
High-Fat Diet–Induced DeSUMOylation of E4BP4 Promotes
Lipid Droplet Biogenesis and Liver Steatosis in Mice
Sujuan Wang,1,2 Meichan Yang,3 Pei Li,4 Julian Sit,1 Audrey Wong,1 Kyle Rodrigues,1 Daniel Lank,1,5

Deqiang Zhang,1 Kezhong Zhang,6 Lei Yin,1 and Xin Tong1

Diabetes 2023;72:348–361 | https://doi.org/10.2337/db22-0332

Dysregulated lipid droplet accumulation has been identified
as one of themain contributors to liver steatosis during non-
alcoholic fatty liver disease (NAFLD). However, the under-
lying molecular mechanisms for excessive lipid droplet
formation in the liver remain largely unknown. In the current
study, hepatic E4 promoter–binding protein 4 (E4BP4) plays
a critical role in promoting lipid droplet formation and liver
steatosis in a high-fat diet (HFD)–induced NAFLD mouse
model. Hepatic E4bp4 deficiency (E4bp4-LKO) protects
mice from HFD-induced liver steatosis independently of
obesity and insulin resistance.Ourmicroarray study showed
a markedly reduced expression of lipid droplet binding
genes, suchasFsp27, in the liver ofE4bp4-LKOmice. E4BP4
isbothnecessaryandsufficient toactivateFsp27expression
and lipid droplet formation in primary mouse hepatocytes.
Overexpression of Fsp27 increased lipid droplets and trigly-
cerides in E4bp4-LKO primary mouse hepatocytes and
restored hepatic steatosis in HFD-fed E4bp4-LKO mice.
Mechanistically, E4BP4 enhances the transactivation of
Fsp27 by CREBH in hepatocytes. Furthermore, E4BP4
is modified by SUMOylation, and HFD feeding induces
deSUMOylationofhepaticE4BP4.SUMOylationoffive lysine
residues of E4BP4 is critical for the downregulation of Fsp27
and lipid droplets by cAMP signaling in hepatocytes. Taken
together, this study revealed thatE4BP4drives liver steatosis
in HFD-fedmice through its regulation of lipid droplet bind-
ing proteins. Our study also highlights the critical role of
deSUMOylation of hepatic E4BP4 in promotingNAFLD.

As the most common chronic liver disease, nonalcoholic
fatty liver disease (NAFLD) affects approximately two-thirds

of obese individuals and is strongly associated with type 2
diabetes (1,2). The early stage of NAFLD is simple liver
steatosis, defined as accumulation of hepatic triglycerides
(TGs) >5% of total liver weight (3,4). Although simple
liver steatosis is considered largely benign, excessive lipid
accumulation may sensitize hepatocytes to stress-induced
injury and promote the progression of NAFLD toward
nonalcoholic steatohepatitis and cirrhosis (5,6). The ex-
cess of lipids found during liver steatosis are primarily neu-
tral lipids stored in organelles called lipid droplets (LDs) in
hepatocytes (7,8). The biogenesis of LDs is very dynamic
and regulated at both transcriptional and posttranslational
levels (7,9). It has been shown that abnormalities in LD bi-
ology contribute to fatty liver disease (7,10–12). However,
detailed molecular mechanisms underlying the impairment
of LDmetabolism are largely unclear.

Several proteins, particularly cell death–inducing DNA
fragmentation factor a-like effector (CIDE) proteins, were
found to regulate LD biogenesis (11,13,14). Both CIDEA
and CIDEC (also called FSP27 in mice) are upregulated in
obese mice and associated with increased TG storage in the
liver (7,14,15). Murine models of hepatic steatosis demon-
strated a significant increase in levels of FSP27 in the liver
(16–18). The liver of obese humans was revealed to express
high levels of FSP27, which tended to decrease after signifi-
cant weight loss with bariatric surgery (19). Functionally,
forced expression of FSP27 in hepatocytes in vitro or
in vivo led to increased LD and TG accumulation (18,20).

1Department of Molecular and Integrative Physiology, University of Michigan
Medical School, Ann Arbor, MI
2Department of Infectious Diseases, The Second Xiangya Hospital, Central South
University, Changsha, Hunan Province, People’s Republic of China
3Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong Province, People’s Republic
of China
4Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway,
NJ
5Department of Pharmacology, University of Virginia, Charlottesville, VA
6Center for Molecular Medicine and Genetics, Wayne State University School of
Medicine, Detroit, MI

Corresponding authors: Lei Yin, leiyin@umich.edu, and Xin Tong, xintong@umich
.edu

Received 6 April 2022 and accepted 6 December 2022

This article contains supplementary material online at https://doi.org/10.2337/
figshare.21691973.

S.W. and M.Y. contributed equally to this work.

© 2023 by the American Diabetes Association. Readers may use this article
as long as the work is properly cited, the use is educational and not for
profit, and the work is not altered. More information is available at https://
www.diabetesjournals.org/journals/pages/license.

M
E
T
A
B
O
L
IS
M

348 Diabetes Volume 72, March 2023

mailto:leiyin@umich.edu
mailto:xintong@umich.edu
mailto:xintong@umich.edu
https://doi.org/10.2337/figshare.21691973
https://doi.org/10.2337/figshare.21691973
https://www.diabetesjournals.org/journals/pages/license
https://www.diabetesjournals.org/journals/pages/license
http://crossmark.crossref.org/dialog/?doi=10.2337/db22-0332&domain=pdf&date_stamp=2023-02-03


Depletion of hepatic Fsp27 with antisense oligo against
Fsp27 ameliorated diet-induced steatohepatitis (21–23).
Hepatocyte-specific deletion of Fsp27 was reported to re-
duce liver TGs and injury in mice with alcoholic steatohe-
patitis (18). Collectively, these studies have indicated that
elevated levels of FSP27 in the liver could drive liver steato-
sis in response to overnutrition or obesity. Thus, suppres-
sion of FSP27 expression and function might be a viable
approach to treating NAFLD.

Transcriptional regulation has been implicated as the ma-
jor regulatory pathway for controlling the expression of
FSP27 in livers (13,14). So far, several transcription factors
have been identified to directly regulate the transcription of
Fsp27 within hepatocytes in response to fasting or diets, includ-
ing peroxisome proliferator–activated receptor-a (PPAR-a),
PPAR-g, liver X receptor-a, hepatocyte nuclear factor-a,
and CREB3L3 (also known as CREBH) (16,20,22,24,25).
PPAR-g was found to promote liver Fsp27 expression in
ob/ob mice (17), whereas CREBH, a liver-enriched and stress-
inducible transcription factor, directly binds to the promoter
of Fsp27 and activates its gene expression (20). Enforced ex-
pression of CREBH elevates FSP27 levels and promotes the
enlargement of LDs and TG accumulation in mouse liver.
However, much less is known about transcriptional mecha-
nisms that account for the induction of Fsp27 in liver of
NAFLD/nonalcoholic steatohepatitis. Moreover, the signaling
pathways that suppress Fsp27 expression in response to
overnutrition remain largely unknown.

E4 promoter–binding protein 4 (E4BP4) is a basic leucine
zipper transcription factor that has been known for its role
in immunomodulation, circadian rhythms, and de novo li-
pogenesis (26–28). Overexpression of hepatic E4BP4 has
been shown to increase gluconeogenesis and induce insulin
resistance in both the liver and muscle (29). We previously
reported that hepatic E4BP4 is potently induced by endo-
plasmic reticulum (ER) stress signals. E4bp4 deficiency re-
duces accumulation of LDs in hepatocytes following ER
stress stimulation (30). Hepatocyte E4bp4 deficiency also re-
duces liver steatosis in mice fed a high-fat, low–L-methionine,
and choline-deficient diet. Although E4BP4 may impact lipid
metabolism in multiple ways within hepatocytes, it remains
unclear whether E4BP4 directly regulates LD biogenesis by
controlling the expression of LD binding proteins. Intrigu-
ingly, E4BP4 was found to interact with CREBH and contrib-
ute to CREBH-mediated gene regulation in mouse liver (31).
Yet, no study has been reported to link E4BP4 and the ex-
pression of Fsp27 during the pathogenesis of high-fat diet
(HFD)–induced liver steatosis.

Protein SUMOylation is an important posttranslational
modification that regulates protein turnover, protein-protein
interaction, signal transduction, chromatin modifications, and
transcription repression (32,33). Recent studies highlighted
that SUMOylation of transcriptional factors plays a crucial
role in maintaining metabolic homeostasis. It was reported
that a SUMOylation-defective mutant of liver receptor homo-
log 1 enhances SREBP-1 processing and promotes de novo

lipogenesis, leading to fatty liver disease (34). In a global
SUMOylation analysis, E4BP4 was identified as a putative
SUMOylation target (35). Subsequently, E4BP4 was shown
to be modified by SUMOylation and identified five specific
lysine residues targeted for SUMOylation (36). However, al-
most nothing is known about the biological actions of E4BP4
SUMOylation in LD formation and lipid accumulation in
hepatocytes and during the pathogenesis of fatty liver dis-
ease. In this study, we present both in vivo and in vitro
evidence supporting the role of hepatic E4BP4 and its
SUMOylation during LD expansion in hepatocytes and
liver steatosis in response to HFD feeding.

RESEARCH DESIGN AND METHODS

Animals and Treatment
All animal experiments were approved by and performed in
accordance with guidelines of the institutional animal care
and use committee at the University of Michigan Medical
School. Liver-specific E4bp4 knockout (E4bp4-LKO) mice
were generated as described previously (30). Eight-week-old
E4bp4 flox/flox and E4bp4-LKO mice were challenged with an
HFD (45% kcal from fat) for 12 weeks; body weight was re-
corded weekly. For the FSP27 overexpression experiment,
8-week-old male mice were fed an HFD for 2 weeks. Ad-GFP
or Ad-Fsp27 adenovirus was injected via tail vein at a dose of
1.5 × 1011 viral particles/mouse. HFD continued for an addi-
tional 10 days prior to liver harvesting for metabolic assays.

Cell Culture and Reagents
Hepa-1c1c cells and Huh-7 cells were purchased from
ATCC and maintained according to manufacturer instruc-
tions. Isolation of primary mouse hepatocytes (PMHs)
was performed by the collagenase perfusion method via
inferior vena cava. The reagents used for cell treatment,
including norepinephrine forskolin, rapamycin, and AICAR,
were all from Cayman Chemical.

BODIPY Staining
E4bp4-LKO PMHs were seeded at the density of 8 × 104

cells/well in a 12-well plate. Ad-LacZ control, Ad-E4bp4, or
Ad-Fsp27 adenovirus was applied 2 h after seeding. After be-
ing switched to serum-free DMEM (Gibco) the next day, the
cells were incubated with 300 mmol/L oleic acid overnight
prior to BODIPY (D3922, 493/503, 2 mmol/L; Invitrogen)
staining following the protocol described by Qiu and Simon
(37). For Huh-7 cells, cells were first transduced with Ad-
E4bp4-wild type (WT) or Ad-E4bp4-5KR. Twenty-four hours
later, cell culture medium was changed to serum-free mini-
mum essential medium (Gibco), and cells were treated with
BSA or palmitic acid (300 mmol/L, dissolved in 0.1 mol/L
NaOH at 70�C and conjugated with 10% free fat acid–free
BSA in PBS) plus oleic acid (600 mmol/L) for 6 h. Cells were
washed with serum-free minimum essential medium once
and treated with forskolin at 2.5 mmol/L and 5 mmol/L for
16 h before BODIPY staining.
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Liver Histology Analysis
After fixation in 10% formalin at room temperature over-
night, mouse liver samples were sent to the Rogel Cancer
Center Tissue and Molecular Pathology Shared Resource
Core at the University of Michigan Medical School for par-
affin embedding and hematoxylin-eosin (H-E) staining.

Protein Extraction and Immunoblotting
For whole-cell lysate preparation, PMHs were washed once
in 1× PBS buffer and lysed in radioimmunoprecipitation as-
say (RIPA) buffer supplemented with 1× protease inhibitor
(Roche Applied Science). Liver tissues were weighed and
homogenized in RIPA buffer (8 mL/mg tissue weight).

For cytosolic and nuclear protein preparation, liver tis-
sues were weighted, and hypotonic buffer (8 mL/mg tissue
weight) was added. Cytosolic protein was collected in the
supernatant by using a Dounce homogenizer followed by
full-speed centrifugation. The pellet was washed once with
hypotonic buffer and resuspended in RIPA buffer (4 mL/mg
tissue weight) to obtain the nuclear fraction. After protein
lysates were precleared at maximal speed at 4�C in a micro-
fuge, the protein concentration of each supernatant was mea-
sured using Bio-Rad Protein Assay Dye. Equal amounts of
protein samples were separated using 9% SDS-PAGE and
transferred to nitrocellulose membrane (Bio-Rad). The mem-
branes were incubated with primary antibodies at 4�C over-
night. Horseradish peroxidase–conjugated secondary antibodies
against mouse, rabbit, or goat IgG and homemade enhanced
chemiluminescence substrate were used for detecting chemilu-
minescence on an AlphaImager HD2 (Cell Biosciences).

cDNA Synthesis and Quantitative PCR
Total RNA was extracted with TRIzol (Invitrogen) and chlo-
roform. cDNA was synthesized with M-MLV Reverse Tran-
scriptase and random hexamers (Thermo Fisher Scientific,
Surrey, U.K.) and subjected to quantitative PCR (qPCR) us-
ing 2× Fast qPCR Mix (ABclonal Science) on an ABI Quant-
Studio 5 Real-Time PCR System (Applied Biosystems, Foster
City, CA). The value of each cDNA was calculated using the
DDCt method and normalized to the value of the house-
keeping gene controls, including b-actin, Gapdh, or 18S
rRNA. The data were plotted as fold change.

Serum and Liver Metabolite Measurement
Serum cholesterol, TGs, and ALT were measured using
commercial kits (A7510, A7525, and T7532; Pointe Scien-
tific) according to the manufacturer’s instructions. For
liver cholesterol and TG content, liver tissues were ho-
mogenized for total lipid extraction according to Bligh
and Dyer (38). Total lipids were resuspended in 400 mL
ethanol and incubated at 55�C for 10 min.

Plasmids and Adenoviruses
A 1.7-kb Fsp27 promoter containing the CREBH respon-
sive element was amplified with primers and ligated with
the pGl4 plasmid, which was double digested by KpnI and
XhoI, to generate the Fsp27 luciferase reporter construct.

The mouse Fsp27 coding sequence was first cloned into
pDONR/Zeo vector via Gateway BP recombination and then
transferred into pAdCMV-DEST plasmid via Gateway LR re-
combination. All the adenoviruses were generated after
transfection of 293AD cells and concentrated by ultracentri-
fuge in CsCl gradient and purified by Vivaspin 20 concentra-
tors. Ad-shCrebh with the mouse Crebh-targeting sequence
of GAGCAGAAAGTTCTACTAAAT was a gift of K.Z.

Transfection and Luciferase Assay
A total of 2 × 105 Hepa1 cells/well were seeded in 24-well
plates. Transfection was performed with Opti-MEM (2021431;
Gibco) and polyethylenimine. The cells were cotransfected with
active Crebh plasmid, E4bp4 plasmid, and Fsp27 luciferase re-
porter construct along with b-galactosidase (b-gal) plasmid.
Twenty-four hours later, luciferase activity was measured with
luciferin (103404-75-7; Gold Biotechnology) on a BioTek Syn-
ergy 2 microplate reader and normalized by b-gal assay.

Affymetrix Microarray Analysis
Total RNA was extracted from the liver of HFD-fed
E4bp4 flox/flox (n = 4) and E4bp4-LKO mice (n = 4). Equal
amounts of RNA from the livers of mice of the same ge-
notype were pooled and analyzed at the University of
Michigan Medical School Advanced Genomic Core for Af-
fymetrix microarray analysis. Gene expression levels were
shown as expression values of log2-transformed data gen-
erated via robust multiarray averages (39). The heat map
was generated using the pheatmap R package to compare
gene expression levels between HFD-fed E4bp4 flox/flox and
E4bp4-LKO mice. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis was performed by using
the Database for Annotation, Visualization and Integrated
Discovery and visualized using the ggplot2 R package.

Coomassie Blue Staining and Mass Spectrometry
A total of 1 × 108 293AD cells was transduced with Ad-GFP
or Ad-Flag-E4bp4 for 16 h prior to whole-cell lysate prepa-
ration. Protein samples were separated using 9% SDS-
PAGE. The gel was stained with Coomassie blue dye for
30 min and destained overnight. The bands showed up
only in the Ad-Flag-E4bp4 group and were cut out for mass
spectrometry at the Proteomics Resource Facility, Depart-
ment of Pathology, University of Michigan Medical School.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
9.3 software. For comparison between two groups, statisti-
cal significance was determined by the unpaired two-tailed
Student t test. To compare multiple groups, one-way
ANOVA with post hoc Tukey test was used in studies with
one independent variable, whereas two-way ANOVA with
post hoc Tukey test was used for studies with two indepen-
dent variables. All results are presented as mean ± SEM.
Differences were considered statistically significant at P <
0.05.
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Data and Resource Availability
All the data and critical resources supporting our findings,
as well as methods and conclusions, are available from
the corresponding authors upon request. The original Af-
fymetrix microarray data are available in the National
Center for Biotechnology Information Gene Expression
Omnibus database (GSE 200528).

RESULTS

Hepatic E4bp4 Deficiency Protects Mice Against
HFD-Induced Liver Steatosis
Given the role of E4BP4 in promoting lipogenesis and en-
hancing lipid accumulation upon ER stress (26,28,30), we
hypothesized that hepatic E4bp4 deficiency may suppress
the development of liver steatosis following HFD feeding.
To test this hypothesis, both E4bp4 flox/flox and E4BP4-LKO
mice were subjected to 12-week HFD feeding. Through the
whole feeding period, no differences were observed between
E4BP4-LKO and E4bp4 flox/flox mice in body weight, weight of
white adipose tissue, and weight of liver (Fig. 1A–C). Insulin
tolerance test after 5 weeks of HFD and glucose tolerance
test after 8 weeks of HFD showed no differences between
E4BP4-LKO and E4bp4 flox/flox mice (Supplementary Fig. 1A

and B). In addition, overnight fasting glucose was only
slightly lower in E4BP4-LKO mice, without statistical signifi-
cance. The expression levels of the key gluconeogenic genes
were comparable between the two groups (Supplementary
Fig. 1C and D). These findings indicate that hepatocyte
E4BP4 is largely dispensable for body weight gain and glu-
cose metabolism in mice following HFD feeding.

However, we observed a >40% reduction in serum
ALT, a serum marker for liver injury (Fig. 1D), 20% reduc-
tion in serum cholesterol (Fig. 1E), and no change in se-
rum TGs in HFD-fed E4bp4-LKO mice (Fig. 1F). Liver
tissues from E4bp4-LKO mice contained significantly less
TG and cholesterol (Fig. 1G and H). Further H-E staining
also showed greatly reduced lipid accumulation within
E4bp4-LKO liver (Fig. 1I). Liver steatosis at the late stage
of NAFLD is associated with increased immune cell infil-
tration and hepatic stellate cell activation (1,5). By RT-
qPCR, a downward trend of fibrosis markers was observed
in the liver of E4bp4-LKO mice (Col1a1 and Col1a2)
(Supplementary Fig. 2A). The expression of inflammatory
markers was not significantly altered (Supplementary
Fig. 2B). In summary, hepatic E4bp4 deficiency protects
mice against HFD-induced liver steatosis and liver injury

A B

D

C

E F

G H I

Figure 1—Loss of hepatic E4bp4 protects mice against HFD-induced liver steatosis. Both 8-week-old E4bp4 flox/flox male littermates (n = 9) and
E4bp4 flox/flox Alb-Cre(1) (E4bp4-LKO) male mice (n = 13) were fed a 45% HFD for 12 weeks. A: Weekly body weight. B and C: Weight of ingui-
nal white adipose tissue (WAT) and liver. D: Serum ALT assay to assess liver injury. E and F: Serum cholesterol and TG levels. G and H: Liver
cholesterol and TG levels. I: Liver H-E staining. *P< 0.05, **P< 0.01, ***P< 0.001.
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without affecting adiposity, glucose metabolism, and insulin
sensitivity. Altogether, these findings are consistent with
our previous report on high-fat, low–L-methionine, and
choline-deficient–fed E4bp4-LKO mice (30).

Downregulation of LD Binding Proteins in the Liver of
E4bp4-LKO Mice
To identify downstream pathways regulated by E4BP4 during
HFD feeding, we performed a microarray analysis with liver
samples from both E4bp4 flox/flox and E4BP4-LKO mice on a
12-week HFD. The microarray heat map highlighted the top
10 upregulated and downregulated genes (>1.5 fold change)
(Fig. 2A). Among these downregulated genes, Cidea and Cidec
are two classical LD binding proteins (11), whereas Gpnmb
and Mmp12 are shown to be involved in liver fibrosis (40,41).

As for the upregulated genes, Cyp2c54 was found to be pri-
marily expressed in the liver, and its function is related to
fatty acid oxidation (42). As a solute carrier anion trans-
porter responsible for transporting bile acids into hepato-
cytes, Slco1a1 (also called Oatp1) expression level was
markedly suppressed in the mouse liver following a me-
thionine-choline–deficient diet (43). Serpina1e was re-
cently found to be involved in hepatic gluconeogenesis
(44). The KEGG pathway analysis showed that metabolic
pathways are the most significantly affected by the loss of
E4bp4 in the liver of E4bp4-LKO mice (Fig. 2B), consistent
with the profile of genes observed in microarray analysis.

Next, RT-qPCR analysis was performed to verify the mi-
croarray data. Several major LD binding proteins, including
Cidea, Fsp27, and Plin 2, 3, 4, and 5 were indeed potently

A B

C

D F G

E H

Number of Genes

Figure 2—Identification of Fsp27 as a major downstream target of E4BP4 in the liver of HFD-fed mice. Affymetrix microarray was performed
with RNA samples pooled from the livers of HFD-fed E4bp4 flox/flox male mice (n = 4) vs. E4bp4-LKO male mice (n = 4). A: Heat map of the top
10 upregulated and downregulated genes (expression values of E4bp4 flox/flox control mouse livers set at 1). B: The top five pathways of KEGG
pathway analysis using differentially expressed genes. C: The same group of mouse livers were also used for RT-qPCR to assess the expres-
sion levels of LD binding genes. D–G: De novo lipogenic genes, fatty acid oxidation genes, lipolysis genes, and lipid uptake genes. H: Immuno-
blotting to measure the cytosolic (Cyto) FSP27 and nuclear (Nuc) E4BP4 (quantified after normalization in Supplementary Fig. 9). The
abundance of Cyto FSP27 was quantified after normalization by GAPDH. *P< 0.05, **P< 0.01, ***P< 0.001.
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downregulated in the E4bp4-LKO liver (Fig. 2C). In con-
trast, no major changes in lipogenic pathway (Fasn, Scd1,
and Acc1), fatty acid oxidation (Cpt1a, Acox1, and Ehhadh),
and lipolysis (Pnpla2 and Lipe) pathways were detected
(Fig. 2D–F). CD36, a fatty acid translocase, was signifi-
cantly downregulated in the liver of E4BP4-LKO mice (Fig.
2G). This is interesting since hepatocyte-specific disruption
of CD36 attenuates liver steatosis upon HFD feeding in
mice (28,45). The RT-qPCR data showed no differences in
genes involved in hepatic cholesterol metabolism between
E4bp4 flox/flox and E4bp4-LKO mice (Supplementary Fig. 3).
Meanwhile, both E4BP4 and FSP27 protein levels in the
liver were markedly reduced in E4bp4-LKO mice (Fig. 2H).
Taken together, our results indicate that hepatic E4bp4 de-
ficiency reduces HFD-induced liver steatosis and liver in-
jury with a concomitant suppression of LD binding and
lipid uptake genes.

E4BP4 Promotes LD Formation and Fsp27 Expression
Via CREBH in Hepatocytes
So far, whether E4BP4 can regulate the expression of
Fsp27 in a cell-autonomous manner remains unclear. To
address this question, we manipulated E4BP4 expression
in E4bp4-LKO PMHs and examined its effect on LD for-
mation and Fsp27 expression. Loss of E4bp4 led to a sig-
nificant decrease of LD numbers in Ad-LacZ–transduced
E4bp4-LKO PMHs compared with E4bp4 flox/flox PMHs. In
contrast, adenovirus-mediated overexpression of E4BP4
indeed increased the number of LDs and the expression
of the liver-specific Fsp27b isoform and Cidea in E4bp4-
LKO PMHs (Fig. 3A and B). In contrast, acute depletion
of E4bp4 abrogated not only the basal expression of
Fsp27b but also its induction after stimulation with the
saturated fatty acid (palmitate) plus the inflammatory cy-
tokine tumor necrosis factor-a (TNF-a) (Fig. 3C and D),
an in vitro condition mimicking diet-induced nonalcoholic
steatohepatitis (46). These results indicate that E4BP4 is
both necessary and sufficient to promote the transcrip-
tion of Fsp27b in hepatocytes.

How E4BP4 enhances the transcription of Fsp27b in-
trigued us, since the canonical function of E4BP4 acts as
a transcriptional repressor (26,47,48). Furthermore, a ge-
nome-wide chromatin immunoprecipitation assay with anti-
E4BP4 did not reveal direct binding of E4BP4 to either
Fsp27 or Cidea promoter (49). Previously, we reported that
E4BP4 stabilizes nuclear SREBP-1c and subsequently enhan-
ces SREBP-1c–driven lipogenic gene expression via protein-
protein interaction (28). We postulated that E4BP4 might
promote the transcription of Fsp27 indirectly via collabora-
tion with other transcriptional activators of Fsp27. We then
analyzed the protein levels of several FSP27 regulators
(16,20,50) in PMHs transduced with Ad-E4BP4. The immu-
noblotting results showed that E4BP4 overexpression ele-
vated the abundance of CREBH and SREBP-1c (to a lesser
extent) while showing no effects on PPAR-g (Fig. 3E). In
contrast, a marked reduction of the nuclear CREBH was

observed in the liver of E4BP4-LKO mice following HFD
feeding (Fig. 3F). Consistent with these observations, knock-
down of Crebh by Ad-shCrebh blocked the induction of
Fsp27b by E4BP4 overexpression in hepatocytes (Fig. 3G).
Furthermore, we tested the effects of E4BP4 on the activity
of the mouse Fsp27 promoter, which was reported to con-
tain a binding site for CREBH (20). Compared with active
CREBH overexpression, E4BP4 alone had minimal induction
of the Fsp27 promoter–driven luciferase reporter in Hepa1
cells (Fig. 3H). However, its overexpression significantly
boosted the CREBH-induced transaction of Fsp27, support-
ing that E4BP4 most likely promotes the Fsp27 transcription
via CREBH.

We also examined whether SREBP-1c could be involved
in E4BP4-stimulated expression of Fsp27. Acute depletion
of Srebp-1c also tended to reduce the ability of E4BP4 to
induce the Fsp27 expression without reaching statistical
significance (Supplementary Fig. 4). In summary, these
data suggest a link between E4BP4 and CREBH, pointing
to E4BP4 as a critical regulator of FSP27 expression mainly
via CREBH in hepatocytes.

Overexpression of FSP27 in the Liver of E4BP4-LKO
Mice Restores Liver Steatosis
Next, we investigated to what extent FSP27 mediates the
effects of E4BP4 on lipid content and the number of LDs
in the liver. For this purpose, an adenovirus expressing
the Fsp27a isoform (Ad-Fsp27) was generated and used
to transduce PMHs along with Ad-LacZ control. Of note,
the functional motifs of FSP27a and FSP27b are almost
indistinguishable despite tissue-specific expression pat-
terns (18,20). Indeed, compared with Ad-LacZ–transduced
E4bp4-LKO PMHs, Ad-Fsp27 markedly increased the num-
ber of LDs in E4bp4-LKO PMHs (Fig. 4A). Next, we injected
E4bp4 flox/flox mice with Ad-GFP and E4bp4-LKO mice with
Ad-GFP control or Ad-Fsp27 after 2 weeks of HFD feeding
and then examined liver lipid metabolism 10 days later. By
the end of the experiment, we confirmed overexpression of
Fsp27 at both mRNA and protein levels (Fig. 4B and C).
The total liver TG content was increased significantly in
the Ad-Fsp27–injected E4bp4-LKO mice versus the Ad-
GFP–injected E4bp4-LKO mice (�2.8-fold, P < 0.01) (Fig.
4D). The total cholesterol content showed no significant
difference among the three groups (Fig. 4E). Liver H-E
staining revealed that both the size and number of LDs
were markedly increased by Ad-Fsp27 in E4bp4-LKO mice
(Fig. 4F). However, no differences were found in terms of
serum levels of ALT, TGs, and cholesterol among the three
groups of mice (Supplementary Fig. 5A–C). Thus, both
in vitro and in vivo data support that FSP27 is a down-
stream effector that links E4BP4 and liver steatosis in re-
sponse to HFD feeding.

Nutritional Stresses Induce DeSUMOylation of E4BP4
in the Liver and Hepatocytes
So far, we have demonstrated that E4BP4 overexpression
stimulates the expression of Fsp27 in hepatocytes. We
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also showed that such action primarily depends on CREBH.
These findings raised an important question of how exactly
E4BP4, a transcriptional repressor, activates the expression
of Fsp27. To test the possibility that E4BP4 could change
its transcriptional activity via posttranslational modifications,
we transduced PMHs with Ad-Flag-E4bp4 and performed

immunoprecipitation with anti-FLAG for proteomic analysis
to identify novel interaction proteins and posttranslational
modifications of E4BP4. Two distinctive bands were cut out
for proteomic analysis of the immunocomplex of E4BP4 (Fig.
5A). The top band had a higher molecular weight than that
of E4BP4 and was shown to be an E4BP4-dominant protein

A B

C

D E

F G H

Figure 3—E4BP4 promotes LD formation and Fsp27 expression via CREBH in hepatocytes. A: Induction of LDs in E4bp4-LKO
PMHs by E4bp4 overexpression. E4bp4-LKO PMHs were transduced with Ad-LacZ or Ad-E4bp4, while E4bp4 flox/flox PMHs were
transduced with Ad-LacZ as control before oleic acid (300 mmol/L) treatment overnight and then BODIPY staining for LDs (quanti-
fied in Supplementary Fig. 10). B: E4bp4, Cidea, and Fsp27b expression levels in E4bp4-LKO PMHs following E4bp4 overexpres-
sion. C: E4bp4, Cidea, and Fsp27b expression levels in PMHs from E4bp4 flox/flox mice following E4bp4 knockdown by Ad-shE4bp4.
D: Effect of acute depletion of E4bp4 on Fsp27b expression in E4bp4 flox/flox PMHs with and without palmitic acid (200 mmol/L) plus
TNF-a (8 ng/mL) treatment. E: Effect of E4BP4 overexpression on lipid metabolism genes in PMHs. The abundance of CREBH was
quantified after normalization by HSP90 (Supplementary Fig. 9). F: Comparison of the abundance of FSP27 regulators in the liver
between E4bp4 flox/flox and E4bp4-LKO mice following HFD feeding. The abundance of CREBH was quantified after normalization
by Lamin A/C (quantified in Supplementary Fig. 9). G: Effect of E4bp4 overexpression and Crebh knockdown on Fsp27b expression
level. PMHs were transduced with Ad-E4bp4, Ad-shCrebh, or both before RT-qPCR for Fsp27b expression. H: Enhancement of
CREBH-induced Fsp27 promoter activity by ectopic expression of E4bp4 in hepatocytes. Hepa1 cells were transfected with
a 1.7-kb Fsp27 promoter–driven luciferase reporter construct, active Crebh expression construct, or E4bp4 expression construct.
Luciferase activity was normalized by b-gal activity. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. AU, arbitrary unit; CHRE,
CREBH response element.
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complex that contained metastasis associated 1 family
member 2 (MTA2), small ubiquitin-like modifier 2 (SUMO2),
SUMO3, GATA binding protein 2A (GATA2A), and GATA2B
(Fig. 5B). The lower band matched the molecular weight of
E4BP4 that was identified as the major constituent along
with a panel of other transcriptional regulators. Transducin
b-1 X-linked (TBL1) and its receptor TBLR1 were reported to
function as a transcription cofactor in controlling lipid mobili-
zation in white adipose tissue (51). WD-repeat domain 1
(WDR1) is a major cofactor of the actin depolymerizing factor
and accelerates actin disassembly. Mice with Wdr1 deficiency
in cardiomyocytes exhibit cardiac hypertrophy and myocardial
fibrosis (52). Histone deacetylase 2 (HDAC2), one of the class
I HDAC enzymes, has been shown to have diverse biological
function in cellular metabolism and liver diseases (53). Finally,
lysing acetyltransferase 8 (KAT), is an important epigenetic
regulator for embryonic development and normal chromatin
architecture (54). Recently, KAT8 was also found to play a
role in liver metabolism and liver injury (55,56). Until now,
the interactions between E4BP4 and these epigenetic regula-
tors are novel and unexpected. We suspect that E4BP4 might
function differently via interacting with different transcrip-
tion cofactors or epigenetic regulators.

The proteomic finding that E4BP4 coexists with SUMO2
and SUMO3 peptides in hepatocytes prompted us to postu-
late that E4BP4 might be modified by SUMOylation in hep-
atocytes. In fact, E4BP4 was found to be modified by
SUMOylation in 293T cells via an unbiased screen (35). The
five lysine residues within E4BP4 for SUMOylation were
identified in a recent report (36) (Fig. 5C). To verify our pro-
teomic finding, we performed an in vitro SUMOylation assay
using purified glutathione S-transferase (GST)-E4BP4 and re-
combinant SUMO enzymes with or without Mg21 plus ATP
(Mg-ATP). Indeed, compared with GST alone control, GST-
E4BP4 showed distinct bands of SUMO2/3 conjugations in
the presence of SUMO enzymes in an Mg-ATP–dependent
manner (Fig. 5D). Taken together, our data not only confirm
that E4BP4 is a direct target of SUMOylation but also dem-
onstrate for the first time that E4BP4 SUMOylation occurs
in hepatocytes.

Protein SUMOylation is dynamically regulated by
hormonal and nutritional signaling (32). For example,
SUMOylation of hepatic bile acid sensor farnesoid X re-
ceptor was found to be reduced upon HFD feeding, while
its acetylation was elevated in the liver (57). We therefore
asked whether hepatic E4BP4 SUMOylation is also regulated
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Figure 4—Restoring Fsp27 in the liver of E4bp4-LKO mice rescues liver steatosis after HFD feeding. E4bp4-LKO PMHs were transduced
with Ad-LacZ or Ad-Fsp27 and then treated with oleic acid (300 mmol/L). Ad-LacZ–transduced E4bp4 flox/flox PMHs were included as con-
trol. A: After overnight incubation, PMHs were subjected to BODIPY staining for LDs (quantified in Supplementary Fig. 10). B–F: After
2-week HFD feeding, 8-week-old male E4bp4 flox/flox mice were injected with Ad-GFP control via tail vein, while 8-week-old male
E4bp4-LKOmice were injected with Ad-GFP control or Ad-Fsp27 virus. Ten days after injection, mouse livers were harvested for immuno-
blotting (quantified after normalization by GAPDH in Supplementary Fig. 9) (B); RT-qPCR for Fsp27b expression (C), liver TG (D), and cho-
lesterol (E) levels; and liver H-E staining (F). *P< 0.05.
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by nutritional signaling. We first examined E4BP4
SUMOylation in the liver after HFD feeding. E4BP4
SUMOylation was detected in the liver of regular chow–fed
mice but became largely undetectable after 10 weeks of
HFD feeding despite elevated hepatic E4BP4 protein
(Fig. 5E). Next, we addressed whether specific nutritional
signals could promote deSUMOylation of E4BP4 within
hepatocytes. We chose to test palmitate, the saturated fatty
acid known to be associated with liver steatosis, insulin re-
sistance, and ER stress (6). After overnight treatment with
palmitate at 400 mmol/L, E4BP4 SUMOylation was mark-
edly reduced, whereas the E4BP4 total protein increased,
reminiscent of the pattern in mouse liver after HFD feed-
ing (Fig. 5F). Taken together, our data suggest that hepatic

E4BP4 exists in both SUMOylated and deSUMOylated
states. More importantly, nutritional stress, including
HFD feeding and palmitate treatment, can lead to
deSUMOylation of E4BP4 in the liver and hepatocytes.

Effects of E4BP4 DeSUMOylation on Fsp27 Expression
and LD Formation in Hepatocytes
To further investigate the biological significance of E4BP4
SUMOylation in regulating hepatic lipid metabolism, we gen-
erated adenoviruses to express E4BP4-WT and E4BP4-5KR
respectively. Since protein SUMOylation affects both protein
stability and activity, we compared the protein stability of
E4BP4-WT and E4BP4-5KR mutant in a cycloheximide chase
experiment. As shown in Supplementary Fig. 6A, both
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Figure 5—Nutritional stress induces deSUMOylation of E4BP4. A: Coomassie blue staining of the E4BP4-FLAG–associated protein bands af-
ter immunoprecipitation (IP) with anti-FLAG. PMHs isolated from E4bp4 flox/flox mice were transduced with Ad-GFP vs. Ad-FLAG-E4bp4 and
used for IP with anti-FLAG. The two bands cut out for mass spectrometry are indicated. B: Bands identified in the immunocomplex of E4BP4
and their peptide spectrum match (PSM) numbers. C: Five lysine residues within E4BP4 protein targeted for SUMOylation. D: In vitro E4BP4
SUMOylation assay using purified GST-E4BP4, SUMO2/3, and recombined SUMO enzymes. E: In vivo SUMOylation assay with the liver from
mice fed regular chow vs. HFD for 10 weeks. F: In vitro SUMOylation assay. Hepa1 cells were treated with palmitate at 400 mmol/L overnight
before lysis for IP with anti-E4BP4 and immunoblotting (IB) with anti-SUMO.WCL, whole-cell lysate.

356 DeSUMOylation of E4BP4 Promotes Liver Steatosis Diabetes Volume 72, March 2023

https://doi.org/10.2337/figshare.21691973


A D

B

C

D

(�mol/L)

Figure 6—Reduced sensitivity of deSUMOylated E4BP4 to the suppression of Fsp27 expression and LD formation by cAMP activation in
hepatocytes. A and B: Effect of forskolin and norepinephrine on E4BP4 protein abundance in hepatocytes. Hepa1 cells were transduced
with Ad E4BP4-WT or E4BP4-5KR and treated with forskolin at 20 mmol/L or norepinephrine at 5 nmol/L for 6 h prior to Western blot for
E4P4 abundance with anti-E4BP4 and PKA activation with anti–p-PKA substrates. The abundance of E4BP4 and p-PKA substrates was
quantified after normalization by HSP90 (Supplementary Fig. 9). C: Comparison of Fsp27b levels in Hepa1 cells overexpressing
E4BP4-WT vs. E4BP4-5KR after forskolin treatment. Hepa-1c1c7 cells were transduced with Ad-E4bp4-WT vs. Ad-E4bp4-5KR for
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E4BP4-WT and E4BP4-5KR exhibited similar rates of deg-
radation, consistent with a previous report (36). Func-
tionally, both E4BP4-WT and E4BP4-5KR significantly
upregulated Fsp27b and enhanced the protein abundance
of CREBH in PMHs (Supplementary Fig. 6B and C). Fur-
thermore, we found that both E4BP4-WT and E4BP4-5KR
interacted with CREBH in a coimmunoprecipitation assay
(Supplementary Fig. 6D). Taken together, nonSUMOylat-
able E4BP4-5KR mutant behaves similarly to E4BP4-WT
at basal and nonstimulated conditions.

During fasting, breakdown of LDs and lipolysis are
stimulated by signals, including cAMP/cAMP-dependent
protein kinase (PKA), AMPK, and inhibition of mamma-
lian target of rapamycin (58–60). We therefore examined
whether E4BP4-WT and E4BP4-5KR respond differently
to these signaling pathways. Both E4BP4-WT and E4BP4-
5KR behaved similarly in the presence and absence of ra-
pamycin or AICAR treatment (Supplementary Fig. 7A
and B). However, in the presence of forskolin, a cAMP/
PKA activator, E4BP-WT degraded within 6 h after treat-
ment, significantly faster than E4BP4-5KR (Fig. 6A). Given
the potent activation of PKA and lipolysis by norepineph-
rine in hepatocytes (61), we also treated hepatocytes with
norepinephrine and observed a similar pattern where nor-
epinephrine stimulated the degradation of E4BP4-WT but
not E4BP4-5KR (Fig. 6B), supporting that deSUMOylation
renders E4BP4 more resistant to protein degradation in-
duced by activation of the cAMP pathway.

To further determine whether forskolin affects E4BP4-
dependent Fsp27 expression in hepatocytes, we transduced
Hepa-1c1c7 cells with Ad-E4bp4-WT versus Ad-E4bp4-5KR
and treated cells with forskolin. Forskolin potently downre-
gulated Fsp27b in Ad-E4bp4-WT–transduced Hepa1 cells.
However, the suppression of Fsp27b by forskolin was
completely lost in Hepa1 cells transduced with Ad-E4bp4-
5KR (Fig. 6C). Meanwhile, other forskolin-sensitive genes,
such as G6pse and Il11, were not affected by overexpression
of E4BP4 (Supplementary Fig. 8A) (62). Interestingly, for-
skolin also reduced CREBH protein in Hepa1 cells trans-
duced with either Ad-GFP or Ad-E4bp4-WT. However, the
suppression of CREBH by forskolin was completely lost in
Hepa1 cells overexpressing E4bp4-5KR (Supplementary
Fig. 8B), consistent with the unchanged mRNA levels of
Fsp27b in Ad-E4bp4-5KR–transduced Hepa1 cells (Fig. 6C).
These observations provide further evidence supporting
that deSUMOylation of E4BP4 protects CREBH-dependent
Fsp27 expression under the cAMP activation condition.

Finally, we examined LD formation in Huh-7 cells follow-
ing treatment of forskolin in the presence of overexpression

of E4BP4-WT versus E4BP4-5KR. After incubation with a
mixture of palmitate and oleate, which was shown to induce
LD formation in hepatocytes (63), both E4BP4-WT and
E4BP4-5KR–expressing cells accumulated similar numbers of
LDs. In E4BP4-WT–expressing Huh-7 cells, forskolin treat-
ment at both 2.5 mmol/L and 5 mmol/L significantly reduced
the number of LDs. In contrast, forskolin treatment at
2.5 mmol/L failed to block the increase of LDs in E4BP4-
5KR–expressing cells (Fig. 6D). However, forskolin at
5 mmol/L still showed a minimal inhibitory effect on LD
formation in cells with E4BP4-5KR overexpression, sug-
gesting that there are E4BP4-independent mechanisms
for the suppression of LD formation by forskolin. Taken
together, our data uncover a novel link between the status
of E4BP4 SUMOylation and cAMP activation–mediated
suppression of LD biogenesis.

DISCUSSION

In this study, we demonstrated the essential role of
E4BP4 in driving hepatic FSP27 through CREBH to ex-
pand LDs in response to HFD feeding. Our data highlight
that deSUMOylation of E4BP4 blocks the inhibitory ef-
fects of cAMP pathway activation on Fsp27 expression
and LD formation in hepatocytes, potentially leading to
the development of NAFLD.

Our study is the first to demonstrate that E4BP4 is one
of the master regulators of LD binding proteins during
NAFLD. There is mounting evidence that LD binding pro-
teins play important roles in regulating LD biogenesis and
catabolism (10,12). In our study, we discovered and con-
firmed the marked downregulation of several major LD
binding proteins in the liver of E4bp4-LKO mice, including
Cidea, Cidec (Fsp27 in mice), Plin2, Plin3, and Plin4, and to a
lesser degree Plin1 and Plin5. We focused on how hepatic
E4BP4 promotes Fsp27 expression because of the following
reasons: 1) FSP27 is a liver-enriched CIDE-type LD binding
protein (20); 2) upregulation of Fsp27 by CREBH, PPAR-g,
and SREBP-1c has been linked to LD growth and hepatic
steatosis (16,20,50); and 3) administration of Fsp27 anti-
sense oligos improves diet-induced steatohepatitis in mice
(21,23), suggesting that a tight control of Fsp27 expression
could be a key step to treating fatty liver diseases. Although
the exact mechanisms remain to be further defined, we
demonstrated that knockdown of Crebh abrogates the in-
duction of Fsp27b by E4BP4, supporting that E4BP4 pro-
motes the transcription of Fsp27b via CREBH. Hepatic
CREBH protein has been shown to depend on E4BP4 (31),
prompting us to speculate that E4BP4 might promote
Fsp27 transcription by maintaining the CREBH stability.

36 h and then subjected to forskolin (20 mmol/L) for 6 h before RT-qPCR. D: Image and quantification of LDs in Huh-7 cells overexpressing
E4BP4-WT vs. E4BP4-5KR in response to forskolin treatment. Prior to BODIPY staining for LDs, Huh-7 cells were transduced with either
Ad-E4BP4-WT or E4BP4-5KR for 36 h. Cells were then subjected to palmitic acid (300 mmol/L) plus oleic acid (600 mmol/L) for 6 h before
treatment with increasing concentrations of forskolin for 16 h. LD density was quantified using ImageJ software and normalized by cell
numbers. E: Schematic model depicting regulation of LD formation and Fsp27 expression by E4BP4 via CREBH and deSUMOylation in
hepatocytes in response to cAMP activation and HFD feeding. *P < 0.05, ***P< 0.001.
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In this study, we examined the role of protein
SUMOylation in regulating E4BP4 action on FSP27 expres-
sion. Protein SUMOylation has emerged as a critical modi-
fication during cellular responses to various stresses,
including hypoxic and oxidative stress, and more re-
cently ER stress (64). It has been reported that XBP1, the
key transcription factor regulating ER stress response,
is modified by SUMOylation, and SUMOylated XBP1 is
more stable than the unmodified XBP1 (65). Moreover,
ATF6 protein can be modified by SUMOylation, and its
transcriptional activity is suppressed by SUMOylation (66).
These findings suggest that the outcomes of SUMOylation
are transcription factor specific. We also found that E4BP4
is modified by SUMOylation in a SUMO2/3-dependent
manner and that SUMOylation of E4BP4 is sensitive to
nutritional status in hepatocytes. We speculate that
SUMOylation status of E4BP4 depends on the activity
of both SUMO E3 ligases and deSUMOylases within
hepatocytes. So far, PIASy, one of the SUMO E3 ligases,
has been reported to regulate hepatic lipid metabolism
upon fasting signaling (67). In contrast, SENP3, one of
the SUMO-specific proteases, was found to act as a key
regulator of hepatic lipid metabolism in NAFLD (68). We
intend to identify the specific enzymes that control the
reversible E4BP4 SUMOylation in future work.

Our data show that SUMOylation does not impact E4BP4
protein degradation or its ability to induce the CREBH-
Fsp27b axis in hepatocytes under basal conditions. However,
our data did reveal that the nonSUMOylatable E4BP4-5KR
mutant is resistant to activation of the cAMP pathway, a key
signaling pathway in regulating carbohydrate and lipid me-
tabolism in the liver during fasting-feeding cycles and nutri-
tional stress (58,59,69). Accumulated evidence suggests that
elevated cAMP signaling confers protection against diet-in-
duced NAFLD in mice, whereas inhibition of cAMP signaling
is sufficient to trigger NAFLD (70–72). Our work uncovered
that activation of the cAMP pathway by forskolin not only
lowers the protein levels of E4BP4-WT but also downregu-
lates the CREBH-Fsp27b axis, subsequently reducing LDs
within hepatocytes. However, these effects are largely absent
in hepatocytes expressing the SUMOylation-defective E4BP4-
5KR mutant, supporting a critical role of E4BP4 SUMOyla-
tion in mediating the inhibitory effects of cAMP pathway ac-
tivation on CREBH-FSP27–dependent LD biogenesis. Given
the importance of the cAMP pathway in liver physiology and
liver disease, it would be of great interest to identify both up-
stream signaling and downstream effectors of the cAMP
pathway in regulating the SUMOylation and stability of
E4BP4 in NAFLD.
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