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Aims Existing strategies that identify post-infarct ventricular tachycardia (VT) ablation target either employ invasive electrophysio
logical (EP) mapping or non-invasive modalities utilizing the electrocardiogram (ECG). Their success relies on localizing sites 
critical to the maintenance of the clinical arrhythmia, not always recorded on the 12-lead ECG. Targeting the clinical VT by 
utilizing electrograms (EGM) recordings stored in implanted devices may aid ablation planning, enhancing safety and speed 
and potentially reducing the need of VT induction. In this context, we aim to develop a non-invasive computational-deep 
learning (DL) platform to localize VT exit sites from surface ECGs and implanted device intracardiac EGMs.

Methods 
and results

A library of ECGs and EGMs from simulated paced beats and representative post-infarct VTs was generated across five tor
so models. Traces were used to train DL algorithms to localize VT sites of earliest systolic activation; first tested on simulated 
data and then on a clinically induced VT to show applicability of our platform in clinical settings. Localization performance 
was estimated via localization errors (LEs) against known VT exit sites from simulations or clinical ablation targets. Surface 
ECGs successfully localized post-infarct VTs from simulated data with mean LE = 9.61 ± 2.61 mm across torsos. VT local
ization was successfully achieved from implanted device intracardiac EGMs with mean LE = 13.10 ± 2.36 mm. Finally, the 
clinically induced VT localization was in agreement with the clinical ablation volume.

Conclusion The proposed framework may be utilized for direct localization of post-infarct VTs from surface ECGs and/or implanted 
device EGMs, or in conjunction with efficient, patient-specific modelling, enhancing safety and speed of ablation planning.
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What’s new?

• This is the first proof-of-concept study that successfully automates 
the localization of post-infarct VT from simulated implanted device 
EGMs (localization error < 15 mm) to target clinical VT episodes 
and reduce the need of VT induction.

• The localization performance from simulated ECG traces (<10 mm) 
outperforms existing clinical and algorithm-based approaches.

• We propose a computational-deep learning platform that could be 
of benefit to ablation planning when invasive mapping cannot be 
performed.

Introduction
Catheter ablation (CA) is an established treatment option1 for the 
management of refractory, post-infarct ventricular tachycardia (VT). 
During the CA procedure, the localization of the anatomical sites— 
isthmus and/or VT exit site—critical to the initiation and maintenance 
of the VT2 is of primary importance in order to successfully reduce re
currence of future arrhythmic episodes. However, this task remains a 
significant clinical challenge, demonstrated by the approximate 50% re
currence rate within a year of VT ablation.3

Robust identification of optimal VT ablation targets necessitates in
vasive electrophysiological (EP) procedures with associated clinical 
risk despite use of state-of-the-art three-dimensional (3D) electroana
tomic mapping (EAM) and other risk-reducing strategies. Although 
these strategies often allow accurate characterization of the clinical 
VT, this may be limited by non-inducibility or non-sustained and/or 
haemodynamically poorly tolerated VTs. Therefore, there exists a 
pressing need for effective non-invasive localization of VT circuits.

The surface 12-lead electrocardiogram (ECG) remains a critical tool4

in guiding pre-procedure planning for VT ablation. Non-invasive meth
ods utilizing the ECG—such as ECG imaging (ECGi)5 and automated 
algorithms6,7—have been increasingly investigated to localize the VT. 
However, failure to record the ECG during the clinical arrhythmia limits 
their application, and there are concerns relating to its precision and ac
curacy compared to invasive modalities.

In recent studies, electrogram (EGM) recordings stored in implanta
ble electronic devices have demonstrated their utility in guiding clinic
al8,9 and in-silico pace-mapping,10 helping characterize the clinical VT 
as well as facilitating automatic localization of focal VTs.11 Given that 
the majority of CA candidates already have a device in situ,12 the auto
mation of post-infarct VT localization directly from EGM recordings 
could yield benefits to VT pre-procedure planning enhancing safety, 
speed and success of CA.

We set out to develop a non-invasive computational-deep learning 
(DL) platform to accurately localize critical VT exit sites from surface 
ECGs and intracardiac EGMs. We aimed to (i) automate post-infarct 
VT localization from the standard ECGs to improve on the perform
ance of existing, ECG-based algorithms and (ii) carry-out a proof-of- 
concept study to assess the feasibility of utilizing implanted device 
EGMs in the preliminary investigation of post-infarct VTs, which may 
be of value to target clinical episodes, improving guidance of VT abla
tion, as well as potentially reducing the need of arrhythmia induction. 
In addition, we also sought to show the direct clinical application of 
our platform and computational investigation applied to VT localization 
from clinically recorded ECGs.

Methods
Overview of computational-DL framework
Our framework to automate post-infarct VT localization is outlined in 
Figure 1A. Briefly, computational models from patient-specific anatomies 

were constructed and used to simulate multiple focal paced beats and epi
sodes of post-infarct VT, along with the corresponding ECGs and implanted 
device EGM recordings. This comprehensive library of simulated time 
traces was then utilized to train a DL architecture to predict the exit sites 
of post-infarct VTs. The architecture was first evaluated on simulated post- 
infarct VTs and then tested on a clinically induced VT episode Figure 1B. The 
components of our pipeline are described in the following sections.

Patient-specific torso models
CT imaging data from five patients were available for this study, including 
trans-catheter aortic valve implantation planning scans (whole torso), along 
with additional higher resolution contrast cardiac scans. All patients con
sented for the use of their data in ethically approved research: UK 
Research Ethics Committee reference number 19/HRA/0502 & 15/LO/ 
1803. Torso models were constructed by segmenting major organs and tis
sues in Simpleware™ (Synopsys, Inc., Mountain View, USA) and cardiac 
chambers and blood pools in Siemens Axseg v4.11.13 3D tetrahedral finite 
element meshes of all segmentations were then generated in Simpleware™ 
(see Supplementary material online, Table S1 for mean ventricular edge 
lengths). Realistic myofiber architecture was incorporated using an estab
lished rule-based approach.14 In each torso, ECG electrodes were placed 
as per common clinical practice Figure 2A, and a generic implanted device 
was modelled as previously described.10 Briefly, as shown in Figure 2B and 
Supplementary material online, Figure S1, the device included a left-pectoral 
active can, an apical, dual-coil RV lead, and a quadripolar LV lead.

Simulation protocol
Simulation of ∼3000 focal paced beats per model (Figure 3A) and corre
sponding 12-lead ECGs and 8-vector EGMs (Figure 3B) were generated 
using a computationally efficient reaction-eikonal (RE)—Lead-Field (LF)15

formulation within the Cardiac Arrhythmia Research Package (CARP),16

similar to our previous study.11

To rapidly simulate post-infarct VTs across the models, simplified, virtual 
infarcts were generated across the LV segments (see Supplementary 
material online, Figure S2). The scars were designed to produce the charac
teristic figure-of-eight re-entrant pattern, commonly associated with scar- 
related VT post-infarction,17 whereby two regions of inexcitable fibrosis 
frame a narrow region of reduced conduction (isthmus) (Figure 3C). 
Twelve-lead ECGs and eight-vector EGMs (Figure 3D) of these 
figure-of-eight post-infarct VT episodes were computed in a similar 
RE-LF simulation environment to above. See Supplementary Methods for 
further details.

DL model
The DL model—described in more details in Supplementary Methods— 
takes either 12-lead ECGs, with the addition of 4 vector combinations as 
in previous studies,11 or 8-vector EGMs, as inputs (Figure 4A) and predicts 
VT exit sites, described below.

VT prediction
The DL model localizes the post-infarct VT exit sites in a standardized uni
versal ventricular coordinate (UVC) system,18 defined by three parameters: 
z, apical-basal distance (Figure 4B); ρ, endocardial-epicardial distance 
(Figure 4C), and φ, rotational (circumferential) distance from the LV septum 
(Figure 4D). Performance of the model was expressed in terms of localiza
tion error (LE): Euclidean distance (in mm) between the model predictions 
and the known VT exit sites from simulations (the point of earliest systolic 
activation—see Supplementary Methods).

Training and testing
To be able to localize the exit sites of post-infarct VTs, the DL model was 
initially trained on the paced beat ECGs and EGMs. Then, part of the DL 
algorithm was re-trained on the simulated ECGs or EGMs of post-infarct 
VTs. This transfer of knowledge in the DL between two similar problems 
(paced beats and post-infarct VTs) is known as Transfer Learning. By initially 
training the networks on a large number of paced beats, which were less 
computationally expensive to simulate, we were able to reduce the number 
of post-infarct VT simulations required to achieve acceptable localization of 
the re-entrant episodes, while also providing important information to the 
networks during the initial pacing training (e.g. patient-specific anatomy, 
ECG/implanted device lead locations, relationship between extracellular 
potentials and locations in the heart). After training, we investigated two 
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testing scenarios to predict simulated post-infarct VT exit sites: (i) we first 
tested the DL-framework on torso models that were seen during the initial 
pacing training, but not during VT transfer learning and (ii) we then tested 
how the DL would perform when a torso model was unseen during initial 
pacing training and VT transfer learning (see Supplementary Methods).

Clinical case
CT and ECGi19 data from a patient with refractory VT were available to test 
our proposed computational-DL framework in clinical settings. The patient 
was recruited at Guy’s & St Thomas’ Hospitals NHS Foundation Trust, and 

later underwent successful cardiac stereotactive body radiotherapy 
(cSBRT), which was indicated due to previous extensive cardiac surgical in
terventions—mechanical aortic and mitral valve replacement precluding 
direct LV access for conventional VT ablation. The patient required an 
emergency bypass after the valve procedures, which suggested the pres
ence of an ischaemic VT substrate. The clinical VT (cycle length ∼ 
340ms) was induced with non-invasive programmed stimulation via the im
planted cardiac resynchronization therapy defibrillator (CRT-D) device. 
The ablation target volumes—segment 9 and 10—were defined after care
ful clinical interpretation of the epicardial VT maps reconstructed from 
ECGi, and after measuring extracellular content volumes from CT to locate 
scar. Automated localization of the clinically-induced VT from ECGs— 
blinded to the clinical targets—was achieved following similar scenarios 
to the computational investigation described above.

Clinical scenario 1: VT prediction following computational 
simulations
A 3D torso model of the patient was constructed from patient CT data, in a 
similar manner to the torso models generated in Patient-Specific Torso 
Models. Only simple, paced beats were simulated on the newly generated 
myocardial mesh in ∼3000 randomly chosen locations, as previously de
scribed, along with corresponding ECGs. This data was used in combination 
with the paced beats of the previous five torso models, as additional training 
data, for the initial training of the DL algorithm. No post-infarct VTs were 
simulated on this patient’s mesh; transfer learning was used with the post- 
infarct VT data from the five previous torsos only. This methodology—no 
infarct modelling and simple paced beat simulations—was chosen to reduce 
computational load, while tailoring the DL training to the patient-specific 
anatomy and clinical settings. Finally, the clinically-induced VT exit site 
was predicted by the algorithm from the clinical ECG traces derived from 
ECGi (as described below).

Clinical scenario 2: direct VT prediction
Body surface potentials were collected with Medtronic CardioInsight 
Noninvasive 3D Mapping system,19 and utilized to compute standard 
12-lead ECGs (with the additional four vectors as above) of the clinically in
duced VT. These were used as sole direct inputs to the previously trained 
DL architecture, returning the VT exit site with no prior knowledge on 
patient’s anatomy and EP modelling simulations.

Figure 1 Workflow of this study. (A) Computational DL framework; (B) clinical applicability of the platform following clinical scenario 1 (green box) 
and clinical scenario 2 (yellow box). DL, deep learning.

Figure 2 (A) ECG electrodes; (B) modelling of a generic implanted 
device. ECG, electrocardiogram.

http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac178#supplementary-data
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Results
Evaluation of the computational-DL 
platform on simulated data
Firstly, we evaluated the localization performance of the proposed 
computational DL platform on simulated post-infarct VTs. Two scen
arios were investigated. In Scenario 1, we localized unseen VT episodes 
from ECGs and EGMs of models seen during initial pacing training. In 
Scenario 2, we localized unseen VT episodes from ECGs and EGMs of 
models completely unseen during any training stage.

Scenario 1: VT prediction of models seen during pacing 
training
We investigated the performance of our computational DL platform in 
localizing unseen simulated post-infarct VTs from ECGs and implanted 
device EGMs of models seen during pacing training. Data simulated on 
each torso model was sequentially excluded from transfer learning, and 
was utilized to test the algorithm in predicting post-infarct VT exit sites 
with limited knowledge on the torso model in question—only stem
ming from the initial training on focal paced beats. Across the torso 
models, the algorithm successfully localized post-infarct VTs from 

ECGs with mean LE 9.61 ± 2.61mm, ranging 5.92 − 12.76mm 
(Figure 5A). Encouragingly, the localization from intracardiac EGMs per
formed similarly to ECGs, with slightly higher mean LE across torsos 
13.10 ± 2.36mm, ranging 10.04 − 16.36mm (Figure 5A). VT exit site 
predictions can be visualized in the standard 17-American Heart 
Association (AHA) LV model or in the patient-specific 3D myocardial 
mesh. An example of an ECG-based VT prediction for torso2 is shown 
Figure 5B–C, and is compared to the known VT exit site.

Scenario 2: VT predictions of models unseen during any 
training
We investigated how the absence of a patient-specific computational 
model during initial pacing training affected the localization perform
ance of our DL algorithm in localizing entirely unseen simulated post- 
infarct VTs. In turn, data simulated on a torso model was excluded 
from both training stages; consequently, the DL model was tested on 
post-infarct VT signals with no prior knowledge of the torso in ques
tion. Across models, ECG-based localization returned mean LE 16.59 
± 2.79mm—ranging 12.41 − 19.68mm (Figure 6A). Successful localiza
tion of post-infarct VTs was also achieved utilizing EGMs, with a 
mean LE 15.80 ± 4.65mm, ranging 12.42 − 22.79mm (Figure 6A). 
Errors for ECG-based predictions increased in all five torsos compared 

Figure 3 (A) Local activation time (LAT) maps of simulated focal paced beats; (B) corresponding ECGs and EGMs; (C ) LAT maps of simulated post- 
infarct VT; (D): corresponding ECGs and EGMs. ECG, electrocardiogram; EGM, electrogram; VT, ventricular tachycardia.
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to Scenario 1 (ΔLE = 6.98mm), whereas EGM-based predictions 
seemed to be less affected by initial pacing training (ΔLE = 2.70mm). 
Figure 6B–C shows the ECG-based prediction of the same VT episode 
as in Scenario 1.

Evaluation of the computational DL 
platform on clinical data
Finally, the localization performance of the proposed platform was eval
uated on clinical data, following similar scenarios to the computational 
analysis. The DL architecture was tested on the patient’s VT ECGs after 
integrating imaging and simulation data into the pipeline (Clinical Scenario 1), 
and directly tested on the patient’s VT ECGs (Clinical Scenario 2).

Clinical scenario 1: VT prediction following computational 
simulations
We investigated the localization of the clinically induced VT episode 
after generating a patient-specific model from the patient imaging 
data, and utilizing the newly simulated data to train part of the DL mod
el. With this increased patient-specific training data, the algorithm loca
lized the VT episode in the upper part of segment 15, closer to both 
segment 9 and 10 (Figure 7A–B). Detailed (blinded) clinical analysis of 
epicardial activation patterns from the ECGi jacket data during the in
duced VT suggested VT exit site to be in segments 9 and 10.

Clinical scenario 2: direct VT prediction
The DL model trained on simulated data of all five torsos was directly 
tested on the ECG traces (Figure 8A) recorded during the 
clinically-induced VT. The model prediction was now located in the 
inferior-apical part of segment 11, in close proximity to segment 10 
(Figure 8B–C).

Discussion
In this study, we proposed a novel, non-invasive platform for automat
ing the localization of post-infarct VTs from extracellular potential sig
nals to guide pre-procedural planning. We (i) demonstrated that ECGs 
can be utilized to accurately and reliably localize post-infarct VT exit 
sites, (ii) showed the feasibility of utilizing stored intracardiac EGM re
cordings from implantable devices to localize VT exit sites with compar
able precision to surface ECGs, that would be acceptable for 
pre-procedure planning and (iii) demonstrated the applicability of our 
platform and computational investigation in clinical settings.

Successful localization of post-infarct VTs 
from surface ECGs
We successfully localized post-infarct VT exit sites from ECGs with er
rors 9.61 ± 2.61mm and 16.59 ± 2.79mm in Scenario 1 (VT prediction 
of models seen during pacing training), and Scenario 2 (VT predictions 
of models unseen during pacing training and VT transfer learning), re
spectively. Ablation of post-infarct VTs often requires extensive lesions. 
Hence, LE<= 17mm may be deemed clinically useful in identifying initial 
VT ablation targets and guiding pre-planning procedures non-invasively 
and efficiently, and represents improvement over previous methods 
which localized only to the nearest AHA segment.7

Our developed DL-platform was seen to be robust to differences in 
patient anatomies, with little variation in LEs witnessed across torso 
models (standard deviation < 3mm in both Scenario 1 and 2). 
However, lower mean LEs in Scenario 1 compared to Scenario 2 showed 
the higher accuracy of the network in localizing post-infarct VTs when a 
computational model of the patient was created and seen during pacing 
training. Such behaviour of the DL-platform is expected, as the more 

Figure 4 (A) ECG or EGM traces are the inputs to the DL architecture, which predicts VT exit site in universal ventricular coordinates shown in 
(B)—(D): (z, ρ, φ). DL, deep learning; ECG, electrocardiogram; EGM, electrogram; VT, ventricular tachycardia.
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patient-specific data that is provided to the network (Scenario 1), 
the better the latter performs when applied to that patient. 
Nevertheless, the localization performance in Scenario 2 may be of 
benefit for immediate identification of VT critical sites (requiring only 
patient ECG traces as input), thus showing the utility of our platform 
in absence of imaging data.

Clinical implications
The majority of current methods that utilize the ECG to predict VT 
substrates are either qualitative4,6 or algorithm-based,7 trained on clin
ical VT ECGs. The former is extremely useful for preliminary assess
ment of idiopathic VT, but fails at robustly localizing more complex 
post-infarct VTs, and relies on clinical expertise. Algorithm-based meth
ods can automatically localize the VT, but only within different LV ana
tomical regions with areas >10cm2.20 Moreover, they do not consider 
patient-specific geometries, and are trained on limited VT ECG librar
ies. Other automated methods that are trained on larger datasets and/ 
or computational simulations can only locate premature ventricular 
contractions driven by focal VTs.11 Recently, ECGi5 has showed prom
ise in characterizing VTs non-invasively, by reconstructing epicardial 
unipolar electrograms using body surface potentials. ECGi can be uti
lized to localize epicardial VT sources (with average resolution ∼ 
13.2mm5), but fails at identifying septal, intramural and/or endocardial 

substrates. To the best of our knowledge, this is the first study that suc
cessfully automates the localization of post-infarct re-entrant VTs, 
achieving a 3D localization precision that outperforms existing 
ECG-based modalities.

Successful localization of post-infarct VTs 
from intracardiac EGMs
We successfully localized post-infarct VT exit sites from generic im
planted device EGMs with overall LEs < 16mm, comparable to ECG. 
Little dependence on anatomical differences between the in-silico pa
tients was seen, similar to ECG-based localization; however, a smaller 
increase in LEs was witnessed between the different scenarios (ΔLE 
= 2.70mm) compared to ECG-based localization (ΔLE = 6.98mm). 
This finding shows the reliability of stored EGM recordings for direct 
localization of the clinical VT, when the latter is non-inducible or un
mappable, and shows great potential for future applications to guide 
non-invasive ablation therapies, such as cSBRT.

Clinical implications
The majority of existing invasive, and non-invasive, mapping modalities 
rely on identifying and targeting an induced clinical arrhythmia, which 
is often not possible and/or not hemodynamically tolerable. Recent 
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clinical studies8,9 demonstrated the feasibility and utility of implantable 
cardioverter defibrillator (ICD) EGMs in targeting the clinical VT during 
pace-mapping. Although a lower incidence in VT recurrence was found9

when targeting non-inducible clinical VTs from ICD EGMs, higher errors 
in localizing VT exit sites were reported8 compared to ECG-based 
maps. In our previous in-silico pace-mapping study10 we demonstrated 
how EGM-based pace-mapping resolution may be enhanced by utilizing 
signals from devices with both dual-coil RV and multipolar LV leads by 
increasing the number of sensing vectors used. We subsequently 
showed the utility of multiple sensing EGM vectors to automate focal 
VT localization in a similar computational-DL framework11 as presented 
here. In this present work, we go further to show the enhanced infor
mation contained in sensed EGMs from multi-polar devices helps 
achieve robust performance in the localization of post-infarct VTs.

Applicability of our platform in clinical 
settings
We showed the applicability of our computational DL platform to lo
calize a clinical VT episode. In both scenarios investigated, we localized 
the VT exit in proximity to segment 10, which was consistent with the 
clinical ablation targets (segments 9 and 10). According to an initial clin
ical investigation of the patient, the VT exit site was located in segment 

10, with possible scarred tissue present in segment 9 (derived from 
ECVs). It is important to mention that while Clinical Scenario 2—direct 
VT prediction from ECGs without the creation of a patient-specific 
computational model—can return immediate results, with acceptable 
accuracy, the creation of a patient-specific model and integration of 
simple pacing simulations into the pipeline (Clinical Scenario 1) can in
crease localization accuracy further, at a low relatively computational 
expense. Thus, in patients for which invasive mapping cannot be per
formed, our computational-DL platform may provide rapid 
ECG-based localization of post-infarct VTs, accompanied by a more 
thorough patient-specific analysis, if CT imaging data are available. In fu
ture studies, this work might be of importance to investigate alternative, 
non-invasive tools to aid ablation procedures (e.g. cSBRT) where inva
sive mapping cannot be performed. Although implanted device EGMs 
of this patient were not available to evaluate EGM-based localization 
performance, from our computational analysis carried-out in the previ
ous sections, we believe that EGM-based localization of the clinical VT 
would be similar to ECG-based.

Study limitations
Our library of post-infarct VTs was limited to relatively simplistic 
figure-of-eight VT circuits. Despite providing robust training data that 
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facilitated localization of acceptable accuracy, in the future, it would be 
useful to include more complex infarct geometries, integrated from 
multi-modal imaging with latest image-analysis software for instance, 
and VTs in the training, to investigate their impact in the final localiza
tion. This may help refine the training of our DL framework further, 
and may improve the results of our predictions. However, ideally our 
proposed approach would be used with minimal computational model 
construction and simulation for a particular patient (Clinical Scenario 2). 
Our clinical validation was limited to one patient, due to limited avail
ability of clinical data, for which EGM data could not be retrieved. In 
clinical practice, retrieving eight-lead EGMs may be challenging from 
the current generation of implanted cardiac devices, as many implanted 
patients do not have an SVC coil, or multipolar LV lead, and/or routinely 
store only two EGM vectors simultaneously. Nonetheless, device tech
nology and design are constantly evolving, which may open-up possibil
ities of additional EGM sensing vectors, driving VT management beyond 
using the standard ECG. In this context, our work is of importance to 
demonstrate the potential of implanted devices, and the necessity of 
improving their programming, design, and remote monitoring capabil
ities. In this present work, we chose to make use of cSBRT patient 
data as both high quality CT imaging data and non-invasive VT induction 
and mapping via ECGi were available, which enabled full torso model 
construction and comparison of our prediction with the clinically- 
induced VT exit site. In our institution, this type of data was not avail
able for conventional VT ablation patients, for which substrate-based 
ablation is routinely performed (where the VT site of origin/exit site 
is therefore not localized). However, we hope to address these limita
tions in the future, and expand the clinical evaluation of our platform to 
a larger cohort of CA patients in order to quantify localization perform
ance against more specific ablation targets.

Conclusions
Our proposed computational DL framework may be utilized for direct 
localization of post-infarct VT exit sites from ECGs and/or implanted 
device EGMs, in absence of patient imaging data, or in combination 
with computationally efficient, patient-specific modelling, ultimately en
hancing safety and speed of pre-procedure ablation planning.
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Supplementary material is available at Europace online.
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