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Emerging evidence has revealed the significant roles of nicotinamide n-methyltransferase (NNMT) in cancer initiation,
development, and progression; however, a pan-cancer analysis of NNMT has not been conducted. In this study, we first
thoroughly investigated the expression and prognostic significance of NNMT and the relationship between NNMT and the
tumor microenvironment using bioinformatic analysis. NNMT was significantly increased and associated with poor prognosis
in many common cancers. NNMT expression correlated with the infiltration levels of cancer-associated fibroblasts and
macrophages in pan-cancer. Function enrichment analysis discovered that NNMT related to cancer-promoting and immune
pathways in various common cancers, such as colon adenocarcinoma, head and neck squamous cell carcinoma, ovarian serous
cystadenocarcinoma, and stomach adenocarcinoma. NNMT expression was positively correlated with tumor-associated
macrophages (TAMs), especially M2-like TAMs. The results suggest that NNMT might be a new biomarker for immune
infiltration and poor prognosis in cancers, providing new direction on therapeutics of cancers.

1. Introduction

Cancer ranks as a leading cause of death, and the burden of
cancer incidence and mortality is growing rapidly worldwide
[1]. The Global Cancer Statistics 2020 estimates indicated
that there were 19.3 million new cancer cases and almost
10 million cancer-related deaths in 2020 [2]. The etiology
and tumorigenic process are extremely complicated and
occur in concert with alterations in the surrounding stroma.
The tumor microenvironment (TME) is an integral part of
cancer, comprising various cell types (stromal cells, fibro-
blasts, endothelial cells, immune cells, etc.) and extracellular
components (extracellular matrix, growth factors, hor-
mones, cytokines, etc.) [3]. The TME not only plays a pivotal
role during tumor progression and metastasis but also has
profound effects on the therapeutic efficacy [4]. Innate or
adaptive immune cells in TME have both anticancer and
protumor activities, and accumulation of immune infiltrat-
ing cells in TME is involved in tumor development [5]. For-
mer study has proved that oncogenes can rebuild TME and

promote cancer development by directly or indirectly
influencing immune cells or stromal cells. As an alternative
to classic antitumor treatments, immunotherapy has verified
efficacy in many different cancer types and been built up to
reactivate adaptive and innate immune systems, which tar-
gets interactions between immune cells and cancer cells
[6]. For example, programmed death ligand-1 (PD-L1) and
programmed death-1 (PD-1) were found to have promising
anticancer effects on some cancers. Unfortunately, present
immunotherapies have been effective only in a few cancer
patients with specific type but not in others. In consequence,
it is urgent to identify new oncogenes that play key roles in
TME and validate the new immune-related therapeutic tar-
gets for cancers.

Nicotinamide N-methyltransferase (NNMT) is a meta-
bolic enzyme that catalyzes the methylation of nicotinamide
using the universal methyl donor S-adenosyl methionine,
directly linking one-carbon metabolism with the balance
between the cell’s methylation level and nicotinamide ade-
nine dinucleotide levels [7]. Recent research showed that
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NNMT promoted tumorigenesis in several ways, including
facilitating cancer cell proliferation and migration, inhibiting
autophagy, and regulating the differentiation of cancer-
associated fibroblasts (CAFs) in the stroma [8–11].

However, most studies on the function of NNMT in can-
cers have been limited to a specific type of cancer. Its biolog-
ical effects are not entirely known, and the role of NNMT in
TME remains unclear. Whether NNMT can play a role in
the pathogenesis of different tumors through certain com-
mon molecular mechanisms remains to be answered. There-
fore, it is particularly important to conduct an in-depth
examination of the regulatory functions of NNMT in a
pan-cancer dataset to provide new directions and strategies
for the clinical treatment of cancer.

The present study first consistently characterized the
prevalence and prognostic value of NNMT expression in
pan-cancer. Meanwhile, the molecular mechanism of
NNMT in the cancer occurrence and progression and its
function in TME and immune cell infiltration was also dis-
cussed. Generally, our first systematically pan-cancer analy-
sis showed that NNMT expression was closely related with
cancer patient prognosis and immune cell infiltration.
NNMT played an oncogenic role in pan-cancer, and high
NNMT expression had a bad effect on the survival time of
cancer patients. NNMT expression remarkably correlated
with the infiltration levels of CAFs and macrophages. These
findings implied that NNMT influenced the clinical progno-
sis of cancer patients, probably by means of its interaction
with tumor-infiltrating immune cells.

2. Materials and Methods

2.1. Analysis of NNMT Expression in Various Types of
Tumors. NNMT mRNA expression levels in different cancer
types were compared with their matched adjacent normal
tissues by using web-based Oncomine analysis tools. Onco-
mine (https://www.oncomine.org/) is a major cancer micro-
array repository and web-based data mining platform [12],
which contains 715 datasets and 86,733 samples. The thresh-
olds were set at a P value of 0.001 and a fold change of 1.5 in
our experiment. The NNMT expression profile and the
abundance of immune infiltrates in pan-cancer were ana-
lyzed using the TIMER database (https://cistrome
.shinyapps.io/timer). The gene expression levels are repre-
sented as log2 (TPM (transcripts per million) +1) values.
The NNMT protein expression levels were analyzed using
the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) database from UALCAN (http://ualcan.path.uab
.edu/analysis).

Next, we used the “Expression analysis-Box Plots” mod-
ule of the Gene Expression Profiling Interactive Analysis2
(GEPIA2) web server (http://gepia2.cancer-pku.cn/) to
obtain the violin plots of NNMT expression at different
pathological stages (stages I, II, III, and IV) of all cancers
in The Cancer Genome Atlas (TCGA) [13]. The log2 TPM
transformed expression data were applied to the violin plots.

2.2. Analysis of the Correlation between NNMT Expression
and Patient Survival. The correlation between NNMT

expression and survival in pan-cancer was analyzed using
the Kaplan-Meier plotter (https://kmplot.com/analysis/)
and GEPIA (http://gepia.cancer-pku.cn/). The Kaplan-
Meier plotter is a powerful online tool that can be used to
assess the effect of 54,675 genes on survival using 10,461
cancer samples in 21 cancer types [14]. We analyzed the
relationship of NNMT expression with overall survival
(OS) and relapse-free survival (RFS) in each available cancer
type using the Kaplan-Meier plotter. The hazard ratio (HR)
with 95% confidence intervals (CI) and logrank P value were
computed. GEPIA is an interactive online platform with
tumor sample information from TCGA and normal sample
information from TCGA and Genotype-Tissue Expression
project [15]. We explored the effect of NNMT expression
on OS and disease-free survival (DFS) in 34 cancer types
using GEPIA. A cut-off value of 50% was used as the expres-
sion threshold to distinguish the high expression and low
expression cohorts. The logrank test was used in the hypoth-
esis test, and the survival plots were obtained through the
“Survival Analysis” module of GEPIA.

2.3. Correlation of NNMT Expression with the Tumor
Microenvironment in Pan-Cancers. Using TCGA NNMT
expression data, the stromal and immune cell scores were
calculated after applying the ESTIMATE algorithm in R-
package “estimate” and “limma” [16] for predicting the pres-
ence of infiltrating stromal/immune cells in pan-cancer tis-
sues. The correlation analysis of NNMT expression with
the tumor microenvironment (TME) and immune cell infil-
tration was pursued using the R-package “ggplot2,”
“ggpubr,” and “ggExtra” (P < 0:001 as a cut-off value).

We used the “Immune-Gene” module of the TIMER2
web application to explore the association between NNMT
expression and immune infiltrates across all TCGA tumors.
The TIMER, CIBERSORT, CIBERSORT-ABS, QUANTI-
SEQ, XCELL, MCPCOUNTER, and EPIC algorithms were
applied for immune infiltration estimations. The P values
and partial correlation values were obtained via the purity-
adjusted Spearman rank correlation test. The data were visu-
alized as a heatmap and a scatter plot.

Next, we confirmed the association between NNMT
expression and immune infiltrates in pan-cancer using
Immune Cell Abundance Identifier (ImmuCellAI; http://
bioinfo.life.hust.edu.cn/ImmuCellAI). The ImmuCellAI is a
tool to estimate the abundance of 24 immune cells from a
gene expression dataset, including RNA sequencing and
microarray data, wherein the 24 immune cells comprise 18
T cell subtypes and 6 other immune cells: B cell, dendritic
cells (DCs), natural killer (NK) cell, neutrophils, monocytes,
and macrophages. Cancer samples were divided into two
groups according to the median NNMT expression (high
versus low level), and their immune cell infiltration levels
were compared.

The correlations between NNMT expression and gene
markers of tumor-associated macrophages (TAMs) as well
as M1 and M2 macrophages in colon adenocarcinoma
(COAD), head and neck squamous cell carcinoma (HNSC),
ovarian serous cystadenocarcinoma (OV), and stomach ade-
nocarcinoma (STAD) were analyzed in the TIMER database.
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Figure 1: Continued.
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2.4. Correlation and Enrichment Analyses. The Pearson cor-
relation analysis of NNMTmRNA and othermRNAs was per-
formed in the COAD, HNSC, OV, and STAD using TCGA
data. The 300 genes most positively associated with NNMT
were selected for an enrichment analysis to determine the
function of NNMT. Gene set enrichment analysis (GSEA)
was performed using the gseGO, gseKEGG, and gsePathway
functions in the clusterProfiler R software package R with
the following parameters: nPerm = 1,000, minGSSize = 10,
maxGSSize = 1,000, and P < 0:05 as a cut-off value.

2.5. Statistical Analysis. Survival curves were generated by the
Kaplan-Meier plots and GEPIA. The results generated in
Oncomine were displayed with P values, fold changes, and
ranks. The results of the GEPIA and Kaplan-Meier plots were
displayed with HR and Por Cox P values from a logrank test.
The correlations between NNMT expression and abundance
scores of stromal/immune cells were evaluated by Spearman’s
correlation. The strength of the correlation was determined
using the following guide for the absolute value: very weak,
in between 0.00 and 0.19; weak, in between 0.20 and 0.39;
moderate, in between 0.40 and 0.59; strong, in between 0.60
and 0.79; and very strong, in between 0.80 and 1.0. The results
with P < 0:05 were considered as statistically significant.

3. Results

3.1. NNMT Expression in Different Cancer Types. First, we
evaluated the NNMT mRNA levels in diverse cancers and
their matched adjacent normal tissues over a cancer-wide

range in Oncomine and TIMER databases. Compared with
the normal tissues, in Oncomine database, the results
revealed higher expression of NNMT in brain and central
nervous system (CNS), breast, cervix, colon, esophagus,
stomach, head and neck, kidney, lymphatic system, ovary,
and pancreas cancers (Figure 1(a)). In contrast, decreased
expression of NNMT was found in bladder, liver, and lung
cancers.

To further verify the expression levels of NNMT in can-
cerous and normal tissues across all TCGA tumors, we pro-
filed and compared them in TIMER platform. Specifically,
NNMT expression levels were significantly elevated in colon
adenocarcinoma (COAD), head and neck squamous cell car-
cinoma (HNSC), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), and stomach
adenocarcinoma (STAD); these results were consistent with
those in the Oncomine database. In contrast, decreased
expression of NNMT was found in bladder urothelial carci-
noma (BLCA), breast invasive carcinoma (BRCA), cholan-
giocarcinoma (CHOL), kidney chromophobe (KICH), liver
hepatocellular carcinoma (LIHC), lung squamous cell carci-
noma (LUSC), and thyroid carcinoma (THCA)
(Figure 1(b)).

Further comparison of NNMT protein expression
according to the CPTAC database from UALCAN demon-
strated that NNMT protein expression levels were signifi-
cantly higher in advanced tumor tissues than in normal
tissues; this was observed in breast cancer, colon cancer,
glioblastoma multiforme, HNSC, KIRC, and pancreatic ade-
nocarcinoma (PAAD) (Figure 1(c), all P < 0:001).
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Figure 1: The NNMT mRNA expression levels in different human cancer types. (a) Increased or decreased expression of NNMT compared
with normal tissues across different cancer types in the Oncomine database. (b) The NNMT mRNA expression levels in different cancer
types from TCGA database in TIMER (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). (c) The NNMT protein expression levels in normal
tissues and primary tissues of the breast cancer, colon cancer, glioblastoma multiforme, HNSC, KIRC, and PAAD were examined using
the CPTAC dataset. CPTAC: Clinical Proteomic Tumor Analysis Consortium; HNSC: head and neck squamous cell carcinoma; KIRC:
kidney renal clear cell carcinoma; NNMT: nicotinamide N-methyltransferase; PAAD: pancreatic adenocarcinoma.
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We also used the “Pathological Stage Plot” module of
GEPIA2 to observe the correlation between NNMT expres-
sion and the pathological stages of cancers in all TCGA
tumors. NNMT expression was significantly associated with
the TNM stage in adrenocortical carcinoma (ACC), BLCA,
BRCA, esophageal carcinoma (ESCA), KIRC, ovarian serous
cystadenocarcinoma (OV), STAD, testicular germ cell
tumors (TGCT), and THCA. As shown in Figure 2, NNMT
expression level was significantly different from stage I to IV
in ACC (F value = 2:79, Pr = 0:0467Þ, BLCA (F value = 17,
Pr = 8:17E − 08Þ, BRCA (F value = 2:97, Pr = 0:0188Þ, ESCA
(F value = 3:79, Pr = 0:0116Þ, KIRC (F value = 4:07, Pr =
0:00716Þ, OV (F value = 3:82, Pr = 0:0227Þ, STAD
(F value = 5:34, Pr = 0:0013Þ, TGCT (F value = 5:98, Pr =
0:00329Þ, and THCA (F value = 14:3, Pr = 6:35E − 09Þ. It
seemed that NNMT expression was higher in the stage III-
IV but lower in stage I-II patients in BLCA, OV, STAD,
and THCA.

3.2. Prognostic Potential of NNMT in Cancers. Next, we ana-
lyzed the prognostic value of NNMT expression in pan-
cancers using the Kaplan-Meier plotter and GEPIA data.

The results in the Kaplan-Meier plotter database showed
that 10 out of 21 cancer types displayed poorer prognosis,
including bladder carcinoma (OS : HR = 1:53, 95%CI =
1:05 to 2.22, logrank P = 0:026), cervical squamous cell car-
cinoma and endocervical adenocarcinoma (CESC)
(OS : HR = 1:71, 95%CI = 1:07 to 2.74, logrank P = 0:023;
RFS : HR = 3:05, 95%CI = 1:4 to 6.68, logrank P = 0:0032),
HNSC (OS : HR = 1:66, 95%CI = 1:27 to 2.19, logrank
P = 0:00021; RFS : HR = 3:21, 95%CI = 1:51 to 6.81, log-
rank P = 0:0014), KIRC (OS : HR = 1:69, 95%CI = 1:23 to
2:31, logrank P = 0:0011), LUSC (OS : HR = 1:4, 95%CI =
1:07 to 1.85, logrank P = 0:016), OV (OS : HR = 1:35, 95%
CI = 1:04 to 1.77, logrank P = 0:025; RFS : HR = 1:45, 95%
CI = 1:0 to 2.1, logrank P = 0:046), STAD (OS : HR = 1:92,
95%CI = 1:37 to 2.69, logrank P = 0:00012; RFS : HR = 3:23,
95%CI = 1:68 to 6.19, logrank P = 0:00019), thymoma
(THYM) (OS : HR = 3:95, 95%CI = 1:05 to 14.86, logrank
P = 0:028), THCA (OS : HR = 3:05, 95%CI = 1:13 to 8.21,
logrank P = 0:02), and ESCA (RFS : HR = 5:96, 95%CI =
0:82 to 43.3, logrank P = 0:046) (Figure 3(a)). Only in sar-
coma (OS : HR = 0:63, 95%CI = 0:42 to 0.96, logrank P =
0:03) and uterine corpus endometrial carcinoma (UCEC)
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(RFS : HR = 0:46, 95%CI = 0:27 to 0.77, logrank P = 0:0027),
high NNMT expression was associated with better prognosis
(Figure 3(a)).

To further clarify the function of NNMT in pan-cancer,
the GEPIA database, which can provide more cancer types,
was used. Equally, higher NNMT mRNA levels revealed a

KICH, DFS

Logrank p = 0.041
HR (high) = 4.4
p (HR) =0.062
n (high) = 32
n (low) = 32

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100

LGG, DFS

Logrank p = 5.3e–05
HR (high) = 1.9 
p (HR) = 7.1e–05

n (high) = 257
n (low) = 257

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100

HNSC, DFS

Logrank p = 0.024
HR (high) = 1.5
p (HR) = 0.025
n (high) = 259
n (low) = 259

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100 200

STAD, DFS
Logrank p = 0.0031

HR (high) = 1.8
p (HR) = 0.0035
n (high) = 192
n (low) = 192

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 20 1006040 80 120

All cancer types, OS
Logrank p = 0

HR (high) = 1.4
p (HR) = 0

n (high) = 4751
n (low) = 4751

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 100 300200

All cancer types, OS
Logrank p = 1.4e–08

HR (high) = 1.2
p (HR) =1.4e–08
n (high) = 4751
n (low) = 4751

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 100 300200

CESC, DFS
Logrank p = 0.041

HR (high) = 1.8
p (HR) =0.044
n (high) = 146
n (low) = 146

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100 200

GBM, DFS
Logrank p = 0.047

HR (high) = 1.5
p (HR) =0.05
n (high) = 81
n (low) = 81

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 10 3020 40 50

COAD, OS
Logrank p = 0.014

HR (high) = 1.8
p (HR) = 0.016
n (high) = 135
n (low) = 135

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100

LGG, OS
Logrank p = 1.7e–09

HR (high) = 3.2
p (HR) = 1.2e–08

n (high) = 257
n (low) = 257

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100 200

UVM, OS
Logrank p = 0.0075

HR (high) = 3.4
p (HR) = 0.01
n (high) = 39
n (low) = 39

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 20 6040 80

HNSC, OS
Logrank p = 0.00035

HR (high) = 1.6
p (HR) = 0.00041

n (high) = 259
n (low) = 259

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 50 150100 200

STAD, OS
Logrank p = 0.0076

HR (high) = 1.5
p (HR) = 0.0081
n (high) = 192
n (low) = 192

Pe
rc

en
t s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Months
0 20 6040 80 100 120

Low NNMT TPM
High NNMT TPM

(b)

Figure 3: The Kaplan-Meier survival curves of NNMT expression in different cancer types. (a). Relationship between NNMT expression
and the OS or RFS of cancer patients in the Kaplan-Meier Plotter. (b). Relationship between NNMT expression and the OS or DFS of
cancer patients in the GEPIA. DFS, disease-free survival; GEPIA, Gene Expression Profiling Interactive Analysis; NNMT: nicotinamide
N-methyltransferase; OS: overall survival; RFS: relapse-free survival.

7Disease Markers



worse prognostic prediction in all cancer types
(OS : HR ðhighÞ = 1:4, logrank P = 0; disease − free survival
ðDFSÞ: HRðhighÞ = 1:2, logrank P = 1:4E − 08). NNMT high
expression had a poorer prognosis in certain cancer types
from GEPIA database, including COAD
(OS : HR ðhighÞ = 1:8, logrank P = 0:014), HNSC
(OS : HR ðhighÞ = 1:6, logrank P = 0:00035; DFS : HR ðhighÞ
= 1:5, logrank P = 0:024), brain lower-grade glioma (LGG)
(OS : HR ðhighÞ = 3:2, logrank P = 1:7E − 09; DFS : HR ð
highÞ = 1:9, logrank P = 5:3E − 05), STAD
(OS : HR ðhighÞ = 1:5, logrank P = 0:0076; DFS : HR ðhighÞ
= 1:8, logrank P = 0:0031), uveal melanoma (UVM)
(OS : HR ðhighÞ = 3:4, logrank P = 0:0075), CESC
(DFS : HR ðhighÞ = 1:8, logrank P = 0:041), glioblastoma mul-
tiforme (GBM) (DFS : HR ðhighÞ = 1:5, logrank P = 0:047),
and KICH (DFS : HR ðhighÞ = 4:4, logrank P = 0:041)
(Figure 3(b)). These results were consistent with the findings
in the Kaplan-Meier plotter database.

Taking together, these integrated analyses revealed that
NNMT played a detrimental role in cancer development
and had prognostic value in pan-cancer.

3.3. Correlation between NNMT Expression and Tumor
Microenvironment (TME) in Pan-Cancer. The TME is essen-
tial in stimulating heterogeneity among cancer cells, thus
leading to cancer cell progression and metastasis [17]. Since
our findings validated the prognostic role of NNMT in pan-
cancer, it would be highly appropriate to further explore the
relationship between TME and NNMT expressions in differ-
ent types of cancers. We used the ESTIMATE algorithm to
calculate the stromal and immune cell scores in pan-
cancer. The results showed that NNMT expression had sig-

nificant correlations with stromal scores in 30 types of can-
cer and significant correlations with immune scores in 29
types of cancers. As shown in Figure 4(a) and Table S1,
NNMT expression had very strong correlation with
stromal scores in BLCA, PCPG, READ, and COAD (all
r > 0:8, P < 0:0001); had strong correlation with stromal
scores in THCA, LUSC, ESCA, UVM, HNSC, BRCA,
STAD, TGCT, KICH, LGG, and PAAD (all r > 0:6, P <
0:0001); and had moderate correlation with stromal
scores in SARC, DLBC, ACC, OV, GBM, PRAD,
SKCM, UCS, UCEC, CESC, and THYM (all r > 0:4, P <
0:001). NNMT expression had strong correlation with
immune scores in PCPG, BLCA, COAD, KICH, THCA,
UVM, and READ (all r > 0:6, P < 0:0001) and had
moderate correlation with immune scores in OV, SARC,
LUSC, PRAD, ACC, GBM, ESCA, LGG, KIRP, PAAD,
LIHC, UCS, and UCEC (all r > 0:4, P < 0:01)
(Figure 4(b) and Table S1). This results would
particularly important for COAD, HNSC, OV, and
STAD since NNMT expression was increased and
associated with poor prognosis in these types of cancer
(according to the Kaplan-Meier or GEPIA analyses).
NNMT expression had a significantly positive
correlation to both stromal and immune scores in these
types of cancer (Table S1 and Figure S1). These results
indicated that the infiltration of stromal or immune
cells escalates accompanied with the increase of NNMT
expression in COAD, HNSC, OV, and STAD.

3.4. Association between NNMT Expression and Immune Cell
Infiltration in Pan-Cancer. Tumor-infiltrating immune cells
in the TME play a key part in the initiation, progression,
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Figure 5: Continued.
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recurrence, and metastasis of cancers. Here, we utilized some
or all algorithms, including TIMER, EPIC algorithms,
QUANTISEQ, CIBERSORT or CIBERSORT-ABS,
MCPCOUNTER, and XCELL, to investigate the relationship
between NNMT gene expression and the infiltration level of
different immune cells in diverse cancers.

The results showed that NNMT expression was closely
related to the abundance of immune cells infiltrating:
cancer-associated fibroblasts (CAFs) in 30 types of tumor,
endothelial cells in 27 types of tumor, macrophages in 28
types of tumor, CD8+ T cells in 26 types of tumor, neutro-
phils in 25 types of tumor, CD4+ T cells in 22 types of tumor,
natural killer (NK) cells in 20 types of tumor, and B cells in
11 types of tumor (Table S2). Compared with other immune
cells, we observed a stronger correlation between NNMT
expression and the infiltration of CAFs and macrophages

in TCGA pan-cancer. The expression of NNMT had a
positively strong correlations with infiltration levels of
CAFs in COAD, READ, STAD, and BLCA (all r > 0:6, P <
0:0001), had a positively strong correlation with
macrophages in READ (r = 0:63, P < 0:0001), and had
moderate correlation with macrophages in UVM, BLCA,
KICH, CHOL, LGG, COAD, PCPG, LIHC, SARC, GBM,
UCS, DLBC, and LUSC (all r > 0:4, P < 0:001) (Figure 5(a)
and Table S2).

To verify the association between NNMT expression and
immune cell infiltration, we perform the correlation analysis
in pan-cancer using ImmuCellAI. Consistent with the
results in TCGA pan-cancer, macrophages were the most
positively relevant immune cells with NNMT expression
(Figure 5(b)). In addition, in cancers which NNMT expres-
sion levels were correlated with poor prognosis, such as
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Figure 5: Correlation analysis between NNMT expression and immune cell infiltration. (a) NNMT expression significantly correlated with
the infiltration levels of CAFs, endothelial cells, and macrophages in TCGA pan-cancer. (b) NNMT expression significantly correlated with
the infiltration levels of various immune cells in the ImmuCellAI database. CAFs: cancer-associated fibroblasts; ImmuCellAI: Immune Cell
Abundance Identifier; NNMT: nicotinamide N-methyltransferase; TCGA: The Cancer Genome Atlas.
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COAD, HNSC, OV, and STAD, macrophage levels were sig-
nificantly upregulated in the NNMT high expression group
(Figure S2). In COAD, NNMT expression had significantly
positive correlation with infiltrating levels of macrophages
(r = 0:62, P = 1:35E − 31), dendritic cells (DCs) (r = 0:54, P
= 2:09E − 22), T cells (r = 0:47, P = 4:80E − 17), induced
regulatory T cells (iTregs) (r = 0:38, P = 5:66E − 11), T-
helper 2 (Th2) cells (r = 0:38, P = 5:99E − 11), NK cells
(r = 0:38, P = 7:03E − 11), and CD4+ T cells (r = 0:36, P =
6:73E − 10). For HNSC, the results also displayed that
NNMT expression significantly related to infiltrating levels
of macrophages (r = 0:53, P = 4:00E − 39), NKT cells
(r = 0:46, P = 5:94E − 28), monocyte (r = 0:31, P = 3:78E −
13), and DCs (r = 0:29, P = 2:34E − 11). As same as COAD
and HNSC, the correlation between NNMT and infiltrating
levels of immune cells in OV is as follows: macrophage
(r = 0:45, P = 6:49E − 17), T cells (r = 0:46, P = 3:56E − 17),
follicular helper T (Tfh) cells (r = 0:44, P = 2:75E − 16),
iTregs (r = 0:43, P = 6:38E − 15), Th2 cells (r = 0:40, P =
4:37E − 13), and DCs (r = 0:32, P = 8:75E − 09). Moreover,
NNMT expression was positively related to CD4+ T cells
(r = 0:33, P = 1:20E − 11), NK cells (r = 0:31, P = 9:07E − 11),
and macrophages (r = 0:29, P = 1:20E − 09) in STAD
(Figure 5(b) and Table S3). These results reflected that
NNMT might influence cancer patient survival by affecting
immune cell infiltration in the TME.

3.5. NNMT Correlates with Polarization of M2 Macrophage.
The results above showed that macrophages was the most
positively relevant immune cells with NNMT expression in
pan-cancer. Next, we analyzed the correlation of NNMT
and the gene markers of macrophage subtypes including
tumor-associated macrophages (TAMs) and M1 and M2
macrophages in COAD, HNSC, OV, and STAD. The results
showed that gene markers of TAM such as CCL2, CD68,
CD80, and IL10 had strong or moderate correlations with

NNMT expression. M2 macrophage markers including
CD163, VSIG4, MRC1, and MS4A4A also had strong or
moderate correlations with NNMT expression. However,
M1 macrophage markers including INOS, IRF5, and ARG2
had negatively or no apparent correlations with NNMT
expression (Table 1). These results indicated that NNMT
may regulate the differentiation of macrophages into TAMs
by affecting the polarization of M2 macrophage, which con-
tributes to tumorigenesis and development.

3.6. Functional Enrichment Analysis of NNMT in COAD,
HNSC, OV, and STAD. We did Gene Set Enrichment Anal-
ysis (GSEA) of NNMT in COAD, HNSC, OV, and STAD to
investigate the molecular mechanisms of NNMT in tumori-
genesis and TME. Interestingly, we found the similar results
in the selected cancers. NNMT was involved in a number of
GO terms including MAPK cascade, regulation of cytokine
production, and cytokine production in COAD, HNSC,
OV, and STAD and angiogenesis in COAD, OV, and STAD
(Figure 6(a)). GSEA results of KEGG analysis indicated that
NNMT was associated with many cancer-promoting and
immune-related pathways, such as the PI3K-Akt signaling
pathways, cell adhesion molecules, and chemokine signaling
pathways in COAD, HNSC, OV, and STAD; MAPK signal-
ing pathways in HNSC, OV, and STAD; and cytokine-
cytokine receptor interaction in COAD and OV
(Figure 6(b)). The GSEA results for Reactome terms sug-
gested that NNMT was positively regulated and provided
several immune-related functions in COAD, HNSC, OV,
and STAD. These activities included immunoregulatory
interactions between a lymphoid and nonlymphoid cell,
cytokine signalling in the immune system, adaptive and
innate immune system, neutrophil degranulation, and
interleukin-mediated signalling (Figure 6(c)). Generally,
these results suggested that NNMT played a key role in car-
cinogenesis and tumor immune microenvironment.

Table 1: Analysis of the correlation between NNMT and gene markers of TAMs, M1 macrophages, and M2 macrophages in TIMER.

Cell type
Gene

markers

COAD HNSC OV STAD
None Purity None Purity None Purity None Purity

Cor P Cor P Cor P Cor P Cor P Cor P Cor P Cor P

TAM

CCL2 0.73 ∗∗∗∗ 0.68 ∗∗∗∗ 0.37 ∗∗∗∗ 0.33 ∗∗∗∗ 0.48 ∗∗∗∗ 0.26 ∗∗∗∗ 0.59 ∗∗∗∗ 0.57 ∗∗∗∗

CD68 0.47 ∗∗∗∗ 0.40 ∗∗∗∗ 0.25 ∗∗∗∗ 0.19 ∗∗∗∗ 0.42 ∗∗∗∗ 0.14 ∗ 0.23 ∗∗∗∗ 0.19 ∗∗∗∗

CD80 0.51 ∗∗∗∗ 0.43 ∗∗∗∗ 0.37 ∗∗∗∗ 0.33 ∗∗∗∗ 0.36 ∗∗∗∗ 0.16 ∗ 0.27 ∗∗∗∗ 0.22 ∗∗∗∗

IL10 0.52 ∗∗∗∗ 0.46 ∗∗∗∗ 0.35 ∗∗∗∗ 0.30 ∗∗∗∗ 0.47 ∗∗∗∗ 0.27 ∗∗∗∗ 0.45 ∗∗∗∗ 0.42 ∗∗∗∗

M1
macrophage

INOS
(NOS2)

-0.14 ∗∗∗ -0.21 ∗∗∗∗ -0.17 ∗∗∗∗ -0.13 ∗∗∗ 0.02 0.73 -0.06 0.37 -0.05 0.27 -0.08 0.13

IRF5 0.26 ∗∗∗∗ 0.26 ∗∗∗∗ -0.03 0.54 -0.04 0.441 0.11 0.06 -0.03 0.63 0.23 ∗∗∗∗ 0.24 ∗∗∗∗

ARG2 0.02 0.65 -0.02 0.75 -0.24 ∗∗∗∗ -0.17 ∗∗∗∗ 0.18 ∗∗ -0.14 ∗ 0.13 ∗ -0.11 ∗

M2
macrophage

CD163 0.67 ∗∗∗∗ 0.6 ∗∗∗∗ 0.47 ∗∗∗∗ 0.42 ∗∗∗∗ 0.43 ∗∗∗∗ 0.19 ∗∗∗ 0.42 ∗∗∗∗ 0.38 ∗∗∗∗

VSIG4 0.68 ∗∗∗∗ 0.61 ∗∗∗∗ 0.50 ∗∗∗∗ 0.45 ∗∗∗∗ 0.52 ∗∗∗∗ 0.292 ∗∗∗∗ 0.49 ∗∗∗∗ 0.47 ∗∗∗∗

MRC1 0.55 ∗∗∗∗ 0.47 ∗∗∗∗ 0.45 ∗∗∗∗ 0.38 ∗∗∗∗ 0.36 ∗∗∗∗ 0.11 0.08 0.38 ∗∗∗∗ 0.35 ∗∗∗∗

MS4A4A 0.64 ∗∗∗∗ 0.57 ∗∗∗∗ 0.50 ∗∗∗∗ 0.45 ∗∗∗∗ 0.49 ∗∗∗∗ 0.252 ∗∗∗∗ 0.46 ∗∗∗∗ 0.42 ∗∗∗∗

None: correlation coefficient without adjustment; Purity: correlation adjusted by tumor purity; Cor: R value of Spearman’s correlation. ∗P < 0:05. ∗∗P < 0:01.
∗∗∗P < 0:001. ∗∗∗∗P < 0:0001.
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4. Discussion

Nicotinamide N-methyltransferase (NNMT) which was dis-
covered 70 years ago methylates nicotinamide (NA) to gen-

erate 1-methyl nicotinamide. Its role in human health has
evolved from serving only metabolic functions to being a
driving force in a number of cancers. Although the increas-
ing evidence showed NNMT was a feasible therapeutic
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Figure 6: Merged enrichment plots for NNMT obtained from GSEA. (a–c) Merged plots of GSEA indicating the top 20 significant pathways
associated with NNMT expression according to GO (a), KEGG (b), and Reactome analyses (c) in COAD, HNSC, OV, and STAD. Red color
represents immune-related pathways. COAD: colon adenocarcinoma; GO: Gene Ontology; GSEA: Gene Set Enrichment Analysis; HNSC:
head and neck squamous cell carcinoma; KEGG: Kyoto Encyclopedia of Genes and Genome; NNMT: nicotinamide N-methyltransferase;
OV: ovarian serous cystadenocarcinoma; STAD: stomach adenocarcinoma.
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target, its primary functions and mechanisms in cancer
development, especially in tumor immunology, are not fully
understood. The present study first thoroughly investigated
the expression and prognostic significance of NNMT and
the correlation between NNMT expression and immune cell
infiltration in tumor microenvironment (TME) using bioin-
formatic techniques.

By analyzing the differences expression of NNMT in
diverse tumor tissues and adjacent normal tissues, we found
that the expression level of NNMT in the tumor tissues of
BRCA, COAD, HNSC, KIRC, PAAD, and STAD is higher,
while low NNMT expression was observed in bladder, liver,
and lung cancers. The difference levels of NNMT expression
in various cancer types may reflect distinct underlying
mechanisms and functions. NNMT overexpression increases
the chemoresistance through SIRT1 stabilization and activ-
ity in breast cancer [18]. NNMT depletion contributes to
liver cancer cell survival by enhancing autophagy under
nutrient starvation [10].

We further found that NNMT expression in different
pathological stages of cancers was significantly different,
consistent with the previous study showing that increased
expression of NNMT was associated with increased tumor
stage in STAD and OV [19, 20]. In fact, increased NNMT
expression was associated with primary tumor size, lymph
node metastasis, distant metastasis, and TNM stage in gas-
tric cancer [19] and with increased tumor stage, grade, and
mesenchymal molecular subtype in ovarian cancer [20]
which indicated that NNMT might promote the growth
and progression of cancer.

Upon analysis of the Kaplan-Meier plotter, upregulated
expression of NNMT correlated with poor OS, RFS, or
DSS in several cancers including bladder carcinoma, CESC,
COAD, HNSC, KIRC, LUSC, LGG, OV, STAD, and THCA
while correlated with good OS in sarcoma and UCEC.

Similar results also indicated that NNMT expression was
significantly higher and correlated with poor survival in
breast cancer [18], colorectal cancer [21], gastric cancer
[19], and OV [20]. In regard to endometrial cancer, NNMT
expression was significantly higher in primary high-grade
and metastatic tumors and NNMT overexpression in metas-
tatic tissue was associated with decreased survival [22].
These data conflict with our current results, possibly because
only primary uterine corpus types of endometrial carcinoma
are present in our study. Interestingly, NNMT was identified
as a poor prognostic factor in CESC, HNSC, KIRC, LUSC,
and LGG which has not been reported in previous studies.
These results confirmed that NNMT was a potential bio-
marker for predicting the prognosis of cancer patients.

The emerging tumor microenvironment (TME) is a
complex and continuously evolving entity. Early in tumor
growth, a dynamic and reciprocal relationship develops
between cancer cells and components of the TME to support
cancer cell survival, local invasion, and metastatic dissemi-
nation [23]. Here, we found that NNMT expression presents
a significantly positive correlation with both stromal and
immune components of TME in pan-cancer.

Cancer-associated fibroblasts (CAFs) are important
ingredients of the microenvironment in most types of can-

cers, and CAFs in the stroma of the TME have been reported
to participate in modulating the function of various tumor-
infiltrating immune cells [24, 25]. CAFs contribute to cancer
immune escape through multiple mechanisms, such as
secretion of multiple cytokines and chemokines, mediating
the recruitment and functional differentiation of innate
and adaptive immune cells [25]. Previous work has reported
that NNMT is a central, metabolic regulator of CAF differ-
entiation, and cancer progression in the stroma and inhibi-
tion of NNMT activity led to a reversion of the CAF
phenotype [11]. High stromal NNMT is a prognostic marker
in colorectal cancer [21], and NNMT enhances resistance to
5-fluorouracil in colorectal cancer cells through inhibition of
the ASK1-p38 MAPK pathway [26]. NNMT induces cellular
invasion via activating PI3K/Akt/SP1/MMP-2 pathway in
clear cell renal cell carcinoma (ccRCC) [27]. The decreased
activation of p44/42 MAPK and Akt following NNMT
silencing shows a similar trend under in vivo conditions
[28]. Plenty of evidence has confirmed that PI3K/AKT path-
way promotes the differentiation of diverse cells into CAFs.
PI3K/AKT signaling pathways regulated CAF-mediated can-
cer cell proliferation in many cancers including STAD and
COAD [29]. MAPK signal was found to be involved not only
in the metabolism of fatty acids but also in glycolysis in CAFs.
Compared with these studies, our results showed that NNMT
expression level had a positively correlations with infiltration
levels of CAFs in 30 types of cancer. Our KEGG analysis sug-
gested that NNMT was significantly associated with many
cancer-promoting and immune-related pathway including
PI3K-Akt, chemokine, cytokine in the immune system,
cytokine-cytokine receptor interaction, cell adhesion, JAK-
STAT, and MAPK signaling pathways. Combined with the
previous research, our results serve as a reminder that NNMT
regulates the CAFs in various cancers.

Immunoscore is a routine parameter in predicting the
response to immunotherapy and should be considered as a
prognostic factor for patients’ survival [30]. Recently, with
the breakthrough of immune checkpoints, immune check-
point inhibitors, such as PD-1/PD-L1 inhibitors, have been
widely used in the treatment of diverse cancers. The
dynamic characteristics of the TME, tumor infiltrating cells,
and immune biomarkers are important for the immunother-
apy response [31]. Our current results showed that NNMT
had a wider tumor applicability and was more closely related
with immune cells in pan-cancer. NNMT significantly corre-
lated with the infiltration levels of B cells, CD4+ T cells,
CD8+ T cells, macrophages, NK cells, and neutrophils in
diverse cancers. Specifically, NNMT expression had a
strongly positive correlation with macrophages.

Macrophage levels were remarkably increased in the
NNMT high expression group compared with that in the
NNMT low expression group in COAD, HNSC, OV, and
STAD. Among these cancer types, tumor-associated macro-
phage (TAM) markers such as CCL2, CD68, CD80, and
IL10 had strong or moderate correlations with NNMT
expression. M2 macrophage markers, for example, CD163,
VSIG4, MRC1, and MS4A4A, also had strong or moderate
correlations with NNMT expression while M1 macrophage
markers, including INOS, IRF5, and ARG2, had negatively
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or no apparent correlations with NNMT expression. These
findings indicated that NNMT may regulate the polarization
of TAMs. TAMs in TME typically promote cancer cell pro-
liferation, immunosuppression, and angiogenesis in support
of tumor growth and metastasis. Oftentimes, the abundance
of TAMs in tumor is correlated with poor disease prognosis.
In colorectal cancer (CRC), TAMs induce EMT program to
enhance CRC migration, invasion, and CTC-mediated
metastasis by regulating the JAK2/STAT3/miR-506-3p/
FoxQ1 axis, which in turn leads to the production of CCL2
that promote macrophage recruitment [32]. As for HNSC,
HNSC cells drive TAMs towards M2 polarization. In turn,
M2 TAMs contribute to migration and invasion of HNSC
cells [33]. NNMT promotes epithelial-mesenchymal transi-
tion (EMT) in gastric cancer cells by activating transforming
growth factor-β1 expression [34]. TAMs can also promote
the invasiveness and migration properties of cancer cells by
remodeling the extracellular matrix [35].

These above results indicate that NNMT may promote
the differentiation of macrophages into TAMs involved in
cancer progression resulting in poor prognosis. Together,
our findings suggest that NNMT may play a key role in
the regulation of cancer immune infiltrating, finally
influencing prognosis of cancer patients.

5. Conclusions

In summary, we demonstrated that NNMT expression was
related to clinicopathological characteristics and poor prog-
nosis of pan-cancer. High expression of NNMT was closely
related to CAF and immune cell infiltrations. High NNMT
expression was predictive of macrophage infiltration and
encouraged macrophage differentiation into TAMs in
COAD, HNSC, OV, and STAD. These results displayed the
prognostic value of NNMT and its potential role in tumor
immunology.

Our study focused on the bioinformatic techniques of
NNMT expression and patient survival utilizing multiple
databases, without any verification experiments in vivo or
in vitro. Future experimental studies of the NNMT expres-
sion and immune cell infiltration in different cancer popula-
tions may provide additional insights into the cancer
mechanisms and the therapeutic strategies targeting NNMT
to improve the therapeutic efficacy of immunotherapy.
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to support the findings of this study are included within
the supplementary information files. All the raw data of this
study are available from the first author or corresponding
author upon request.

Disclosure

This manuscript was submitted as a preprint in the link
https://www.researchsquare.com/article/rs-1375958/v1 [36].

Conflicts of Interest

No potential conflicts of interest were disclosed.

Supplementary Materials

Figure S1: correlation of NNMT gene expression with stro-
mal score and immune score in different cancers. NNMT
gene expression has a significantly positive correlation with
the stromal score (A) and immune score (B) in COAD,
HNSC, OV, and STAD. COAD: colon adenocarcinoma;
HNSC: head and neck squamous cell carcinoma; NNMT:
nicotinamide N-methyltransferase; OV: ovarian serous
cystadenocarcinoma; STAD: stomach adenocarcinoma. Fig-
ure S2: macrophage infiltration in the NNMT high and
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Compared with the NNMT low expression group, macro-
phages were significantly upregulated in the NNMT high
expression group in COAD, HNSC, OV, and STAD (all P
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