
Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 1 of 33

Lack of evidence for increased 
transcriptional noise in aged tissues
Olga Ibañez-Solé1,2†, Alex M Ascensión1,2†, Marcos J Araúzo-Bravo1,3,4,5*, 
Ander Izeta2,6*

1Biodonostia Health Research Institute, Computational Biology and Systems 
Biomedicine Group, Donostia-San Sebastián, Spain; 2Biodonostia Health Research 
Institute, Tissue Engineering group, Donostia-San Sebastián, Spain; 3Biodonostia 
Health Research Institute, Computational Biomedicine Data Analysis Platform, 
Donostia-San Sebastián, Spain; 4CIBER of Frailty and Healthy Aging (CIBERfes), 
Madrid, Spain; 5IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; 
6Tecnun-University of Navarra, Donostia-San Sebastián, Spain

Abstract Aging is often associated with a loss of cell type identity that results in an increase in 
transcriptional noise in aged tissues. If this phenomenon reflects a fundamental property of aging 
remains an open question. Transcriptional changes at the cellular level are best detected by single-
cell RNA sequencing (scRNAseq). However, the diverse computational methods used for the quan-
tification of age-related loss of cellular identity have prevented reaching meaningful conclusions 
by direct comparison of existing scRNAseq datasets. To address these issues we created Decibel, 
a Python toolkit that implements side-to-side four commonly used methods for the quantification 
of age-related transcriptional noise in scRNAseq data. Additionally, we developed Scallop, a novel 
computational method for the quantification of membership of single cells to their assigned cell 
type cluster. Cells with a greater Scallop membership score are transcriptionally more stable. Appli-
cation of these computational tools to seven aging datasets showed large variability between tissues 
and datasets, suggesting that increased transcriptional noise is not a universal hallmark of aging. 
To understand the source of apparent loss of cell type identity associated with aging, we analyzed 
cell type-specific changes in transcriptional noise and the changes in cell type composition of the 
mammalian lung. No robust pattern of cell type-specific transcriptional noise alteration was found 
across aging lung datasets. In contrast, age-associated changes in cell type composition of the lung 
were consistently found, particularly of immune cells. These results suggest that claims of increased 
transcriptional noise of aged tissues should be reformulated.

Editor's evaluation
The authors present an important perspective surrounding a fundamental question of associa-
tions between transcriptional noise and the aging process. They develop new methods to probe 
stochastic gene expression from single-cell sequencing data where their results suggest that asso-
ciations between noise and age can be attributed to alternative metrics such as shifts in cellular 
identity. These methods and analyses provide an important framework to guide the fields of gene 
expression regulation and aging.

Introduction
Concomitant to the large repertoire of known age-associated changes at the cellular level, an increase 
in transcriptional variability is generally assumed to characterize aged cells and tissues (Nikopoulou 

RESEARCH ARTICLE

*For correspondence: 
mararabra@yahoo.co.uk 
(MJA-B); 
ander.izeta@biodonostia.org (AI)
†These authors contributed 
equally to this work

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 22

Received: 18 May 2022
Preprinted: 19 May 2022
Accepted: 23 December 2022
Published: 28 December 2022

Reviewing Editor: Marcus M 
Seldin, University of California, 
Irvine, United States

‍ ‍ Copyright Ibañez-Solé, 
Ascensión et al. This article is 
distributed under the terms 
of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.80380
mailto:mararabra@yahoo.co.uk
mailto:ander.izeta@biodonostia.org
https://doi.org/10.1101/2022.05.18.492432
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 2 of 33

et al., 2019; Uyar et al., 2020; Mendenhall et al., 2021; Vijg, 2021). This phenomenon was first 
described by Vijg and colleagues as an age-related increase in transcriptional noise (Bahar et al., 
2006), which is still the most commonly used term (Warren et al., 2007; Enge et al., 2017; Angelidis 
et al., 2019). Transcriptional noise is here defined as the measured level of variation in gene expres-
sion among cells supposed to be identical (Raser and O’Shea, 2005). Later, similar findings have been 
reported as an increase in identity noise (Salzer et al., 2018), cell-cell heterogeneity (Kimmel et al., 
2019), cell-to-cell variability (Martinez-Jimenez et  al., 2019; Ximerakis et  al., 2019; Hernando-
Herraez et al., 2019), or loss of cellular identity in aged tissues (Solé-Boldo et al., 2020). However, a 
loss of cellular identity does not necessarily concur with an increase in transcriptional noise, and both 
phenomena are thus best studied separately. Additionally, while all these claims have in common the 
notion of cells expressing their core transcriptional program or transcriptomic signature in a loose way, 
there are important methodological differences between the published reports that deserve further 
scrutiny.

Early studies were based on the quantification of the variance associated with the expression of 
a few pre-selected transcripts by real-time PCR, on bulk cell and tissue samples (Bahar et al., 2006; 
Warren et  al., 2007). With the advent of single-cell RNA sequencing (scRNAseq) technologies, 
whole-transcriptome variability on aged tissues was studied at the single-cell level. A pioneering study 
on human pancreas by Quake and colleagues found an age-related increase in transcriptional noise 
specific to pancreatic ‍β‍ cells (Enge et al., 2017). The authors introduced a definition of transcriptional 
noise that was based on whole-transcriptome variability: the ratio between biological and technical 
variation, where the latter was inferred from External RNA Controls Consortium (ERCC) spike-in vari-
ability. As ERCC spike-in controls are not included in every scRNAseq experiment, they proposed two 
alternative methods that were based on the notion of ‘distance to centroid (DTC)’: the greater the 
gene-based distance between cells of the same cell type, the greater the transcriptional noise asso-
ciated with them. One of them measured the Euclidean distance to the cell type mean per individual, 
using the whole transcriptome. The other one measured the Euclidean distance between each cell 
and the tissue mean, using a set of invariant genes. Soon after, loss of identity was reported in aged 

eLife digest The human body contains hundreds of different cell types which vary greatly in 
shape and size despite all sharing the same genetic material. This is because each cell switches on, 
or ‘expresses’, a unique set of genes that gives them a specific identity, such as becoming a nerve or 
a muscle cell.

Recent studies have shown that cells in some tissues tend to lose their identity with age, and 
activate some of the genes that define them less strongly. This results in seemingly identical cells 
expressing the same genes in a more variable way, a phenomenon commonly referred to as noise.

A technique called single-cell RNA sequencing is typically used to measure the activity of genes in 
individual cells, and has been used to study the role of noise in a wide range of aging tissues. However, 
the results of these studies have been analyzed using different computational methods, making it 
difficult to make comparisons between tissues and organisms. This has led to an ongoing debate 
about whether increased noise is a signature feature of aging, and if it is experienced throughout the 
body or restricted to certain cell types.

To overcome this, Ibáñez-Solé, Ascensión et al. developed two new computational tools for 
analyzing noise and changes in cell identity: these were then applied to seven unique sequencing 
datasets which had been collected from various tissues in humans and mice at different ages.

While there were some differences in the level of noise between young and old cells, these changes 
were not consistent across tissues and organisms. In contrast, other features associated with aging 
were consistently found in each of the sequencing datasets.

The role of noise in aging has been gaining increasingly more attention in the scientific literature. 
However, the findings of Ibáñez-Solé, Ascensión et al. suggest that this phenomenon is not a hallmark 
of the aging process, and that the field should focus on other factors that reduce the health of tissues 
and cells as organisms get older. The computational approach they developed could also be used to 
evaluate the role of noise in other contexts, such as certain diseases.

https://doi.org/10.7554/eLife.80380
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murine dermal fibroblasts by measuring the coefficient of variation of the distances between each 
highly variable gene between the two main fibroblast clusters (Salzer et al., 2018). Similar findings 
were published in early activated CD4+ T cells, based on the observation that the fraction of cells that 
expressed the core activation program was lower in old animals (Martinez-Jimenez et al., 2019). A 
study on murine aging lung found an increase in cellular heterogeneity in most (but not all) cell types 
(Angelidis et al., 2019), based on the distance-to-mean method of Enge et al., 2017. Later, a study 
on murine lung, spleen, and kidney corroborated by Euclidean DTC methods an age-related increase 
in cell-to-cell variability, albeit present in some cell types only (Kimmel et al., 2019). In contrast, a 
study in murine aging brain found no increase in transcriptional heterogeneity associated with aging 
(Ximerakis et al., 2019). Overall, these results suggest that the purported age-associated increase in 
transcriptional noise might be restricted to particular cell types or tissues.

Of note, alternative explanations to the variability in the expression of individual genes being 
the basis for increased transcriptional noise do exist. Among others, the lack of balance between 
spliced and unspliced mRNAs (Gupta et al., 2021) and the existence of dysregulated gene regula-
tory networks (Mishra et al., 2021) have been proposed. In fact, Bashan and colleagues developed 
a novel computational tool to measure age-related loss of gene-to-gene transcriptional coordination 
(what they called global coordination level or GCL), and reported a GCL decrease in aging cells across 
diverse organisms and cell types, which was also associated with a high mutational load (Levy et al., 
2020). In a nutshell, these authors suggested that the observations of age-associated increase in cell-
to-cell variability were restricted to specific cell types and tissues but not generalized. Instead, they 
proposed that transcriptional dysregulation occurs at the level of gene-to-gene coordination. Despite 
the numerous attempts at measuring transcriptional noise in aged tissues, several challenges remain: 
(i) there are important differences in between studies with regard to the definition of transcriptional 
noise and the computational methods used to quantify it; (ii) studies focused mostly on single datasets 
of different tissues and cell types, while it is well known that both the inter-tissue and the inter-cellular 
variability might be significant; and (iii) little to no attention was given to the fact that cellular compo-
sition of aged organs shows relevant variability as compared to the young (Nalapareddy et al., 2022).

In the present work, we aimed to systematically measure age-associated transcriptional noise 
across different tissues and species, testing diverse computational methods in parallel. The main 
goals of the study were to substantiate claims of age-associated transcriptional noise increase and 
determine whether it presents a cell type-specific pattern. For this, we took advantage of the large 
number of aging mouse and human scRNAseq datasets that are publicly available and developed two 
computational tools (Decibel and Scallop) to analyze them by focusing on two aspects: age-related 
transcriptional noise and changes in cell type composition.

Results
Decibel: a Python toolkit for transcriptional noise quantification
We developed a Python toolkit for the quantification of transcriptional noise in scRNAseq, where 
we implemented the four main families of methods that have been used in the literature to measure 
increase in transcriptional noise associated with aging (Figure 1A). The first method, which we refer 
to as biological variation over technical variation, takes the Pearson’s correlation distance between 
each cell and the mean expression vector of its corresponding cell type for that individual, using the 
whole transcriptome in the calculation. It then divides this correlation by the ERCC-based distance 
between each cell and its cell type mean. This method can only be used when ERCC spike-ins have 
been included in the experimental design. The second method computes the gene-based Euclidean 
distance between each cell’s expression vector and its cell type mean expression vector per donor/
individual. The third one computes the Euclidean distance between each cell and the average gene 
expression across cell types, using a set of invariant genes. Invariant genes are selected by splitting 
the whole transcriptome into 10 equally sized bins according to their mean expression. Then, the two 
bins with the most extreme expression values are discarded, and the 10% with the highest coefficient 
of variation within each of the remaining bins are selected. The fourth one is the GCL. Its original 
formulation takes a dataset containing a single cell type, and it randomly splits its transcriptome into 
two halves, then computes the dependency between them as the batch-corrected distance correla-
tion (Levy et al., 2020). The GCL is obtained by averaging this dependency over k iterations. We 

https://doi.org/10.7554/eLife.80380
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implemented an extension of this method so that it could be used in datasets containing several cell 
types, by computing the GCL averaged over 50 iterations for each cell type of the same individual. 
Therefore, our implementation outputs a GCL score per cell type and individual rather than a tran-
scriptional variability measure per cell. The Python implementation of these four methods is available 
at https://gitlab.com/olgaibanez/decibel, (copy archived at swh:1:rev:8749a4e1ae05edcebb642f-
d7358a78b8468c511f; Ibañez-Solé, 2022a).

Scallop membership score accurately identifies transcriptionally noisy 
cells
In addition to implementing existing methods, we developed Scallop, a novel tool for the quanti-
fication of the degree of loss of cell type identity in scRNAseq data (Figure 1B). Scallop measures 
the membership of each cell to a particular cluster by iteratively running a clustering algorithm on 
randomly selected subsets of cells and computing the fraction of iterations a cell was assigned to 

Figure 1. Overview of computational methods for the quantification of transcriptional noise and example workflow in Scallop. (A) The methods 
implemented in Decibel Python toolkit are summarized through diagrams depicting how they measure transcriptional noise. (1) Biological variation 
(whole transcriptome-based Pearson’s correlation distance between each cell and the mean expression vector), divided by the technical variation 
(External RNA Controls Consortium [ERCC] spike-in based distance; Enge et al., 2017). (2) Mean whole transcriptome-based Euclidean distance to cell 
type average (Enge et al., 2017). (3) Mean invariant gene-based Euclidean distance to tissue average (Enge et al., 2017). (4) GCL (Levy et al., 2020) 
per cell type. Stars represent the ‘center’ of each cluster (average gene expression for each cell type). (B) Scallop: example workflow on a 16 cell dataset. 
A reference clustering solution (Ref) is obtained by running a community detection algorithm (default: Leiden) on the whole dataset. Three clusters 
are obtained: A (blue), B (green), and C (orange). Then, a subset of cells is randomly selected and subjected to unsupervised clustering n_trials = 10 
times (cells not selected in each bootstrap iteration are shown in gray). The cluster labels across bootstrap iterations are harmonized by mapping the 
cluster labels with the greatest overlap, using the Hungarian method (Munkres, 1957). A consensus clustering solution is derived by selecting the most 
frequently assigned cluster label per cell, and the membership score is computed as the frequency with which the consensus label was assigned to each 
cell. Scallop measures noise as a 1 ‍ − membership value assigned to each cell.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Performance of Scallop and two distance-to-centroid methods on four artificial datasets with increasing transcriptional noise.

Figure supplement 2. Ability of Scallop and a distance-to-centroid method to detect noisy cells within cell type clusters.

Figure supplement 3. Effect of cellular composition on the performance of Scallop.

Figure supplement 4. Effect of dataset size on the performance of Scallop.

Figure supplement 5. Effect of the number of genes on the performance of Scallop.

Figure supplement 6. Effect of marker expression on the performance of Scallop.

Figure supplement 7. Performance of Scallop in comparison to pre-existing methods for the quantification of transcriptional noise.

Figure supplement 8. Scallop robustness in relation to input parameters.

Figure supplement 9. Stable cells as identified with Scallop are more representative of the cell type than unstable cells.

https://doi.org/10.7554/eLife.80380
https://gitlab.com/olgaibanez/decibel
https://archive.softwareheritage.org/swh:1:dir:5a3db01455f08debe4ef4d40f012aae771f33880;origin=https://gitlab.com/olgaibanez/decibel;visit=swh:1:snp:560d3d33374bcc9bf213ea4187048c8e99c3f48e;anchor=swh:1:rev:8749a4e1ae05edcebb642fd7358a78b8468c511f
https://archive.softwareheritage.org/swh:1:dir:5a3db01455f08debe4ef4d40f012aae771f33880;origin=https://gitlab.com/olgaibanez/decibel;visit=swh:1:snp:560d3d33374bcc9bf213ea4187048c8e99c3f48e;anchor=swh:1:rev:8749a4e1ae05edcebb642fd7358a78b8468c511f
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a particular cluster. Thus, cluster membership takes values between 0 and 1. Scallop relies on the 
assumption that the more consistently a cell is assigned to a particular cluster across bootstrap iter-
ations, the greater its transcriptional stability. Conversely, a cell being assigned to different clusters 
across iterations is indicative of a greater transcriptional variation. Therefore, we quantify loss of cell 
type identity as 1 ‍  − membership. A detailed description of the three steps of the method (boot-
strapping, cluster relabeling, and computation of the membership score) is provided in the Scallop 
subsection in the Methods.

In order to characterize and validate our method for transcriptional noise quantification, we 
conducted three types of analyses. First, we used artificially generated datasets containing various 
degrees of transcriptional noise to compare the performance of Scallop and DTC methods side by 
side, regarding their ability to measure transcriptional noise and detect noisy cells within cell types. 
Next, we ran simulations using artificial datasets in order to study the effect of a number of dataset 
features on the performance of Scallop: cellular composition, dataset size, number of genes, and 
marker expression. Finally, we graphically evaluated the output of Scallop on a dataset of human T 
cells, we analyzed its robustness to its input parameters, and we studied the relationship between 
membership and robust marker expression, using the PBMC 3 K dataset from 10× Genomics.

We compared the output of Scallop and two DTC methods (the whole transcriptome-based 
Euclidean distance to average cell type expression and the invariant gene-based Euclidean distance 
to average tissue expression) on four artificially generated datasets containing various levels of tran-
scriptional noise. The analysis showed that Scallop, unlike DTC methods, was able to discern between 
the core transcriptionally stable cells within each cell type cluster from the more noisy cells that lie in 
between clusters (see Figure 1—figure supplement 1). We then compared one of the DTC methods 
to Scallop regarding their ability to detect noisy cells within each of the cell types, by plotting the top 
10% noisiest and top 10% most stable cells (see Figure 1—figure supplement 2A). Analyzing the 
distribution of noise values for each cell type separately revealed that Scallop can distinguish between 
clusters that mainly consist of transcriptionally stable cells from noisier clusters that do not have such 
a distinct transcriptional signature (Figure 1—figure supplement 2B).

Next, we ran a series of simulations on artificially generated datasets to evaluate the performance 
of Scallop in the presence of different levels of class imbalance, dataset size, number of genes, and 
different degrees of expression of cell type markers. Our analysis showed that Scallop was remarkably 
robust to changes in cellular composition (see Figure 1—figure supplement 3). Both the average 
percentage of noise and the distribution remained unchanged for a wide range of class imbalance 
degrees (IDs). Similarly, altering the dataset size (number of cells) and the number of genes of an arti-
ficial dataset did not cause any major changes on the transcriptional noise values attributed to each 
cell type (see Figure 1—figure supplements 4 and 5). Additionally, we conducted an analysis where 
we identified the 10 most differentially expressed gene (DEG) markers for a cell type and measured 
the transcriptional noise associated with that cell type as we removed the expression of those genes 
from the dataset (Figure 1—figure supplement 5). Transcriptional noise steadily increased as we 
removed the effect of the top marker genes that defined the cell type under study (see Figure 1—
figure supplement 5B). This experiment provides further evidence on how strong marker expression 
is related to robust cell type identity and how the lack of it results in transcriptional noise.

We extended the validation of our method to biological datasets: we compared the output of 
Scallop to the transcriptional noise measured using the methods implemented in Decibel on 8278 
human T cells drawn from the Peripheral Blood Mononuclear Cell (PBMC) 20 K dataset from 10× 
Genomics. First, clustering revealed three main T cell subtypes, which we annotated according to 
their expression of CD4 and CD8 markers (Figure 1—figure supplement 7A). Then, we measured 
transcriptional variability and gene coordination level using Decibel and inspected the distribution 
of variability scores over the uniform manifold approximation and projection (UMAP) plots (McInnes 
et  al., 2018; Figure  1—figure supplement 1Figure  1—figure supplement 7B). Unlike DTC 
methods, Scallop detected transcriptionally noisy cells that lie in between transcriptionally stable T 
cell subtypes on the UMAP plot. GCL yielded different coordination levels for each T cell subtype, but 
the method does not allow for comparisons between individual cells, as it outputs a single score per 
cell type. In addition, we plotted the 10% most transcriptionally stable and unstable cells according 
to the Euclidean distance to the cell type mean and Scallop methods (Figure  1—figure supple-
ment 7C). These analyses suggested that Scallop’s membership score outperforms DTC methods at 

https://doi.org/10.7554/eLife.80380
https://www.10xgenomics.com/resources/datasets/20-k-human-pbm-cs-3-ht-v-3-1-chromium-x-3-1-high-6-1-0


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 6 of 33

discriminating between noisy cells lying in between clusters and more transcriptionally robust cells 
constituting the core of T cell subtypes.

Next, we analyzed Scallop’s robustness in response to input parameters, namely, the number of 
bootstrap iterations and the fraction of cells used in each iteration. We ran Scallop on five indepen-
dent scRNAseq datasets with different size and cluster composition (see Appendix 1) and studied 
the convergence of Scallop membership scores for a wide range of values (Figure 1—figure supple-
ment 8). The median correlation distance between membership scores decreased as we increased 
the number of bootstrap iterations (n_trials) and the fraction of cells used in each iteration (frac_
cells). We concluded that Scallop’s output is robust to changes in its input parameter values, the 
results suggesting that frac_cells >0.8 and n_trials >30 are appropriate parameter values for 
most datasets (Figure 1—figure supplement 8).

Finally, we studied the relationship between Scallop membership score and robust gene marker 
expression, by comparing the statistical significance of the output of differential expression analysis 
between cell type clusters, conducted on stable and unstable cells. For this, we analyzed six cell types 
and subtypes (CD4 and CD8 T cells, CD14 and FCGR3A monocytes, dendritic cells, and natural killer 
[NK] cells) from the PBMC 3 K dataset from 10× Genomics. Cells with a higher Scallop membership to 
their cluster differentially expressed cell type-specific markers with greater statistical significance than 
low-membership cells (Figure 1—figure supplement 9). Overall, these results showed that Scallop 
membership is related to a more robust expression of gene markers defining cell types than other 
existing methods.

Increased transcriptional noise is not a universal hallmark of aging
To determine if aging is associated with a generalized increase in transcriptional noise at the tissue 
level, we used Scallop to compare the average degree of membership of young and old cells to their 
cell type cluster in scRNAseq datasets of various tissues (Figure 2). For the initial analysis, we selected 
seven datasets where transcriptional noise had already been measured using different methods and 
with differing outcomes. We provide a summary of the main characteristics of each dataset, as well as 
the findings regarding transcriptional noise obtained in each of the original studies, whether changes 
in transcriptional noise were restricted to particular cell types and the computational method used 
to measure noise (see Appendix 2). The age and cell type composition of the final datasets used in 
our study are shown in Figure 2—figure supplement 1, and the samples included in the datasets as 
well as the inclusion criteria are provided in Appendix 3 . Additionally, the methods implemented in 
Decibel to compute loss of identity were run in parallel as a control (Figure 2—figure supplement 
2). When measuring the Scallop membership score of individual young and old cells to their cell type 
clusters, the results were inconsistent. Differences between age groups were found in some data-
sets, but the directionality of the change was not conserved across datasets, neither in the average 
1 ‍ − membership score nor in the percentage of noisy cells in the young and the old fraction of each 
dataset. For most datasets (Angelidis et al., 2019; Ximerakis et al., 2019; Kimmel et al., 2019; 
Martinez-Jimenez et al., 2019), no significant change in mean transcriptional noise was found. Two 
datasets (Enge et al., 2017; Salzer et al., 2018) showed an increase in mean membership associated 
with aging, although we observed the interquartile range of noise values to be very similar between 
young and old individuals. In one of the datasets (Solé-Boldo et al., 2020), cells showed decreased 
transcriptional noise with aging. Of note, similar inconsistent results were found when using the pre-
existing noise-measuring methods as compiled in Decibel, even when applying different methods 
to the exact same dataset (Figure 2—figure supplement 2). Overall, these results indicated that 
a generalized increase in transcriptional noise or a loss of cellular identity is not universal hallmark 
of aging, at least at the tissue level. However, the possibility that transcriptional noise increased in 
specific cell types was still unexplored by these analyses.

The murine aging lung shows no consistent pattern of transcriptional 
noise at the cell type level and is instead characterized by reproducible 
alterations in immune cell composition
Do specific cell types become noisier as they age? In order to answer this question, we focused on a 
single tissue and conducted an in-depth analysis of transcriptional noise at the cell type level. For this, 
we selected the murine aging lung because of the relative abundance of available datasets in which 

https://doi.org/10.7554/eLife.80380
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Figure 2. No consistent increase in transcriptional noise detected in seven single-cell RNA sequencing (scRNASeq) datasets of aging at the tissue level. 
The graphs show the amount of transcriptional noise, computed as 1 - membership to cell type clusters, in the young and old age groups of seven 
scRNAseq datasets of different tissues. For each dataset, the distribution of transcriptional noise values is shown as a stripplot over a boxplot, where the 
whiskers represent 1.5 times the interquartile range. Next to them the proportions of stable and noisy cells (noise ≥0.2) per age group are shown (purple 
bars = stable cells, pink bars = noisy cells). At the bottom right panel, the percentage of noisy cells with a transcriptional noise over a cutoff of 0.2 is 
plotted against the cutoff. Each colored line represents a different dataset.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Composition of the seven single-cell RNA sequencing datasets of aging used in the human aging lung analysis.

Figure supplement 2. Measurements of transcriptional noise on seven single-cell RNA sequencing datasets of aging using computational methods 
implemented in Decibel.

https://doi.org/10.7554/eLife.80380
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authors had reported an age-associated increase in transcriptional noise, yet restricted to particular 
cell types: Angelidis et al., 2019; Kimmel et al., 2019; and the Tabula Muris Senis (TMS) lung droplet 
and FACS datasets (Almanzar et al., 2020) (see Appendix 5—figure 1). In each dataset, transcrip-
tional noise was measured as 1 ‍ − membership to cell type clusters in the young and old fractions, 
and the differences in median noise between the old and the young fraction for each of the existing 
31 lung cell types and subtypes were calculated (Figure 3). Since changes in the gene expression 
of tissues can also be caused by altered cell type composition (Trapnell, 2015), we estimated the 
relative abundances of the 31 cell types in the young and old fraction of each dataset and measured 
the effect of age by fitting generalized linear models (GLM) to cell type composition data of the four 
datasets, using each mouse as a biological replicate (Figure 3—figure supplement 1). By plotting the 
age-related cell type enrichment together with the cell-to-cell transcriptional variability in each of the 
datasets, we obtained a comprehensive map of cell type enrichment and transcriptional noise associ-
ated with aging at the cell-identity level (Figure 3A). In this analysis, the direction and magnitude of 
changes in transcriptional noise varied across cell types. For instance, club cells (a bronchiolar exocrine 
cell type) were detected in sufficient numbers in three out of four datasets, their median membership 
score consistently decreasing 10–17% (which showed up as a moderate increase in transcriptional 
noise in Figure 3A; bubble #22). Similarly, lung interstitial fibroblasts’ transcriptional noise appeared 
to increase with age, although with a larger range of membership scores (3–17%; bubble #24). In 
both cases, the cell type abundance was not affected by aging. In contrast, alveolar macrophages 
showed a decrease in age-associated transcriptional noise (5–12% increase in median membership; 
bubble #10). Finally, several cell identities appeared not to change significantly with regard to their 
transcriptional noise related to aging. That was clearly the case for capillary endothelial cells (bubble 
#9) and plasma cells (bubble #5). Vascular endothelial cells (bubble #6) showed less than 2% of change 
in noise in three out of four datasets but increased up to 8% in one dataset. Therefore, and contrary 
to expectation, quantitative analysis of age-associated transcriptional noise did not show a consistent 
pattern across diverse lung cell types in the four available datasets.

In contrast, the cell abundance analysis did reveal a strikingly consistent enrichment of immune cell 
types (lymphocytes in particular) across all datasets in old samples, indicative of immune cell infiltra-
tion in the old tissue. In particular, plasma cells (bubble #5) showed highly consistent enrichment in old 
mice, with an old/young odds ratio (OR) of 3 in the Kimmel dataset (p-value=1.1×10-5) and of 9.3 in 
the Angelidis dataset (p-value=6.5×10-21). The ORs for the two TMS datasets were most likely overes-
timated due to low cell numbers (only 9 and 22 old plasma cells were detected in the TMS datasets). 
The more abundant B cells (bubble #4) were also significantly enriched in 3/4 datasets (Angelidis: OR 
= 4.4, p-value=2.5×10-69; Kimmel: OR = 1.2, p-value=6.3×10-8; TMS FACS: OR = 2.0, p-value=8.9×10-

6). Other immune cell types such as monocytes, macrophages, and dendritic cells also appeared to be 
enriched in all datasets. This prompted us to further investigate the basis for the apparent immune 
cell enrichment and its potential relationship to increased transcriptional heterogeneity in the old 
age. In a qualitative approach to look for consistent patterns across datasets, we ranked cell identi-
ties according to their age-related increase in noise and enrichment (Figure 3—figure supplement 
2). While most cell types were evenly distributed along the transcriptional noise ranking, this repre-
sentation provided a visible distinction between immune and non-immune cell types regarding their 
age-related enrichment, with nearly all immune cell types appearing on top of the enrichment ranking. 
For instance, plasma cells (Figure 3—figure supplement 2, #5) were the third most enriched cell 
type in the Angelidis dataset and appeared on the top position in the rest of the datasets. Classical 
monocytes (#13) were found within the top 4 most enriched in 3/4 datasets. Interestingly, NK cells 
(#2) were the only underrepresented lymphocytes in old mice and ranked consistently in the least 
enriched positions among immune cells. Conversely, parenchymal cell types such as goblet cells, club 
cells, and ciliated cells consistently appeared at the bottom of the enrichment ranking, indicating 
that their proportion diminished with increased immune cell infiltration in the organ or, alternatively, 
loss of parenchymal cells associated with the old age. Endothelial cells were more evenly distributed 
along the ranking and thus did not show a clearly discernible age-associated enrichment or loss. 
Finally, we separated the lung cells into immune and non-immune cell categories and represented 
transcriptional noise and cell type enrichment values on a heatmap (Figure 3B). As clearly seen in this 
representation, the transcriptional noise increase associated with aging was extremely variable across 
cell identities and not always consistent across datasets (a comparison between these results and the 

https://doi.org/10.7554/eLife.80380
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Figure 3. Lack of evidence for an increase in transcriptional noise of the murine aging lung and detection of an enrichment in immune cells. (A) Bubble 
chart of transcriptional noise and cell type enrichment (old/young odds ratio [OR]) of 31 murine lung cell identities. The age-related change in 
transcriptional noise (horizontal axis) is computed by Scallop as the decrease in median membership score per cell identity between young and old 
cells. The enrichment of each cell type in old samples with respect to their young counterpart is represented as the old/young OR (vertical axis). The 

Figure 3 continued on next page
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results reported by Angelidis et al., 2019 and Kimmel et al., 2019 is provided in Figure 3—figure 
supplement 3). In contrast, the immune vs non-immune cell distinction alone explained the behavior 
of most cells with respect to their relative abundance with very few exceptions, namely NK cells and 
alveolar macrophages.

Changes in the abundance of the immune and endothelial cell 
repertoires characterize the human aging lung
Our analysis of age-related cell type enrichment and increase in transcriptional noise in the murine 
lung highlighted the importance of the changes associated with the relative abundance of cell types 
that conform the aging lung. To test if this was specific of murine lungs or it could be a more gener-
alized phenomenon, we conducted similar analyses on two large scRNAseq datasets of the aging 
human lungs (15,852 cells from 9 donors from the Raredon et al., 2019 dataset and 15,048 cells from 
2 donors of the human lung cell atlas (HLCA) dataset by Travaglini et al., 2020). We harmonized cell 
type labels between datasets by projecting the HLCA labels onto the Raredon dataset (Figure 4—
figure supplement 1). Then, we calculated the difference in mean membership score between old 
and young cells for each cell type in the two datasets, together with the cell type enrichment using 
the GLM method as described earlier (Figure 4). In general, and similar to what we had previously 
observed in the murine aging lung, we found a lack of consistency between the two datasets regarding 
transcriptional noise associated with aging of specific lung cell types. However, we did observe some 
conserved changes in cell type composition. Particularly, many immune cell types were enriched in 
older donors, as in the murine aging lung. Plasma cells were significantly enriched in the Raredon 
dataset (OR = 2.6, p-values = 1.9e−6) and enriched, albeit not significantly, in the HLCA dataset (OR 
= 3.5e−11, p-value = 1). The latter result was most probably due to lack of statistical power, as the 
dataset only consists of two donors. Interestingly, alveolar macrophages were enriched (rather than 
depleted as in the murine aging lung) in both human aging lung datasets (OR = 1.2, p-value = 3.61e−5 
in Raredon; OR = 2.8, p-value = 1.54e−261 in HLCA). Several endothelial cell types were significantly 
depleted in the two human aging lung datasets. Vein endothelial cells (OR = 0.65, p-value = 7.7e−5 
in Raredon; OR = 0.58, p-value = 1.9e−9 in HLCA), capillary endothelial cells (OR = 0.81, p-value = 
3.4e−2 in Raredon; OR = 0.3, p-value = 3.5e−141 in HLCA), endothelial cells of lymphatic vessels (OR 
= 0.51, p-value = 1.9e−9 in HLCA). These results indicated that aged human lungs present reduced 
vascularization and significant immune cell infiltrates as compared to the young. Even though the 
evidence for changes in tissue composition is based on a single tissue, we hypothesize that these facts 
may have influenced previous analyses of transcriptional noise associated with aging.

Distance-to-centroid methods detect transcriptionally stable cell 
subtypes as transcriptional noise
A relevant open question is what was the source of apparent transcriptional noise in previous studies 
that were based on DTC methods. Since we found important changes in the community of human 
alveolar macrophages in the HLCA dataset, we conducted an in-depth analysis on that cell type 
that revealed four distinct alveolar macrophage communities that emerge with aging from a single 
transcriptionally homogeneous cluster (see Figure  5—figure supplement 1). The four aged alve-
olar macrophage subclusters present a markedly different expression of genes coding for surfac-
tant proteins (SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD), i.e., they show changes consistent with 

area of the bubbles represents the expected proportion of each cell type in the whole dataset according to the binomial generalized linear model fitted 
for that dataset. (B) Immune cell type enrichment but not age-associated increase in transcriptional noise, is consistently detected in old mice lungs. The 
increase in transcriptional noise associated with aging (left) and the cell type enrichment (right) are shown for several lung cell identities classified on the 
left as immune and non-immune. Cell identities present in at least three out of the four studied datasets are shown, and the age-related difference in 
transcriptional noise of missing cell identities is imputed from the remaining three measurements (mean difference across datasets).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Composition of the four single-cell RNA sequencing datasets of the murine aging lung used in this figure.

Figure supplement 2. Qualitative ranking of murine aging lung cell types according to transcriptional noise and cell type enrichment.

Figure supplement 3. Comparison of the originally reported cell type-associated increase in transcriptional noise with the results obtained with Scallop.

Figure 3 continued

https://doi.org/10.7554/eLife.80380
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Figure 4. Human aging lungs show no increase in transcriptional noise but consistent depletion and enrichment of specific endothelial and immune 
cell types. The increase in transcriptional noise associated with aging (Noise, left) and the cell type enrichment (Enrichment, right) values are shown for 
30 human lung cell identities as detected in the human lung cell atlas (HLCA) and Raredon datasets (Raredon et al., 2019; Travaglini et al., 2020). 
For each cell type, its age-related increase in noise (difference in 1 ‍ − membership between old and young individuals per cell type) and the old/young 
odds ratio (OR) are shown. Only cell types whose enrichment/depletion is statistically significant in at least one of the datasets are shown, and the ORs 
associated with a p-value >0.01 are shown as a triangle. The color-bar for the enrichment is shown in a logarithmic scale.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Composition of the two single-cell RNA sequencing datasets of the human aging lung used in this figure.

https://doi.org/10.7554/eLife.80380
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alternative fate determination. Deregulated surfactant protein expression is connected to the age-
related functional decline of human lungs. In fact, mutations in the gene coding for surfactant protein 
C (SFTPC) and in the MUC5B promoter region are linked to pulmonary fibrosis, but the effects of 
these mutations are usually not observed until late in life (around 60–70 years old), because age-
related decline in proteostasis is needed for aggregation prone or misfolded proteins to actually 
cause damage (Schneider et  al., 2021). Interestingly, we measured the age-associated transcrip-
tional noise in the alveolar macrophage community using a DTC method (Euclidean distance to the 
cell type mean) and Scallop, and observed that only the latter algorithm could accurately detect the 
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Figure 5. Euclidean distance-to-centroid methods are unable to distinguish bona fide transcriptional noise from alternative cell fate specification. 
(A) An increasing number of alveolar macrophage subclusters (as obtained with Leiden) are detected in three donors (aged 46, 51, and 75 years) 
from the Travaglini et al., 2020 (human lung cell atlas) dataset. (B–C) The new cell clusters are characterized by differential surfactant protein gene 
expression levels, as clearly seen on the uniform manifold approximation and projection (B) and dotplot (C) representations. (D–E) Transcriptional noise 
measurements, using the Euclidean distance to cell type mean (D) and 1 ‍ − membership using Scallop (E), demonstrate that only the latter method is 
able to distinguish bona fide transcriptional noise from the formation of new clusters that are transcriptionally stable.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Expression of surfactant protein genes by human alveolar macrophages.

Figure supplement 2. Alveolar macrophages are the most affected by aging.

https://doi.org/10.7554/eLife.80380
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emergence of distinct and transcriptionally stable alveolar macrophage subpopulations, whereas the 
DTC method would interpret this specification of alternative cell fates as a single macrophage popu-
lation undergoing loss of identity (Figure 5).

Additionally, a deeper analysis of the pancreatic β-cells from the human aging pancreas dataset 
(Enge et al., 2017) revealed that the transcriptional stability attributed to young cells might in fact 
be a consequence of the distinct transcriptional profile of the cells from one of the two donors that 
constitute the young cohort (see Figure  5—figure supplement 2). According to some methods 
(ERCC-based and euc_dist_invar), the cells from the 21-year-old patient present lower transcriptional 
noise than the rest of the patients. But this lower transcriptional noise appears to be restricted to one 
donor (the 21-year-old donor). In fact, the other young donor (22 years old) presents transcriptional 
noise values that are similar to those of the old-cohort donors (38–54 years old). Moreover, the insulin 
expression level of the 21-year-old donor seems to be substantially different to the rest of the donors. 
We hypothesize that ERCC-based and DTC methods yielded low transcriptional noise measurements 
for those cells due to their distinct transcriptional profile (possibly unrelated to aging), which in turn 
resulted in a significant difference between the young and the old cohorts regarding transcriptional 
noise. We show that Scallop did not detect noise associated with aging for this set of pancreatic 
‍beta‍-cells.

Discussion
Mechanistically, it is not clear if aging is a tightly regulated process or may be the result of passive 
phenomena of stochastic nature (Kirkwood and Melov, 2011; Schmeer et al., 2019; Gladyshev, 
2016; da Costa et al., 2016). In the absence of further mechanistic insight, aging is characterized by 
a series of phenotypic changes at the cellular and tissue levels, such as genomic instability, epigen-
etic alterations, chronic low level inflammation (inflammaging), immunosenescence, and impaired 
regeneration (López-Otín et al., 2013; Gems and de Magalhães, 2021). In addition, an increase 
in transcriptional noise has been observed in some aged tissues and cell types (Enge et al., 2017; 
Martinez-Jimenez et al., 2019; Angelidis et al., 2019; Kimmel et al., 2019). Transcriptional noise 
could be related to genomic instability (Vijg, 2021), epigenetic deregulation (Lu et al., 2020; Oliviero 
et al., 2022), or loss of proteostasis (Li et al., 2020), all established hallmarks of aging. Some authors 
consider transcriptional noise to be a hallmark of aging in and of itself (Mendenhall et al., 2021).

In any case, the origin of transcriptional noise is unclear, as it could arise from many different 
sources. Most importantly, it is not possible to distinguish between intrinsic and extrinsic noise from 
a snapshot of cellular states, i.e., one cannot tell whether the observed differences between cells in 
a single-cell RNA experiment reflect time-dependent variations in gene expression or differences 
between cells across a population (Ham et al., 2021). Interestingly, recent work by Liu et al., 2017 
measuring intrinsic noise in S. cerevisiae showed that aging is associated with a steady decrease in 
noise, with a sudden increase in soon-to-die cells. They proposed that noise decreasing in normal 
aging was due to increased rates in chromatin state transitions, and showed that disrupting chromatin 
structure at the gene promoter was sufficient to change this course. Another longitudinal study found 
an increase in extrinsic noise and a lack of change in intrinsic noise in diploid yeast (Sarnoski et al., 
2018).

Since aging is multifactorial, and mutational load most likely leads to clonal expansion of aberrant 
cells that accumulate throughout the lifetime of the individual, other authors suggest that aging traits 
may be associated with cell type imbalance in aged organs (Cagan et  al., 2022). Another recent 
hypothesis is inter-tissue convergence through age-associated loss of specialization (Izgi et al., 2022). 
Our results suggest that transcriptional noise is not a bona fide hallmark of aging. Instead, we posit 
that previous analyses of noise in aging scRNAseq datasets have been confounded by a number 
of factors, including both computational methods used for analysis as well as other biology-driven 
sources of variability.

In this work, we made a systematic comparison of the most important families of methods 
that have been used to quantify age-related transcriptional noise through the implementation of 
Decibel, a novel Python toolkit. Since we were not convinced of the utility of these methods to 
determine bona fide transcriptional noise, we developed a novel method and applied it to a wide 
array of tissues. Our proposed tool, Scallop, presents some advantages over existing methods: it 
does not require neither ERCC spike-ins nor cell type labels. In addition, it provides information 

https://doi.org/10.7554/eLife.80380
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that is complementary to the GCL, as it yields a cell-wise measurement of transcriptional noise that 
enables us to compare between stable and unstable cells within the same cluster or cell type. Most 
importantly, Scallop measures transcriptional noise by membership to cell type-specific clusters 
which is a re-definition of the original formulation of noise by Raser and O’Shea: measurable varia-
tion among cells that should share the same transcriptome. This is in stark contrast to measurements 
of noise including other phenomena (as demonstrated in Figure 5) by the DTC methods prevalent 
in the literature. Interestingly, Scallop appears to detect transcriptional noise driven by the lack of 
expression of cell type markers in a very robust way, and this should make it a better choice for 
measuring loss of cell type identity compared to DTC methods. When applied to seven indepen-
dent aging datasets, the results obtained revealed little overlap in the magnitude and direction-
ality of the changes in transcriptional noise associated with aging of the different tissues analyzed, 
providing evidence that an increase in transcriptional noise might not be as evident as generally 
thought.

In order to investigate cell type-specific effects in transcriptional noise, it is crucial to compare 
between different datasets of the same aging tissue. Otherwise, it is difficult to ascertain whether 
the variability observed between cell types is due to a pattern that is conserved in that tissue or 
is merely the effect of the intrinsic variability associated with scRNAseq experiments (Fonseca 
Costa et al., 2020). For the cell type-specific study, we focused on the aging lung, as the effect of 
aging of this tissue has gained relevance (Schiller et al., 2019) due to its association with chronic 
obstructive pulmonary disease, lung cancer, and interstitial lung disease (Angelidis et al., 2019; 
Schneider et al., 2021) and its increased risk of severe illness in COVID-19 patients (Williamson 
et al., 2020). In the 31 cell types analyzed in mouse lungs, we found increased transcriptional noise 
in club cells and interstitial fibroblasts only, while alveolar macrophages seemed to decrease it. Of 
interest, a single-cell analysis of alveolar macrophages did not identify distinct clusters associated 
with mouse or human aging, identifying changes in the aged alveolar microenvironment as key for 
their altered functionalities (McQuattie-Pimentel et al., 2021). In humans, we analyzed two aging 
lung datasets that provide complementary information, as the final Raredon dataset consists of 9 
donors of a wider range of ages but is not as well powered in terms of cell type resolution as the 
HLCA dataset, which contains 48  cell identities. Similar to what we had previously observed in 
the murine aging lung, there was no consistency between the 2 datasets regarding transcriptional 
noise of the 30 specific cell types detected. However, both in human and mouse lungs we detected 
a shift in the abundance of a number of cell populations with age, most clearly seen for immune 
cells.

In fact, the age-associated increase in immune cell infiltration of solid organs may be generalized. 
Specifically, one study found neutrophil and plasma cell infiltration in adipose tissue, aorta, liver, and 
kidneys of aged rats of both sexes, and the immune cell infiltration was reversed by caloric restriction 
(Ma et al., 2020a). Another study found a subtype of highly secretory plasma cells infiltrated in the 
aged bone marrow, spleen, fat, kidney, heart, liver, muscle, and lungs (Schaum et al., 2020). Of note, 
immune cell senescence has been shown to induce aging of solid organs (Yousefzadeh et al., 2021), 
in what has been proposed to be a feed-forward circuit (Salminen, 2021). Therefore, the importance 
of immune cell infiltration of the aged lungs cannot be overlooked. In fact, age-associated immune 
cell type enrichment has also been observed in two independent studies of macaque lungs. One study 
found increased mast cells, plasma cells, and CD8+ T cells in aged lung tissue (Ma et al., 2020b), 
while the other found increased alveolar and interstitial macrophage numbers in bronchoalveolar 
lavages of old macaques (Rhoades et al., 2022). The significance of the shift in cellular composition 
of the aged lungs in relation to the appearance of aging traits remains to be determined. Of note, 
alternative explanations for transcriptional changes associated with aging such as tissue convergence 
are compatible with shifts in the cellular composition of aging tissues and organs being a primary 
cause of convergence (Izgi et al., 2022).

In summary, the sources of the apparent increase in transcriptional noise reported by previous 
studies may be multiple and are mostly related to the computational methods used to characterize 
transcriptional noise and cellular identity in aged tissues. Open availability of Decibel and Scallop 
represents an opportunity for the aging research community to further investigate these issues, and 
they are also valuable for researchers addressing cell-to-cell variability of scRNAseq datasets in other 
settings.

https://doi.org/10.7554/eLife.80380
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Methods
Decibel: Python toolkit for the quantification of transcriptional noise
We developed a Python toolkit for the quantification of loss of cell type identity associated with aging. 
We implemented methods as they were originally described in the literature.

Biological variation over technical variation
Biological variation over technical variation is measured as in the original formulation by Enge et al., 
2017 by computing ‍1 − ρ‍, where ρ is the Pearson’s correlation between the gene expression vector of 
each cell and the mean expression of its cell type, i.e., the gene expression averaged over all the cells 
from the same cell type and individual. For each cell type and individual mouse or donor, the mean 
gene expression vector – the averaged expression of the whole set of monitored genes across cells 
– is computed. Then, the biological variation is measured as the Euclidean distance from each cell to 
its cell type mean for that individual. The technical variation is computed using the same procedure 
but using only the ERCC spike-ins in the calculation of the distance to cell type mean. Finally, the tran-
scriptional noise is calculated by dividing the biological variation by the technical variation per cell.

Euclidean distance to cell type mean
The distance to the cell type mean is measured as the second method described by Enge et al., 2017. 
For each cell type and individual mouse or donor, we compute the average whole-transcriptome 
expression. The noise is quantified as the Euclidean distance between the gene expression vector of 
each cell and its corresponding individual-matched cell type mean expression vector.

Invariant gene-based Euclidean distance to tissue mean
This is the third method described by Enge et al., 2017. It is computed as the Euclidean distance from 
each cell to the average expression across cell types using a pre-selected set of invariant genes that is 
selected as follows: first, genes are sorted according to their mean expression and split into 10 equally 
sized bins, and the 2 extreme bins are discarded (10% most expressed and 10% least expressed 
genes). Then, the 10% of genes with the lowest coefficient of variation within each bin are selected 
and used for the calculation of the Euclidean distance between the mean expression vector across cell 
types and each of the cell expression vectors.

Average global coordination level
Taking the Matlab code provided by the authors, we implemented the GCL in Python. As the original 
formulation was used in datasets with a single cell type, here we computed the GCL for each cell type 
separately and then calculated the average GCL for the tissue. For each cell type, the GCL was calcu-
lated by splitting the whole transcriptome into two random halves and computing the batch-corrected 
distance correlation between them (Levy et al., 2020). The GCL per cell type was averaged over k 
times. Following the authors’ recommendation, we used k=50 in all of our calculations.

Scallop
Scallop iteratively runs a clustering algorithm of choice (default: Leiden; Traag et  al., 2019) on 
randomly selected subsets of cells. Then, it computes the frequency with which each cell is assigned 
to the most frequently assigned cluster. Scallop has three key steps: (1) bootstrapping, (2) mapping 
between cluster labels across bootstrap iterations, and (3) computation of the membership score.

Leiden is a graph-based community detection algorithm that was designed to improve the popular 
Louvain method (Blondel et al., 2008). Graph-community detection methods take a graph represen-
tation of a dataset. In the context of single-cell RNAseq data, shared nearest neighbor graphs are 
commonly used. These are graphs whose nodes represent individual cells, and edges connect pairs 
of cells that are part of the K-nearest neighbors of each other by some distance metric. The aim of 
community detection algorithms like Leiden is to find groups of nodes that are densely connected 
between them, by optimizing modularity. For a graph with C communities, the modularity (Q) is 
computed by taking, for each community (group of cells), the difference between the actual number 

of edges in that community (ei) and the number of expected edges in that community (‍
K2

i
2m‍):
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where ‍r‍ is a resolution parameter (r>0) that controls for the amount of communities: a greater reso-
lution parameter gives more communities whereas a low-resolution parameter fewer clusters. Since 
maximizing the modularity of a graph is an NP (non-deterministic polynomial time)-hard problem, 
different heuristics are used, and Leiden has shown to outperform Louvain in this task both in terms of 
quality and speed (Traag et al., 2019). However, users can choose to run the Louvain method instead 
by setting the parameter clustering = louvain in the initialization of the Bootstrap object.

Bootstrapping
Scallop runs a community-detection algorithm on subsets of cells drawn from the original dataset. 
The subsets are selected randomly with replacement from the whole population (the seed can be 
defined by the user). The number of cells to be selected on each bootstrap iteration is computed 
through the fraction of cells user-defined parameter frac_cells (default: 0.95). The community 
detection algorithm is run n_trials times (default: 30). An additional clustering is run with all the 
cells (frac_cells = 1) for it to be used as a reference in the mapping stage. A bootstrap matrix 
(n_cells×n_trials) is obtained that contains the cluster labels that have been assigned to each 
cell on each bootstrap iteration. The cluster labels are the ones obtained from the python imple-
mentation of Leiden through the Scanpy function ​sc.​tl.​leiden() and are numbered from ‘0’ to 
‍n‍ according to the size of the cluster, i.e., the cluster with the highest number of cells is assigned the 
label ‘0’, the second most abundant is assigned the label ‘1’, and so on. Since the subset of cells used 
in each run is different, clustering results vary from run to run, and labels are not comparable between 
bootstrap iterations.

Cluster relabeling
In order to compare between cluster assignments from different bootstrap iterations, cluster identi-
ties need to be relabeled. A contingency table is computed between each clustering solution in the 
bootstrap matrix and a reference clustering, which was obtained by running the community detection 
algorithm on all the cells. From the original bootstrap matrix, we obtain a relabeled bootstrap matrix. 
The assumption is made that if cluster A from bootstrap iteration ‍i‍ and cluster B from bootstrap itera-
tion ‍j‍ have a large number of cells in common, then they should have the same label. In order to find 
the mapping between clusters, an overlap score matrix is computed for every column in the bootstrap 
matrix against the reference labels. The overlap score (‍S‍) between cluster A from the reference clus-
tering solution (‍Aref ‍) and cluster B from the ‍i‍-th iteration (‍Bi‍) is defined as follows:

	﻿‍
S(Aref, Bi) =

|Aref ∩ Bi|
|Aref|

+
|Aref ∩ Bi|

|Bi| ‍�

where ‍|Aref|‍ and ‍|Bi|‍ are the number of cells in the cluster A and B from the reference clustering 
solution and the i-th bootstrap iteration, respectively, and ‍|Aref ∩ Bi|‍ is the number of cells in common 
between the two clusters. The score is then [0–1]-scaled by dividing it by the maximum score: 2. The 
maximum score would correspond to a total overlap between the two clusters.

The score is computed for every pair of clusters between the reference solution and each of the 
bootstrap iterations to obtain a contingency matrix (‍n_clustersref × n_clustersi‍). In order to find the 
optimal mapping between the two clustering solutions, we search for the permutation of the columns 
that maximizes the trace of the contingency matrix. We do this by using Munkres, a Python implemen-
tation of the Hungarian method (Munkres, 1957).

As the reference clustering solution is computed on the whole dataset but each of the bootstrap 
iterations is run on a subset of cells (‍frac_cells‍), the number of clusters obtained in each iteration might 
not be equal to the number of clusters in the reference. In order to deal with this, we consider three 
cases:

1.	 The number of clusters in the reference clustering solution is equal to the number of clusters 
obtained in the ‍i‍-th bootstrap iteration. This case is dealt with easily, as the Hungarian method 
yields a 1:1 mapping between the two clustering solutions.

https://doi.org/10.7554/eLife.80380
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2.	 Fewer clusters are obtained in the ‍i‍-th bootstrap iteration than in the reference solution. This 
may happen if one or more clusters from the reference are merged into a single cluster in a 
bootstrap iteration. In this case, a 1:1 mapping is obtained, but one or more of the cluster labels 
from the reference clustering remain unused.

3.	 More clusters are obtained in the ‍i‍-th bootstrap iteration than in the reference solution. This 
may happen if one cluster from the reference is further divided into two or more subclusters in 
a bootstrap iteration. A 1:1 mapping is obtained, but one or more clusters from the bootstrap 
iteration remain unmapped. Usually, this means that a cluster from the reference solution was 
divided into two or more subclusters in the bootstrap iteration. In this case, the subcluster with 
the largest overlap degree with one of the clusters in the reference clustering solution receives 
its label. The other subcluster remains unmapped. When this happens, those clusters are 
flagged as unmapped. Then, an additional mapping step is carried out between the unmapped 
clusters from all bootstrap iterations. This is done by creating an overlap score matrix similar to 
the one created in the mapping process and searching for the permutation of the columns that 
maximizes its trace, using the Hungarian method. In order to avoid spurious mappings between 
unrelated unmapped clusters, a minimum overlap score of 0.1 is imposed for two unmapped 
clusters to be renamed as the same cluster.

Computation of the membership score
Scallop computes three different membership scores: a frequency score (‘freq’), an entropy score 
(‘entropy’), and a Kullback-Leibler (‘KL’) divergence score. We use the frequency score here as it yields 
results that are consistent to the ones obtained with the other two alternative scores, and its meaning 
is more intuitive than those of the two alternative methods. The frequency score is computed as the 
fraction of bootstrap iterations where a cell was assigned to the most frequently assigned cluster 
label. In order for the score to take values between 0 and 1, only the cells selected in each bootstrap 
run are considered as the total number of cells. More information on the calculation of the entropy 
and the KL scores can be found in the Scallop documentation.

	﻿‍
Freq score(c) = max

{
|cn |∑

m∈clusters |cm | | n ∈ clusters
}

‍�

where ‍|cn|‍ is the number of times cell ‍c‍ was assigned to the ‍n‍-th cluster, and ‍
∑

m∈clusters |cm|‍ is the 
sum of all assignments made on cell ‍c‍, which is the same as the number of times cell ‍c‍ was clustered 
across bootstrap iterations.

Validation of Scallop
Performance of Scallop and two DTC methods on four artificial datasets 
with increasing transcriptional noise
We used four artificially generated datasets with various degrees of transcriptional noise (Figure 1—
figure supplement 1). Each of the four datasets consists of 10 K cells, from nine populations (named 
Group1-Group9) with the following relative abundances: 25, 20, 15, 10, 10, 7, 5.5, 4, and 3.5%. The 
four datasets only differ in the ​de.​prob parameter used in their generation. The ​de.​prob parameter 
determines the probability that a gene is differentially expressed between subpopulations within the 
dataset. The greater the ​de.​prob value, the more DEGs there will be between clusters, meaning that 
the different cell types present in the dataset will cluster in a more robust way. Decreasing the value 
of ​de.​prob results in datasets with noisy cells, with populations that do not have such a strong tran-
scriptional signature. In order to study how Scallop can capture the degree of robustness with which 
cells of the same cell type cluster together, we selected four ​de.​prob values and obtained four data-
sets that represent low, medium low, medium high, and high noise levels. We then measured tran-
scriptional noise using Scallop and two alternative DTC methods implemented in Decibel: (1) whole 
transcriptome-based Euclidean distance to cell type mean and (2) invariant gene-based Euclidean 
distance to tissue mean expression. GCL measurements were not carried out here as the method 
does not yield a transcriptional noise measurement per cell, so no comparisons can be made with 
respect to the amount and localization of noisy cells the method is able to detect within a cluster. 
Also, computing the ERCC spike in-based transcriptional noise was not possible for artificial datasets.

https://doi.org/10.7554/eLife.80380
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Ability to detect noisy cells within cell types
Using three of the four datasets used in the previous section (the ones corresponding to medium low, 
medium high, and high noise levels), we plotted the top 10% noisiest (lowest membership) and the 
top 10% most stable (highest membership) cells (see Figure 1—figure supplement 2).

Effect of cellular composition
We simulated five artificial datasets with the same nine cell type populations and the same total 
number of cells, but whose relative abundances were different between them. We used the ID 
(Ortigosa-Hernández et al., 2017) to measure class imbalance in each of them and to make sure 
that the selected cell compositions represented a wide range of IDs (to this end, we explored ID 
values between 1.2 and 5.3). The ID provides a normalized summary of the extent of class imbal-
ance in a dataset in so-called ‘multiclass’ settings (where more than two classes are present). It was 
specifically developed to improve the commonly used imbalance ratio measurement, where only the 
abundance of the most and the least popular classes is considered in the calculation. We used the 
python implementation by Juez-Gil, 2021 of the ID. The most imbalanced dataset (ID = 5.3) was 
generated by randomly subsampling 4500 cells from the original medium high noise 10 K-cell artificial 
dataset (generated with Splatter using ​de.​prob=​0.​001). The rest of the datasets was generated by 
randomly selecting a known number cells from each cell type. The number of cells per cell type and 
the percentage they represent are shown in Figure 1—figure supplement 3B.

Effect of dataset size
The effect of dataset size (total number of cells) on the transcriptional noise measured by Scallop was 
tested by generating differently sized versions of an artificial dataset (see Figure 1—figure supple-
ment 4). We did this by randomly subsampling cells without replacement from the 10 K medium 
high noise dataset generated with Splatter (​de.​prob=​0.​001). We created 10 datasets sized 1000–
10,000 cells. Each of the datasets was processed again after subsampling (highly variable gene detec-
tion, principal component analysis (PCA), neighbor calculation, and UMAP) prior to noise calculation.

Effect of feature expression
We evaluated the effect of the number of genes on transcriptional noise by generating 10 datasets 
with a number of genes between 5000 and 14,000 (see Figure 1—figure supplement 5). We did this 
by subsampling genes without replacement from the 10 K medium high noise dataset generated with 
Splatter (​de.​prob=​0.​001). Datasets were processed again after subsampling before running Scallop.

Effect of cell type marker expression
In order to measure the effect, gene marker expression has on the membership with which cells are 
assigned to their cell type cluster, we ran a simulation where the top 10 markers for a cell type were 
removed from the dataset one by one, and the cumulative effect of removing them was measured 
(see Figure 1—figure supplement 6). We selected the most stable cell type from the 10 K medium 
high noise dataset generated with Splatter (​de.​prob=​0.​001) so that the first simulation lacked the 
expression of the Top1 marker, the second simulation had the effect of the first two markers removed 
(Top1 and Top2), and so on. Then, we ran Scallop on each of the resulting datasets and observed a 
steady increase in transcriptional noise associated with that cell type.

Ability to detect stable and unstable cells in the 8K human T cells
We downloaded a 23,766 PBMC dataset from from 10× Genomics. We ran the standard processing 
pipeline including highly variable gene detection, dimensionality reduction through PCA and UMAP, 
and clustering. We annotated the dataset according to PBMC marker expression and selected the 
cluster of T lymphocytes (see Figure 1—figure supplement 7). We obtained a dataset of 8278 cells. 
We ran the processing pipeline on the T lymphocyte dataset and obtained three main clusters of cells, 
which we annotated as 0/CD4+ T cells, 1/CD4+ T cells, and 2/CD8+ T cells according to their expres-
sion of the gene markers CD3C, CD3D, CD3E, CD4, CD8A, and CD8B. Then, we calculated the whole 
transcriptome-based Euclidean distance to the cell subtype mean (euc_dist), the invariant gene-based 
Euclidean distance to the T cell mean (euc_dist_tissue_invar), the Scallop noise as 1-membership 

https://doi.org/10.7554/eLife.80380
https://www.10xgenomics.com/resources/datasets/20-k-human-pbm-cs-3-ht-v-3-1-chromium-x-3-1-high-6-1-0
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(scallop_noise), and the GCL per T subtype. We selected the 10% most stable and 10% most unstable 
cells as those having the lowest and highest noise scores according to two methods: euc_dist and 
scallop_noise.

Robustness to input parameters
We selected a set of five scRNAseq datasets of various sizes and depths (Table, Lack of evidence for 
increased transcriptional noise in aged tissues). Three datasets were taken from published scRNAseq 
studies (Paul et  al., 2015; Moignard et  al., 2015; Joost et  al., 2016), and two were from 10× 
Genomics (PBMC3K, Heart10K). We computed the membership scores of all the cells in 5 datasets 
100 times, on a range of bootstrap iterations (n_trials), fraction of cells used in each iteration boot-
strap (frac_cells) and resolution (res) values. We then computed the median correlation distance 
between the 100 runs of Scallop with each set of parameters (see Figure 1—figure supplement 8). 
We used the spatial.distance.correlation method from Scipy to compute the correlation 
distance.

Statistical significance of differential expression of PBMC markers
The assessment of the cell-to-cell variability associated with aging using Scallop relies on the assump-
tion that cell-to-cell variability is caused by transcriptional noise, and that it can be measured by 
evaluating cluster stability. We checked our assumption by comparing the transcriptomic profiles of 
the cells that had a high and a low membership score (measured using Scallop) (see Figure 1—figure 
supplement 9). Stable cells should have a more robust expression of cell type markers than the 
unstable cells. We downloaded the PBMC 3K dataset from 10× Genomics. After running the standard 
processing pipeline, we ran Scallop on the dataset and selected the most stable and most unstable 
half of the cells within each annotated cluster. For each cell type, we defined the most stable cells as 
those with a membership score greater than the median membership score of that cell type. Hence, 
we compared two sets of cells (stable vs unstable) of the same size, and we analyzed the effect size 
and statistical significance of a routine downstream analysis (differential expression) when given each 
of the sets as input. We computed the 100 most DEGs between each cell type and the rest of the cells 
using (1) all cells, (2) only the stable cells, and (3) only the unstable cells. B cells and megakaryoctes 
were excluded from the analysis as the former was highly stable (so we could not compare between 
the stable and the unstable fraction) and the latter consisted of very few cells. We compared the 
distribution of log-fold changes and p-values associated with those DEGs when using only the stable, 
only the unstable, and all the cells.

Single-cell RNA sequencing data processing
2,5K human aging pancreatic cells
The raw count matrices and the metadata files from Enge et al., 2017 were downloaded from the 
Gene Expression Omnibus (accession number: GSE81547). The separate GSM (GEO sample acces-
sion) files were merged into a single raw count matrix and processed them using the following pipeline 
in Scanpy (Wolf et al., 2018): filtering of low quality cells and genes, normalization, log-transformation 
of counts, PCA, batch-effect correction using harmony (Korsunsky et al., 2019), Leiden community 
detection (resolution = 1.0), and UMAP dimensionality reduction. 11 clusters were obtained 
and annotated using the expression of the markers INS (β cells), GCG (‍α‍ cells), SST (‍δ‍ cells), PRSS1 
(acinar cells), PROM1 (ductal cells), PPY (PP cells), and THY (mesenchymal cells). Donors were clas-
sified into three categories as in the original work by Enge et al., 2017: ‘pediatric’ (0–6 years old), 
‘young’ (21–22 years old), and ‘old’ (38–54 years old). Samples from pediatric donors were not used in 
the aging analysis (see Inclusion criteria, Lack of evidence for increased transcriptional noise in aged 
tissues).

The analysis of the pancreatic β-cells (Figure  5—figure supplement 2) was done by selecting 
β-cells from the pancreatic aging cell dataset and re-running the highly variable gene detection, PCA, 
neighbor computation, and UMAP steps.

https://doi.org/10.7554/eLife.80380
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https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81547
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1,5K murine aging CD4+ T cells
We downloaded the raw data and metadata files from Martinez-Jimenez et al., 2019 from the authors’ 
GitHub. We created an annData object with the raw count matrix and the metadata (mouse strain, 
age-group, stimulus, individual, and cell type). We identified and flagged the counts corresponding 
to ERCC spike-in controls. We ran a standard processing pipeline: filtering out low-quality cells and 
genes, normalization and log-transformation of counts, selection of highly variable genes, batch-
effect correction between mouse strains (Mus musculus domesticus and Mus musculus castaneus), 
and dimensionality reduction was conducted (PCA and UMAP).

14,8K murine aging lung cells
We downloaded the raw count matrix and the metadata file from Angelidis et al., 2019 from the 
Gene Expression Omnibus (accession number: GSE124872). We created an annData object with the 
raw count matrix and the available metadata (cell type annotation, age group, cluster, and mouse). We 
ran a standard processing pipeline: quality control, normalization and log-transformation of counts, 
selection of highly variable genes, batch-effect correction between individual mice using bbknn (Park 
et al., 2018), and dimensionality reduction (PCA and UMAP). In our analysis, we used the cell type 
annotations provided by the authors. We also annotated the rest of the murine aging lung datasets 
using their annotation as a reference. In order to do that, we computed the DEGs between each lung 
cell type and the rest of the dataset to obtain a set of gene markers for each cell type. We then used 
those markers to annotate the rest of the datasets using scoreCT (Seninge, 2020).

90,6K murine aging lung, spleen, and kidney cells
We downloaded the raw count matrices and the metadata files from Kimmel et al., 2019 from the 
Gene Expression Omnibus (accession number: GSE132901). We selected lung samples (30,255 cells) 
and excluded kidney and spleen samples. We discarded the two samples from the individual Y1, 
as they showed a very different count distribution to the rest of the samples (see Appendix, Lack 
of evidence for increased transcriptional noise in aged tissues). We created an annData object with 
the count matrix and the metadata (sample, tissue, age, and mouse). We ran a standard processing 
pipeline: quality control, normalization and log-transformation of counts, highly variable gene selec-
tion, batch-effect correction between individual mice using bbknn (Park et al., 2018), dimensionality 
reduction (PCA and UMAP), and Leiden clustering (Traag et  al., 2019) with high resolution value 
(resolution=4), so that we obtained a very granular clustering solution. We obtained 52 clusters, 
and we annotated them by projecting the cell type identity labels from the Angelidis et al., 2019 
dataset, using the automated cell type annotation tool scoreCT (Seninge, 2020). We checked that 
cells clustered primarily according to their cell type, meaning no important batch effects were present 
in the final datasets, and that clusters expressed the cell type markers expected according to their 
assigned cell type labels (see Appendix, Lack of evidence for increased transcriptional noise in aged 
tissues).

731 murine aging dermal fibroblasts
The count matrix and metadata from Salzer et al., 2018 were downloaded from the Gene Expression 
Omnibus (accession number: GSE111136). A standard processing pipeline (quality control, normal-
ization, log-transformation, HVG detection, PCA, neighbor computation, and UMAP dimensionality 
reduction) was applied to the dataset.

22,1K human aging skin cells
We downloaded raw count matrices from Solé-Boldo et al., 2020 from the Gene Expression Omnibus 
(accession number: GSE130973). We ran a standard preprocessing pipeline on the count matrix: 
quality control, normalization, log-transformation, HVG detection, PCA, neighbor computation, and 
UMAP dimensionality reduction. We used the original cell type labels provided by the authors.

Tabula Muris Senis lung datasets
The 3.2  K TMS FACS-sorted and the 4.4 TMS droplet lung cell datasets were downloaded from 
figshare. A standard preprocessing pipeline was run on the two datasets, and cluster labels were 

https://doi.org/10.7554/eLife.80380
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973
https://figshare.com/projects/Tabula_Muris_Senis/64982
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harmonized with the rest of the murine aging lung datasets by using the genes differentially expressed 
between cell types from the Angelidis dataset as input for the automated cell-type annotation through 
scoreCT (Seninge, 2020).

Human lung cell atlas
We downloaded the full lung and blood 10× dataset from the HLCA (Travaglini et al., 2020) from 
Synapse (ID: syn21041850). The original dataset consists of lung samples from three patients: a 
46 years old male donor (donor 1), a 51 years old female donor (donor 2), and a 75 years old male 
donor (donor 3). The composition of the samples was not equivalent across donors: there were two 
samples from donor 1 (distal and medial), three samples from donor 2 (blood, distal, and proximal), 
and two samples from donor 3 (blood and distal). Thus, we selected the distal sample from the three 
donors and obtained a dataset of 18,542 cells from donor 1, 16,903 cells from donor 2, and 7524 cells 
from donor 3. We subsampled 7524 cells from each of the donors in order to correct for the age-
group imbalance and obtained a dataset of 22,572 lung cells. We used this balanced dataset of distal 
samples from the three donors to create two datasets. On the one hand, we selected all lung cells 
from donors 1 and 3 (46 years old and 75 years old, all male) in order to create the 15,048 aging lung 
cell dataset used in the noise and enrichment analysis. On the other hand, we selected all alveolar 
macrophages from the three donors in order to create the 11,484 alveolar macrophage dataset.

Human aging lung
We downloaded the mammalian aging lung dataset by Raredon et al., 2019 from the Gene Expres-
sion Omnibus (accession number: GSE133747). The original dataset consists of human, pig, mouse, 
and rat samples. We selected human samples and ran the preprocessing and quality control pipeline 
on them: normalization, log-transformation, selection of highly variable genes, batch-effect correc-
tion between donors using harmony (Korsunsky et al., 2019), computation of the nearest neighbor 
graph, and Leiden clustering (Traag et  al., 2019). The resulting dataset consisted of 17,867  cells 
from human male and female donors aged 21–88 years. We then projected the cell type labels from 
the human lung atlas onto the Raredon dataset by computing the DEGs between cell types in the 
human lung atlas dataset and using the first 300 DEGs to identify equivalent cell types in the Raredon 
dataset and projecting those onto the Raredon dataset using the unsupervised cell type annotation 
tool scoreCT (Seninge, 2020.) We identified 24 lung cell types from the HLCA. After using the cells 
from the 14 human donors in the annotation step, we selected a set of 9 donors in order to obtain a 
balanced aging dataset, using the following inclusion criteria: (1) donors contributing with very few 
cells were excluded (GSM4050113 and GSM4050107 consisted of 116 and 211 cells, respectively), (2) 
middle-aged donors were discarded in order to better explore the effects of aging, (3) donors were 
selected to ensure sex-stratification, and (4) we sought to obtain a balanced dataset in terms of age-
group sizes. The final dataset consisted of 15,852 lung cells from 9 female and male human donors. 
We defined the age categories as young (21, 22, 32, 35, and 41 years old) and old (64, 65, 76, and 
88 years old). The composition of the dataset was 7263 young (46%) and 8589 old cells (54%).

Age-related change in transcriptional noise
To facilitate comparison with regard to cell type annotation, we harmonized the labels so that the four 
datasets were annotated using the cell identities originally defined by Angelidis et al., 2019. Then, we 
measured transcriptional noise as 1 ‍ − membership ﻿‍ to cell type clusters in the young and old fractions 
of each dataset. We then measured the age-related difference in transcriptional noise per cell type by 
calculating the differences in median noise between the old and the young fraction for each lung cell 
type. In order to compare between the young and the old fraction of cells, each dataset was split into 
two datasets according to the age groups (‘young’ and ‘old’), and the highly variable gene detection 
and dimensionality reduction (PCA, batch-corrected neighbor detection using harmony, and UMAP) 
steps where run again on each set of cells. Then, Scallop was run on each set of cells separately, using 
Leiden as the community detection method and using the following parameter values: frac_cells 
= 0.8, n_trials = 30. This was done on a range of resolution (res) values between 0.1 and 1.5, 
with a step of 0.1, and the membership scores obtained for each cell were averaged over all these 
resolution values in order to smooth the effect of clustering granularity on the membership scores. 

https://doi.org/10.7554/eLife.80380
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We used the freq membership score, defined as the frequency of assignment of the most frequently 
assigned cluster label per cell.

Age-related cell type enrichment
Changes in cell type abundance associated with aging were evaluated using binomial GLMs (McCul-
lagh and Nelder, 1989). For each dataset, a binomial GLM was fitted to estimate the proportion of 
each cell type across all samples by treating each individual mouse as a replicate. First, the relative 
abundance of each cell type (N_ct) and the relative abundance of the rest of the cell types taken 
together (N_other) were computed. Then, a binomial GLM was fitted to these pairs of observations 
(N_ct, N_other) to estimate the proportions of cell types across samples by accounting for variation 
associated with sample origin (mouse) and to sample age (young vs old), and estimated marginal 
means (Searle et al., 1980) were computed using the R package emmeans. Odds ratios between 
‘Young’ and ‘Old’ samples were computed for each cell identity.

Code availability
The Decibel and Scallop repositories can be found at https://gitlab.com/olgaibanez/decibel 
and https://gitlab.com/olgaibanez/scallop, (copy archived at swh:1:rev:086edf77f471a-
c0a786c2262b503842214d98357; Ibañez-Solé, 2022b), respectively. The official documentations 
sites can be found at https://scallop.readthedocs.io/en/latest/index.html and https://decibel.readthe-
docs.io/en/latest/index.html. Reproducible Jupyter notebooks with the analyses carried out in this 
study ar available at figshare (https://doi.org/10.6084/m9.figshare.20402817.v2).
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NCBI Gene Expression 
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Raredon MS, Adams 
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2019 Single-cell connectomic 
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https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
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NCBI Gene Expression 
Omnibus, GSE133747
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reveals transcriptional 
signatures of aging and 
somatic mutation patterns

https://www.​ncbi.​
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GSE81547

NCBI Gene Expression 
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Solé-Boldó L, Lyko F, 
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GSE111136

NCBI Gene Expression 
Omnibus, GSE111136
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Y2j8t77MJkg

Zenodo, 10.5281/
zenodo.3522970

References
Almanzar N, Antony J, Baghel AS. 2020. A single-cell transcriptomic atlas characterizes ageing tissues in the 

mouse. Nature 583:590–595. DOI: https://doi.org/10.1038/s41586-020-2496-1, PMID: 32669714
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom T-M, 

Nagendran M, Desai T, Eickelberg O, Mann M, Theis FJ, Schiller HB. 2019. An atlas of the aging lung mapped 
by single cell transcriptomics and deep tissue proteomics. Nature Communications 10:963. DOI: https://doi.​
org/10.1038/s41467-019-08831-9, PMID: 30814501

Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dollé MET, Calder RB, Chisholm GB, Pollock BH, 
Klein CA, Vijg J. 2006. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 
441:1011–1014. DOI: https://doi.org/10.1038/nature04844, PMID: 16791200

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks. 
Journal of Statistical Mechanics 1:10008. DOI: https://doi.org/10.1088/1742-5468/2008/10/P10008

Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, Lawson ARJ, Harvey LMR, 
Bhosle S, Jones D, Alcantara RE, Butler TM, Hooks Y, Roberts K, Anderson E, Lunn S, Flach E, Spiro S, 
Januszczak I, Wrigglesworth E, et al. 2022. Somatic mutation rates scale with lifespan across mammals. Nature 
604:517–524. DOI: https://doi.org/10.1038/s41586-022-04618-z, PMID: 35418684

da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. 2016. A synopsis on aging-theories, 
mechanisms and future prospects. Ageing Research Reviews 29:90–112. DOI: https://doi.org/10.1016/j.arr.​
2016.06.005, PMID: 27353257

Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR. 2017. Single-Cell analysis of human 
pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171:321–330.. DOI: 
https://doi.org/10.1016/j.cell.2017.09.004, PMID: 28965763

 Continued

https://doi.org/10.7554/eLife.80380
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132901
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132901
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132901
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132901
https://figshare.com/articles/dataset/Tabula_Muris_Senis_Data_Objects/12654728
https://figshare.com/articles/dataset/Tabula_Muris_Senis_Data_Objects/12654728
https://figshare.com/articles/dataset/Tabula_Muris_Senis_Data_Objects/12654728
https://figshare.com/articles/dataset/Tabula_Muris_Senis_Data_Objects/12654728
https://figshare.com/articles/dataset/Tabula_Muris_Senis_Data_Objects/12654728
https://doi.org/10.7303/syn21041850
https://doi.org/10.7303/syn21041850
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133747
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133747
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133747
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133747
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81547
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81547
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81547
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81547
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111136
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111136
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111136
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111136
https://zenodo.org/record/3522970#.Y2j8t77MJkg
https://zenodo.org/record/3522970#.Y2j8t77MJkg
https://zenodo.org/record/3522970#.Y2j8t77MJkg
https://doi.org/10.1038/s41586-020-2496-1
http://www.ncbi.nlm.nih.gov/pubmed/32669714
https://doi.org/10.1038/s41467-019-08831-9
https://doi.org/10.1038/s41467-019-08831-9
http://www.ncbi.nlm.nih.gov/pubmed/30814501
https://doi.org/10.1038/nature04844
http://www.ncbi.nlm.nih.gov/pubmed/16791200
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/s41586-022-04618-z
http://www.ncbi.nlm.nih.gov/pubmed/35418684
https://doi.org/10.1016/j.arr.2016.06.005
https://doi.org/10.1016/j.arr.2016.06.005
http://www.ncbi.nlm.nih.gov/pubmed/27353257
https://doi.org/10.1016/j.cell.2017.09.004
http://www.ncbi.nlm.nih.gov/pubmed/28965763


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 25 of 33

Fonseca Costa SS, Robinson-Rechavi M, Ripperger JA. 2020. Single-Cell transcriptomics allows novel insights 
into aging and circadian processes. Briefings in Functional Genomics 19:343–349. DOI: https://doi.org/10.​
1093/bfgp/elaa014, PMID: 32633783

Gems D, de Magalhães JP. 2021. The hoverfly and the wasp: a critique of the hallmarks of aging as a paradigm. 
Ageing Research Reviews 70:101407. DOI: https://doi.org/10.1016/j.arr.2021.101407, PMID: 34271186

Gladyshev VN. 2016. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, 
environmental, and stochastic processes. Aging Cell 15:594–602. DOI: https://doi.org/10.1111/acel.12480, 
PMID: 27060562

Gupta K, Yadav P, Maryam S, Ahuja G, Sengupta D. 2021. Quantification of age-related decline in transcriptional 
homeostasis. Journal of Molecular Biology 433:167179. DOI: https://doi.org/10.1016/j.jmb.2021.167179, 
PMID: 34339725

Ham L, Jackson M, Stumpf MP. 2021. Pathway dynamics can delineate the sources of transcriptional noise in 
gene expression. eLife 10:e69324. DOI: https://doi.org/10.7554/eLife.69324, PMID: 34636320

Hernando-Herraez I, Evano B, Stubbs T, Commere P-H, Jan Bonder M, Clark S, Andrews S, Tajbakhsh S, Reik W. 
2019. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem 
cells. Nature Communications 10:4361. DOI: https://doi.org/10.1038/s41467-019-12293-4, PMID: 31554804

Ibañez-Solé O. 2022a. Decibel. swh:1:rev:8749a4e1ae05edcebb642fd7358a78b8468c511f. Software Heritage. 
https://archive.softwareheritage.org/swh:1:dir:5a3db01455f08debe4ef4d40f012aae771f33880;origin=https://​
gitlab.com/olgaibanez/decibel;visit=swh:1:snp:560d3d33374bcc9bf213ea4187048c8e99c3f48e;anchor=swh:1:​
rev:8749a4e1ae05edcebb642fd7358a78b8468c511f

Ibañez-Solé O. 2022b. Scallop. swh:1:rev:086edf77f471ac0a786c2262b503842214d98357. Software Heritage. 
https://archive.softwareheritage.org/swh:1:dir:0c5f3424bd6a272592dd03cd64eef7c39dadba7c;origin=https://​
gitlab.com/olgaibanez/scallop;visit=swh:1:snp:b0db5baf8fd96fe4c2ebd9f93f1fa8966c2f73cb;anchor=swh:1:​
rev:086edf77f471ac0a786c2262b503842214d98357

Izgi H, Han D, Isildak U, Huang S, Kocabiyik E, Khaitovich P, Somel M, Dönertaş HM. 2022. Inter-Tissue 
convergence of gene expression during ageing suggests age-related loss of tissue and cellular identity. eLife 
11:e68048. DOI: https://doi.org/10.7554/eLife.68048, PMID: 35098922

Joost S, Zeisel A, Jacob T, Sun X, La Manno G, Lönnerberg P, Linnarsson S, Kasper M. 2016. Single-Cell 
transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle 
heterogeneity. Cell Systems 3:221–237.. DOI: https://doi.org/10.1016/j.cels.2016.08.010, PMID: 27641957

Juez-Gil M. 2021. A Python Implementation of the Imbalance-Degree Measure for Multi-Class Imbalanced 
Datasets Characterization. GitHub repository.

Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. 2019. Murine single-cell 
RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Research 29:2088–2103. DOI: 
https://doi.org/10.1101/gr.253880.119, PMID: 31754020

Kirkwood TBL, Melov S. 2011. On the programmed/non-programmed nature of ageing within the life history. 
Current Biology 21:R701–R707. DOI: https://doi.org/10.1016/j.cub.2011.07.020, PMID: 21959160

Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh P-R, Raychaudhuri S. 
2019. Fast, sensitive and accurate integration of single-cell data with harmony. Nature Methods 16:1289–1296. 
DOI: https://doi.org/10.1038/s41592-019-0619-0, PMID: 31740819

Levy O, Amit G, Vaknin D, Snir T, Efroni S, Castaldi P, Liu YY, Cohen HY, Bashan A. 2020. Age-Related loss of 
gene-to-gene transcriptional coordination among single cells. Nature Metabolism 2:1305–1315. DOI: https://​
doi.org/10.1038/s42255-020-00304-4, PMID: 33139959

Li J, Zheng Y, Yan P, Song M, Wang S, Sun L, Liu Z, Ma S, Izpisua Belmonte JC, Chan P, Zhou Q, Zhang W, Liu GH, 
Tang F, Qu J. 2020. A single-cell transcriptomic atlas of primate pancreatic islet aging. National Science Review 
8:nwaa127. DOI: https://doi.org/10.1093/nsr/nwaa127, PMID: 34691567

Liu P, Song R, Elison GL, Peng W, Acar M. 2017. Noise reduction as an emergent property of single-cell aging. 
Nature Communications 8:680. DOI: https://doi.org/10.1038/s41467-017-00752-9, PMID: 28947742

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–
1217. DOI: https://doi.org/10.1016/j.cell.2013.05.039, PMID: 23746838

Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, Vera DL, Zeng Q, Yu D, Bonkowski MS, Yang JH, Zhou S, 
Hoffmann EM, Karg MM, Schultz MB, Kane AE, Davidsohn N, Korobkina E, Chwalek K, Rajman LA, et al. 2020. 
Reprogramming to recover youthful epigenetic information and restore vision. Nature 588:124–129. DOI: 
https://doi.org/10.1038/s41586-020-2975-4, PMID: 33268865

Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X, Li W, Esteban CR, Long X, Guo G, 
Chan P, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. 2020a. Caloric restriction reprograms the single-cell 
transcriptional landscape of rattus norvegicus aging. Cell 180:984–1001. DOI: https://doi.org/10.1016/j.cell.​
2020.02.008, PMID: 32109414

Ma S, Sun S, Li J, Fan Y, Qu J, Sun L, Wang S, Zhang Y, Yang S, Liu Z, Wu Z, Zhang S, Wang Q, Zheng A, Duo S, 
Yu Y, Belmonte JCI, Chan P, Zhou Q, Song M, et al. 2020b. Single-cell transcriptomic atlas of primate 
cardiopulmonary aging. Cell Research 31:415–432. DOI: https://doi.org/10.1038/s41422-020-00412-6, PMID: 
32913304

Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, Stojic L, Rayner TF, 
Stubbington MJT, Teichmann SA, Roche M, Marioni JC, T. OD. 2019. Aging increases cell-to-cell transcriptional 
variability upon immune stimulation. Science 355:1433–1436. DOI: https://doi.org/10.1126/science.aah4115

McCullagh P, Nelder JA. 1989. An outline of generalized linear models. Generalized Linear Models. London: 
Chapman and Hall. p. 1–532. DOI: https://doi.org/10.1201/9780203753736

https://doi.org/10.7554/eLife.80380
https://doi.org/10.1093/bfgp/elaa014
https://doi.org/10.1093/bfgp/elaa014
http://www.ncbi.nlm.nih.gov/pubmed/32633783
https://doi.org/10.1016/j.arr.2021.101407
http://www.ncbi.nlm.nih.gov/pubmed/34271186
https://doi.org/10.1111/acel.12480
http://www.ncbi.nlm.nih.gov/pubmed/27060562
https://doi.org/10.1016/j.jmb.2021.167179
http://www.ncbi.nlm.nih.gov/pubmed/34339725
https://doi.org/10.7554/eLife.69324
http://www.ncbi.nlm.nih.gov/pubmed/34636320
https://doi.org/10.1038/s41467-019-12293-4
http://www.ncbi.nlm.nih.gov/pubmed/31554804
https://archive.softwareheritage.org/swh:1:dir:5a3db01455f08debe4ef4d40f012aae771f33880;origin=https://gitlab.com/olgaibanez/decibel;visit=swh:1:snp:560d3d33374bcc9bf213ea4187048c8e99c3f48e;anchor=swh:1:rev:8749a4e1ae05edcebb642fd7358a78b8468c511f
https://archive.softwareheritage.org/swh:1:dir:5a3db01455f08debe4ef4d40f012aae771f33880;origin=https://gitlab.com/olgaibanez/decibel;visit=swh:1:snp:560d3d33374bcc9bf213ea4187048c8e99c3f48e;anchor=swh:1:rev:8749a4e1ae05edcebb642fd7358a78b8468c511f
https://archive.softwareheritage.org/swh:1:dir:5a3db01455f08debe4ef4d40f012aae771f33880;origin=https://gitlab.com/olgaibanez/decibel;visit=swh:1:snp:560d3d33374bcc9bf213ea4187048c8e99c3f48e;anchor=swh:1:rev:8749a4e1ae05edcebb642fd7358a78b8468c511f
https://archive.softwareheritage.org/swh:1:dir:0c5f3424bd6a272592dd03cd64eef7c39dadba7c;origin=https://gitlab.com/olgaibanez/scallop;visit=swh:1:snp:b0db5baf8fd96fe4c2ebd9f93f1fa8966c2f73cb;anchor=swh:1:rev:086edf77f471ac0a786c2262b503842214d98357
https://archive.softwareheritage.org/swh:1:dir:0c5f3424bd6a272592dd03cd64eef7c39dadba7c;origin=https://gitlab.com/olgaibanez/scallop;visit=swh:1:snp:b0db5baf8fd96fe4c2ebd9f93f1fa8966c2f73cb;anchor=swh:1:rev:086edf77f471ac0a786c2262b503842214d98357
https://archive.softwareheritage.org/swh:1:dir:0c5f3424bd6a272592dd03cd64eef7c39dadba7c;origin=https://gitlab.com/olgaibanez/scallop;visit=swh:1:snp:b0db5baf8fd96fe4c2ebd9f93f1fa8966c2f73cb;anchor=swh:1:rev:086edf77f471ac0a786c2262b503842214d98357
https://doi.org/10.7554/eLife.68048
http://www.ncbi.nlm.nih.gov/pubmed/35098922
https://doi.org/10.1016/j.cels.2016.08.010
http://www.ncbi.nlm.nih.gov/pubmed/27641957
https://doi.org/10.1101/gr.253880.119
http://www.ncbi.nlm.nih.gov/pubmed/31754020
https://doi.org/10.1016/j.cub.2011.07.020
http://www.ncbi.nlm.nih.gov/pubmed/21959160
https://doi.org/10.1038/s41592-019-0619-0
http://www.ncbi.nlm.nih.gov/pubmed/31740819
https://doi.org/10.1038/s42255-020-00304-4
https://doi.org/10.1038/s42255-020-00304-4
http://www.ncbi.nlm.nih.gov/pubmed/33139959
https://doi.org/10.1093/nsr/nwaa127
http://www.ncbi.nlm.nih.gov/pubmed/34691567
https://doi.org/10.1038/s41467-017-00752-9
http://www.ncbi.nlm.nih.gov/pubmed/28947742
https://doi.org/10.1016/j.cell.2013.05.039
http://www.ncbi.nlm.nih.gov/pubmed/23746838
https://doi.org/10.1038/s41586-020-2975-4
http://www.ncbi.nlm.nih.gov/pubmed/33268865
https://doi.org/10.1016/j.cell.2020.02.008
https://doi.org/10.1016/j.cell.2020.02.008
http://www.ncbi.nlm.nih.gov/pubmed/32109414
https://doi.org/10.1038/s41422-020-00412-6
http://www.ncbi.nlm.nih.gov/pubmed/32913304
https://doi.org/10.1126/science.aah4115
https://doi.org/10.1201/9780203753736


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 26 of 33

McInnes L, Healy J, Saul N, Großberger L. 2018. UMAP: uniform manifold approximation and projection. Journal 
of Open Source Software 3:861. DOI: https://doi.org/10.21105/joss.00861

McQuattie-Pimentel AC, Ren Z, Joshi N, Watanabe S, Stoeger T, Chi M, Lu Z, Sichizya L, Aillon RP, Chen CI, 
Soberanes S, Chen Z, Reyfman PA, Walter JM, Anekalla KR, Davis JM, Helmin KA, Runyan CE, 
Abdala-Valencia H, Nam K, et al. 2021. The lung microenvironment shapes a dysfunctional response of alveolar 
macrophages in aging. Journal of Clinical Investigation 131:e299. DOI: https://doi.org/10.1172/JCI140299

Mendenhall AR, Martin GM, Kaeberlein M, Anderson RM. 2021. Cell-To-Cell variation in gene expression and 
the aging process. GeroScience 43:181–196. DOI: https://doi.org/10.1007/s11357-021-00339-9, PMID: 
33595768

Mishra S, Srivastava D, Kumar V. 2021. Improving gene network inference with graph wavelets and making 
insights about ageing-associated regulatory changes in lungs. Briefings in Bioinformatics 22:bbaa360. DOI: 
https://doi.org/10.1093/bib/bbaa360, PMID: 33381809

Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, 
Diamanti E, Nishikawa S-I, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B. 2015. Decoding the 
regulatory network of early blood development from single-cell gene expression measurements. Nature 
Biotechnology 33:269–276. DOI: https://doi.org/10.1038/nbt.3154, PMID: 25664528

Munkres J. 1957. Algorithms for the assignment and transportation problems. Journal of the Society for 
Industrial and Applied Mathematics 5:32–38. DOI: https://doi.org/10.1137/0105003

Nalapareddy K, Zheng Y, Geiger H. 2022. Aging of intestinal stem cells. Stem Cell Reports 17:734–740. DOI: 
https://doi.org/10.1016/j.stemcr.2022.02.003, PMID: 35276089

Nikopoulou C, Parekh S, Tessarz P. 2019. Ageing and sources of transcriptional heterogeneity. Biological 
Chemistry 400:867–878. DOI: https://doi.org/10.1515/hsz-2018-0449, PMID: 30951493

Oliviero G, Kovalchuk S, Rogowska-Wrzesinska A, Schwämmle V, Jensen ON. 2022. Distinct and diverse 
chromatin proteomes of ageing mouse organs reveal protein signatures that correlate with physiological 
functions. eLife 11:e73524. DOI: https://doi.org/10.7554/eLife.73524, PMID: 35259090

Ortigosa-Hernández J, Inza I, Lozano JA. 2017. Measuring the class-imbalance extent of multi-class problems. 
Pattern Recognition Letters 98:32–38. DOI: https://doi.org/10.1016/j.patrec.2017.08.002

Park JE, Polański K, Meyer K, Teichmann SA. 2018. Fast Batch Alignment of Single Cell Transcriptomes Unifies 
Multiple Mouse Cell Atlases into an Integrated Landscape. [bioRxiv]. DOI: https://doi.org/10.1101/397042

Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, Gury M, Weiner A, 
David E, Cohen N, Lauridsen FKB, Haas S, Schlitzer A, Mildner A, Ginhoux F, Jung S, Trumpp A, Porse BT, et al. 
2015. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:1663–1677. 
DOI: https://doi.org/10.1016/j.cell.2015.11.013, PMID: 26627738

Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, Leiby KL, Greaney AM, Yuan Y, Horien C, 
Linderman G, Engler AJ, Boffa DJ, Kluger Y, Rosas IO, Levchenko A, Kaminski N, Niklason LE. 2019. Single-cell 
connectomic analysis of adult mammalian lungs. Science Advances 5:12. DOI: https://doi.org/10.1126/sciadv.​
aaw3851, PMID: 31840053

Raser JM, O’Shea EK. 2005. Noise in gene expression: origins, consequences, and control. Science 309:2010–
2013. DOI: https://doi.org/10.1126/science.1105891, PMID: 16179466

Rhoades NS, Davies M, Lewis SA, Cinco IR, Kohama SG, Bermudez LE, Winthrop KL, Fuss C, Mattison JA, 
Spindel ER, Messaoudi I. 2022. Functional, transcriptional, and microbial shifts associated with healthy 
pulmonary aging in rhesus macaques. Cell Reports 39:110725. DOI: https://doi.org/10.1016/j.celrep.2022.​
110725, PMID: 35443183

Salminen A. 2021. Feed-forward regulation between cellular senescence and immunosuppression promotes the 
aging process and age-related diseases. Ageing Research Reviews 67:101280. DOI: https://doi.org/10.1016/j.​
arr.2021.101280, PMID: 33581314

Salzer MC, Lafzi A, Berenguer-Llergo A, Youssif C, Castellanos A, Solanas G, Peixoto FO, 
Stephan-Otto Attolini C, Prats N, Aguilera M, Martín-Caballero J, Heyn H, Benitah SA. 2018. Identity noise and 
adipogenic traits characterize dermal fibroblast aging. Cell 175:1575–1590.. DOI: https://doi.org/10.1016/j.​
cell.2018.10.012, PMID: 30415840

Sarnoski EA, Song R, Ertekin E, Koonce N, Acar M. 2018. Fundamental characteristics of single-cell aging in 
diploid yeast. IScience 7:96–109. DOI: https://doi.org/10.1016/j.isci.2018.08.011, PMID: 30267689

Schaum N, Lehallier B, Hahn O, Pálovics R, Hosseinzadeh S, Lee SE, Sit R, Lee DP, Losada PM, Zardeneta ME, 
Fehlmann T, Webber JT, McGeever A, Calcuttawala K, Zhang H, Berdnik D, Mathur V, Tan W, Zee A, Tan M, 
et al. 2020. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583:596–602. DOI: https://doi.​
org/10.1038/s41586-020-2499-y, PMID: 32669715

Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, Timens W, 
Koppelman GH, Budinger GRS, Burgess JK, Waghray A, van den Berge M, Theis FJ, Regev A, Kaminski N, 
Rajagopal J, Teichmann SA, Misharin AV, Nawijn MC. 2019. The human lung cell atlas: a high-resolution 
reference map of the human lung in health and disease. American Journal of Respiratory Cell and Molecular 
Biology 61:31–41. DOI: https://doi.org/10.1165/rcmb.2018-0416TR, PMID: 30995076

Schmeer C, Kretz A, Wengerodt D, Stojiljkovic MA, Witte OW. 2019. Dissecting aging and senescence-current 
concepts and open lessons. Cells 8:11. DOI: https://doi.org/10.3390/cells8111446, PMID: 31731770

Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. 2021. The aging lung: physiology, 
disease, and immunity. Cell 184:1990–2019. DOI: https://doi.org/10.1016/j.cell.2021.03.005, PMID: 33811810

Searle SR, Speed FM, Milliken GA. 1980. Population marginal means in the linear model: an alternative to least 
squares means. The American Statistician 34:216–221. DOI: https://doi.org/10.1080/00031305.1980.10483031

https://doi.org/10.7554/eLife.80380
https://doi.org/10.21105/joss.00861
https://doi.org/10.1172/JCI140299
https://doi.org/10.1007/s11357-021-00339-9
http://www.ncbi.nlm.nih.gov/pubmed/33595768
https://doi.org/10.1093/bib/bbaa360
http://www.ncbi.nlm.nih.gov/pubmed/33381809
https://doi.org/10.1038/nbt.3154
http://www.ncbi.nlm.nih.gov/pubmed/25664528
https://doi.org/10.1137/0105003
https://doi.org/10.1016/j.stemcr.2022.02.003
http://www.ncbi.nlm.nih.gov/pubmed/35276089
https://doi.org/10.1515/hsz-2018-0449
http://www.ncbi.nlm.nih.gov/pubmed/30951493
https://doi.org/10.7554/eLife.73524
http://www.ncbi.nlm.nih.gov/pubmed/35259090
https://doi.org/10.1016/j.patrec.2017.08.002
https://doi.org/10.1101/397042
https://doi.org/10.1016/j.cell.2015.11.013
http://www.ncbi.nlm.nih.gov/pubmed/26627738
https://doi.org/10.1126/sciadv.aaw3851
https://doi.org/10.1126/sciadv.aaw3851
http://www.ncbi.nlm.nih.gov/pubmed/31840053
https://doi.org/10.1126/science.1105891
http://www.ncbi.nlm.nih.gov/pubmed/16179466
https://doi.org/10.1016/j.celrep.2022.110725
https://doi.org/10.1016/j.celrep.2022.110725
http://www.ncbi.nlm.nih.gov/pubmed/35443183
https://doi.org/10.1016/j.arr.2021.101280
https://doi.org/10.1016/j.arr.2021.101280
http://www.ncbi.nlm.nih.gov/pubmed/33581314
https://doi.org/10.1016/j.cell.2018.10.012
https://doi.org/10.1016/j.cell.2018.10.012
http://www.ncbi.nlm.nih.gov/pubmed/30415840
https://doi.org/10.1016/j.isci.2018.08.011
http://www.ncbi.nlm.nih.gov/pubmed/30267689
https://doi.org/10.1038/s41586-020-2499-y
https://doi.org/10.1038/s41586-020-2499-y
http://www.ncbi.nlm.nih.gov/pubmed/32669715
https://doi.org/10.1165/rcmb.2018-0416TR
http://www.ncbi.nlm.nih.gov/pubmed/30995076
https://doi.org/10.3390/cells8111446
http://www.ncbi.nlm.nih.gov/pubmed/31731770
https://doi.org/10.1016/j.cell.2021.03.005
http://www.ncbi.nlm.nih.gov/pubmed/33811810
https://doi.org/10.1080/00031305.1980.10483031


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 27 of 33

Seninge L. 2020. Scorect: automated cell type annotation. v0.0.1. GitHub Repository. https://github.com/​
theislab/scanpy

Solé-Boldo L, Raddatz G, Schütz S, Mallm JP, Rippe K, Lonsdorf AS, Rodríguez-Paredes M, Lyko F. 2020. 
Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Communications 
Biology 3:188. DOI: https://doi.org/10.1038/s42003-020-0922-4, PMID: 32327715

Traag VA, Waltman L, van Eck NJ. 2019. From louvain to Leiden: guaranteeing well-connected communities. 
Scientific Reports 9:5233. DOI: https://doi.org/10.1038/s41598-019-41695-z, PMID: 30914743

Trapnell C. 2015. Defining cell types and states with single-cell genomics. Genome Research 25:1491–1498. 
DOI: https://doi.org/10.1101/gr.190595.115, PMID: 26430159

Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, Chang S, Conley SD, Mori Y, Seita J, Berry GJ, 
Shrager JB, Metzger RJ, Kuo CS, Neff N, Weissman IL, Quake SR, Krasnow MA. 2020. A molecular cell atlas of 
the human lung from single-cell RNA sequencing. Nature 587:619–625. DOI: https://doi.org/10.1038/
s41586-​020-2922-4, PMID: 33208946

Uyar B, Palmer D, Kowald A, Murua Escobar H, Barrantes I, Möller S, Akalin A, Fuellen G. 2020. Single-cell 
analyses of aging, inflammation and senescence. Ageing Research Reviews 1:101156. DOI: https://doi.org/10.​
1016/j.arr.2020.101156, PMID: 32949770

Vijg J. 2021. From DNA damage to mutations: all roads lead to aging. Ageing Research Reviews 68:101316. 
DOI: https://doi.org/10.1016/j.arr.2021.101316, PMID: 33711511

Warren LA, Rossi DJ, Schiebinger GR, Weissman IL, Kim SK, Quake SR. 2007. Transcriptional instability is not a 
universal attribute of aging. Aging Cell 6:775–782. DOI: https://doi.org/10.1111/j.1474-9726.2007.00337.x, 
PMID: 17925006

Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P, 
Cockburn J, McDonald HI, MacKenna B, Tomlinson L, Douglas IJ, Rentsch CT, Mathur R, Wong AYS, Grieve R, 
Harrison D, et al. 2020. Factors associated with covid-19-related death using opensafely. Nature 584:430–436. 
DOI: https://doi.org/10.1038/s41586-020-2521-4, PMID: 32640463

Wolf FA, Angerer P, Theis FJ. 2018. Scanpy for Analysis of Large-Scale Single-Cell Gene Expression Data. 
[bioRxiv]. DOI: https://doi.org/10.1101/174029

Ximerakis M, Lipnick SL, Innes BT, Simmons SK, Adiconis X, Dionne D, Mayweather BA, Nguyen L, Niziolek Z, 
Ozek C, Butty VL, Isserlin R, Buchanan SM, Levine SS, Regev A, Bader GD, Levin JZ, Rubin LL. 2019. Single-Cell 
transcriptomic profiling of the aging mouse brain. Nature Neuroscience 22:1696–1708. DOI: https://doi.org/​
10.1038/s41593-019-0491-3, PMID: 31551601

Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, Cui Y, Angelini L, Lee K-A, 
McGowan SJ, Burrack AL, Wang D, Dong Q, Lu A, Sano T, O’Kelly RD, McGuckian CA, Kato JI, Bank MP, 
Wade EA, et al. 2021. An aged immune system drives senescence and ageing of solid organs. Nature 594:100–
105. DOI: https://doi.org/10.1038/s41586-021-03547-7, PMID: 33981041

https://doi.org/10.7554/eLife.80380
https://github.com/theislab/scanpy
https://github.com/theislab/scanpy
https://doi.org/10.1038/s42003-020-0922-4
http://www.ncbi.nlm.nih.gov/pubmed/32327715
https://doi.org/10.1038/s41598-019-41695-z
http://www.ncbi.nlm.nih.gov/pubmed/30914743
https://doi.org/10.1101/gr.190595.115
http://www.ncbi.nlm.nih.gov/pubmed/26430159
https://doi.org/10.1038/s41586-020-2922-4
https://doi.org/10.1038/s41586-020-2922-4
http://www.ncbi.nlm.nih.gov/pubmed/33208946
https://doi.org/10.1016/j.arr.2020.101156
https://doi.org/10.1016/j.arr.2020.101156
http://www.ncbi.nlm.nih.gov/pubmed/32949770
https://doi.org/10.1016/j.arr.2021.101316
http://www.ncbi.nlm.nih.gov/pubmed/33711511
https://doi.org/10.1111/j.1474-9726.2007.00337.x
http://www.ncbi.nlm.nih.gov/pubmed/17925006
https://doi.org/10.1038/s41586-020-2521-4
http://www.ncbi.nlm.nih.gov/pubmed/32640463
https://doi.org/10.1101/174029
https://doi.org/10.1038/s41593-019-0491-3
https://doi.org/10.1038/s41593-019-0491-3
http://www.ncbi.nlm.nih.gov/pubmed/31551601
https://doi.org/10.1038/s41586-021-03547-7
http://www.ncbi.nlm.nih.gov/pubmed/33981041


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ibañez-Solé, Ascensión et al. eLife 2022;11:e80380. DOI: https://doi.org/10.7554/eLife.80380 � 28 of 33

Appendix 1

Appendix 1—table 1. Datasets used in the technical validation of Scallop.
Number of cells, number of genes, median number of genes per cell, and number of estimated cell 
populations in each dataset.

Dataset n_cells n_genes median_genes_per_cell n_populations

PBMC3K 2700 32738 817 12

Joost et al., 2016 1422 6410 1941 17

Paul et al., 2015 2730 3451 872 14

Moignard et al., 2015 3934 42 42 9

Heart10K 7713 11765 2035 26

https://doi.org/10.7554/eLife.80380
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://www.10xgenomics.com/resources/datasets/10-k-heart-cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0
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Appendix 2

Appendix 2—table 1. Seven single-cell RNA sequencing studies of different tissues where age-
related increase in transcriptional noise was measured.
The number of cells (N. cells) in the table is the size of the dataset prior to quality control. The 
Noise column states whether an increase in transcriptional noise was reported in some/all cell types 
in the original articles. The Scope column summarizes the cell types where age-related increase 
in transcriptional noise was reported. The Method column specifies how transcriptional noise was 
measured in the original articles.
Dataset Tissue Organism N. cells Noise Scope Method

Enge et al., 
2017 Pancreas Human 2544 Yes In Beta cells.

(1) Biological over technicalvariation, (2) 
wholetranscriptome-based Euclidean distance to cell 
typemean, (3) invariant gene-based Euclidean distance to 
celltype mean.

Martinez-
Jimenez 
et al., 2019

CD4+ 
T cells Mouse 1513 Yes

Single cell 

type studied. Percentage of cells expressingthe core activation program.

Angelidis 
et al., 2019 Lung Mouse 14,813 Yes

In most cell 
types. Distance to cell type mean.

Kimmel et al., 
2019

Lung, 
spleen, 
kidney Mouse

30,255
30,512
29,815 Yes

In many cell 
types.

(1) Overdispersion of genes, (2) invariant gene-based 
Euclidean distance to cell type mean, (3) whole 
transcriptome--based Manhattan distance to cell type 
mean.

Ximerakis 
et al., 2019 Brain Mouse 37,069 No

Differences 
in magnitude 
and 
directionality 
between cell 
types.

Coefficient of variation of (1) all genes, (2) mitochondrial 
genes, (3) ribosomal genes.

Salzer et al., 
2018

Dermal 
fibroblasts Mouse 731 Yes

Single cell 

type studied. Compactness of clusters on PCA plot.

Solé-Boldo 
et al., 2020 Skin Human 22,142 Yes

In dermal 
fibroblasts. Less clear GO (Gene Ontology) annotations.

https://doi.org/10.7554/eLife.80380
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Appendix 3

Appendix 3—table 1. Data inclusion criteria. 

The general criteria for inclusion in the aging datasets used in this study was to include all samples 
from young and old individuals and to exclude newborn or pediatric individuals, as we did for the 
human pancreatic cell dataset (Enge et al., 2017) and the murine dermal fibroblast dataset (Salzer 
et al., 2018). Care was taken to make all aging datasets sex-balanced. This was not possible for 
some datasets, as they consisted of same-sex individuals. However, same-sex datasets were included 
in our study as sex could not be a confounding factor in the aging analysis.

Dataset Inclusion criteria
Number of 
individuals Number of cells Ages

Enge et al., 2017
All samples except those from pediatric 
individuals (0–6 years old)

Young: 2
Old: 3

Young: 791
Old: 1023

Young: 21 and 22 years
Old: 38, 44, and 58 years

Martinez-Jimenez et al., 
2019 Whole dataset.

Young: 9
Old: 12

Young: 532
Old: 981

Young: 3 months
Old: 24 months

Angelidis et al., 2019 Whole dataset.
Young: 8
Old: 7

Young: 7644
Old: 6526

Young: 3 months
Old: 24 months

Kimmel et al., 2019 Lung samples from all mice except Y1.
Young: 3
Old: 3

Young: 13,352
Old: 12,998

Young: 7 months
Old: 24 months

Ximerakis et al., 2019 Whole dataset.
Young: 8
Old: 8

Young: 16,028
Old: 21,041

Young: 2–3 months
Old: 21–23 months

Salzer et al., 2018.
All samples except those from newborn 
mice.

Young: 4
Old: 4

Young: 329
Old: 332

Young: 2 months
Old: 18 months

Solé-Boldo et al., 2020 Whole dataset.
Young: 2
Old: 3

Young: 8316
Old: 13,826

Young: 25 and 27 years
Old: 53, 69, and 70 years

https://doi.org/10.7554/eLife.80380
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Appendix 4

Appendix 4—figure 1. Uniform manifold approximation and projection plot showing the samples from the seven 
individuals present in the Kimmel lung dataset. Even though most cells cluster together according to their cell type 
rather than by individual, samples from donor Y1 cluster together. We observed that there was a big batch effect 
between this and the rest of the individuals. Histogram showing the log-transformed total number of counts/cell 
per individual mice. The distribution of counts/cell of the samples from mouse Y1 is very different to the rest of the 
samples. This difference could not be overcome using the batch-effect correction tool bbknn. Downsampling the 
counts so that the number of counts/cell was balanced across individual mice did not solve the problem either. 
Therefore, we decided to discard the samples Y1L1 and Y1L2.

https://doi.org/10.7554/eLife.80380
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Appendix 5

Appendix 5—figure 1. Murine aging lung datasets: sample composition and cell type marker expression. 
 (A) There are no mouse- or age-related batch effects. Uniform manifold approximation and projection plots of 
the four aging lung datasets showing the age and mouse labels. Cells cluster according to their cell type rather 
than to their age group or individual mouse. (B) Expression of lung cell type markers by each annotated cluster. 
The dotplots show the expression of the cell type markers from Angelidis et al., 2019 on the four annotated 
lung datasets. The size of the dots represents the fraction of cells expressing one particular marker in the group of 
cells assigned a particular cell type label. The color represents the level of expression of the marker in that group 
averaged over the cells that have a positive expression of that marker.

https://doi.org/10.7554/eLife.80380
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Appendix 6

Appendix 6—table 1. Number of cells, sex, and age composition of the human aging lung datasets.

Dataset
No. of young 
cells

No. of old 
cells

No. of young 
donors No. of old donors Total cells

Raredon et al., 
2019 7263 8589

Three females: 21, 
32, 41, years old
Two males: 22, 35 
years old

Two females: 76, 88 
years old
Two males: 64, 65 
years old 15,852

Travaglini 
et al., 2020 
(HLCA) 7524 7524

One male: 46 years 
old

One male: 75 years 
old 15,048

https://doi.org/10.7554/eLife.80380
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