 The distribution histograms (a, b, c) and Q-Q envelope plots (d, e, f) of raw UMI count

distributions from 75 biologically clonal cells (Plate 3) as defined in section Methods. The gold

bars and lines represent 200 matrix entries with estimated Poisson parameter closest to each λ;

the blue represent the entries from genes whose gene averages are closest to each λ; and the gray

represent the theoretical Poisson distributions. These plots indicate that the IPD statistical

framework fits the individual matrix entries well, while working with the gene averages indicates

the over-dispersion and zero-inflation may occur.

Additional file 4.pdf file

Continuity correction for point mass function (PMF) and Q-Q plot developed for small discrete counts. The black

dots in panel a show all the conventional Q-Q points piled up at a few small integers. PMF for distribution P (blue

shaded area as continuous approximation) is shown in panel b. The CDF for the same distribution P (blue shaded

area as continuous approximation) is shown in panel c. The blue curve in panel a is the corresponding Q-Q plot

comparing two discrete distributions P and Q after continuity correction and linear interpolation. It provides a more

informative way of comparing distributions with small discrete counts.
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Figure 2 The Q-Q envelope plots for different Poisson parameters for the different degrees of

batch variation. The plots indicate that the IPD statistical framework fits the data well, where

most deviations were explained by an inappropriate choice of the number of latent vectors L.

Plates 1, 3, 5A, 5B are biological replicates of the same clonal cell line. Plate 6A is from a

different clonal cell line. Plate 8 has two cells per library. The doublets in Plate 8 required a larger

L = 15 (dark green) than the default L = 10 (light green). The mixture cell lines from Plates 5A

and 6A is better modeled by L = 20 (red) than L = 10 (orange).

Table 1 Confusion Matrix comparing clustering results with FACS labels

Seurat

FACS s0 s1 s2 s3 s4 s5 s6 s7 s8

B 0 0 0 0 418 0 0 81 0

Monocytes 1 5 1 547 2 0 0 3 41

NK 7 6 585 0 1 0 1 0 0

T helper 198 180 2 0 0 0 19 0 1

T memory 59 394 0 0 0 0 47 0 0

Naive Cytotoxic 26 4 0 0 1 367 0 0 0

T naive 472 19 1 0 1 2 3 1 0

T regulatory 120 230 0 0 0 1 147 0 0

Hclust-Departure

FACS h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14

B 417 34 48 0 0 0 0 0 0 0 0 0 0 0

Monocytes 0 0 0 0 0 1 0 7 0 0 3 1 558 30

NK 1 0 0 0 1 0 1 5 0 3 0 589 0 0

T helper 0 0 0 214 12 103 16 52 1 0 0 1 0 1

T memory 0 0 0 80 11 108 257 28 14 1 0 1 0 0

Naive Cytotoxic 1 0 0 135 240 11 7 4 0 0 0 0 0 0

T regulatory 0 0 0 164 4 175 17 127 8 0 0 3 0 0
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Figure 3 A heatmap view of the data representations based on (a) DIPD and (b) Seurat

normalized and scaled counts before feature selection. The orders of cells and genes for both

panels are based on the hierarchical clustering with Euclidean distance and Ward’s linkage using

model departure. The black colored lines in the sidebars on the right represent the top 2,000 most

variable genes kept by the Seurat pipeline. Visually, both data representations effectively

demonstrate the differential expressed genes between the two cell lines. However, highly expressed

genes within single cells, as depicted by the bright red spots, may potentially play a role in

clustering but many are filtered out by Seurat.

Figure 4 The Hclust-Departure cell clustering workflow. Hierarchical clustering is performed using

Euclidean distance and Ward´s linkage in a recursive way.
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Figure 5 The t-SNE (panels a, c) and UMAP (panels b, d) visualizations of A5 sample which

consists of n=1,476 cells from [28]. The top two panels (panels a, b) were based on

Hclust-Departure using model departure as data representation. The bottom two panels (panels c,

d) were labeled by cell types from the Seurat analysis of [28]. The clusters discovered by

Hclust-Departure are consistent with those identified by Seurat. Furthermore, Hclust-Departure

identifies several significant subclusters (namely B-cells, NK cells and erythrocytes).

Table 2 Summary of plates used

Plate Date Cell Line Cells Per Well Cells Per Plate

Plate1 2018-09-04 BCBL1 1 75

Plate2 2018-09-11 BCBL1 1 80

Plate3 2018-09-26 BCBL1 1 75

Plate4 2018-09-26 BCBL1 1 69

Plate5A 2018-09-26 BCBL1 1 71

Plate5B 2018-09-26 BCBL1 1 58

Plate6A 2018-09-30 JSC1 1 71

Plate6B 2018-09-30 JSC1 1 59

Plate8 2018-09-30 BCBL1 2 63
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Figure 6 The volcano plots based on the potential subtypes (depicted in Fig. 5) using differences

of mean departure for each gene. Genes are colored as red if the FDR adjusted p-value (vertical

axis) is less than 0.05 and the absolute mean departure difference (horizontal axis) is larger than 4

(DE genes); orange if the FDR adjusted p-value is less than 0.05 but the mean departure

difference is small; black if the mean departure difference is statistically not significant. Marker

genes from DE genes are further triangle annotated and labeled with gene names. (a) Comparing

plasmacytoid dendritic cells (pDC) and myeloid dendritic cells (mDC) (coral vs. blue in every

panel of Fig. 5); (b) Comparing subclusters within B cells (dark green vs. light green in Fig. 5

panels a and b); (c) Comparing subclusters within NK cells (dark gold vs. light gold in Fig. 5

panels a and b); (d) Comparing subclusters within Erythroid cells (dark gray vs. light gray in

Fig. 5 panels a and b)
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Figure 7 The UMAP plots comparing clustering performance in the Zhengmix8eq data set [29]

using different data representations and clustering methods. Panel a displays the FACS labels we

used as a benchmark to measure clustering performance. Both the Seurat pipeline (panel b) and

our Hclust-Departure pipeline (panel c) correctly identify the distinct cell types but fail to

distinguish the subtypes within the T cells. Panel d uses the DIPD-based data matrix as data

representation combined with Louvain clustering, which is a more direct comparison with panel b

since 15 PCs and a resolution of 0.8 are used in both cases. It improves the original Seurat

clustering performance by better distinguishing T memory cells from T helper/regulatory cells.
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Figure 8 The boxplots comparing clustering performance using ARI and purity in different data

representations. This demonstrates that DIPD-based matrix D as data representation performs

better than the Seurat normalized counts in the Zhengmix4eq (four cell types in equal proportions

(3,994 cells and 15,568 genes), a and d), Zhengmix4uneq (four cell types of unequal proportions

as 1:2:4:6 (6,498 cells and 16,443 genes), b and d), and Zhengmix8eq (eight cell types in equal

proportions, c and f) data sets.
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Figure 9 Comparison of clustering performances using ARI and purity based on different signal

strength F (large F means stronger perturbation) in the Zhengmix4eq data set [29] (panels a and

b) and luminal epithelial cell line data [32] (panels c and d). Panels a and b magnify the library

size effects. The DIPD-based data matrix (orange) as a novel data representation shows a big

improvement over the Seurat log-normalized counts (blue) for larger values of F , and it performs

slightly better than the SCTransform (green). Panels c and d create artificial clusters. The

DIPD-based representation (orange) uses information from nearly the full set of genes, and

performs the best in identifying artificial clusters for relatively small signals. Both Seurat

log-normalized expression (blue) and the SCTransform (green) can lose information during the

feature selection step, and result in poor clustering.
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