
IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

Automatic segmentation of the thalamus using a massively trained
3D convolutional neural network: higher sensitivity for the detection
of reduced thalamus volume by improved inter-scanner stability
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Abstract
Objectives To develop an automatic method for accurate and robust thalamus segmentation in T1w-MRI for widespread clinical
use without the need for strict harmonization of acquisition protocols and/or scanner-specific normal databases.
Methods A three-dimensional convolutional neural network (3D-CNN) was trained on 1975 T1w volumes from 170 MRI
scanners using thalamus masks generated with FSL-FIRST as ground truth. Accuracy was evaluated with 18 manually labeled
expert masks. Intra- and inter-scanner test-retest stability were assessed with 477 T1w volumes of a single healthy subject
scanned on 123 MRI scanners. The sensitivity of 3D-CNN-based volume estimates for the detection of thalamus atrophy was
tested with 127 multiple sclerosis (MS) patients and a normal database comprising 4872 T1w volumes from 160 scanners. The
3D-CNN was compared with a publicly available 2D-CNN (FastSurfer) and FSL.
Results The Dice similarity coefficient of the automatic thalamus segmentation with manual expert delineation was similar for all
tested methods (3D-CNN and FastSurfer 0.86 ± 0.02, FSL 0.87 ± 0.02). The standard deviation of the single healthy subject’s
thalamus volume estimates was lowest with 3D-CNN for repeat scans on the same MRI scanner (0.08 mL, FastSurfer 0.09 mL,
FSL 0.15 mL) and for repeat scans on different scanners (0.28 mL, FastSurfer 0.62 mL, FSL 0.63 mL). The proportion of MS
patients with significantly reduced thalamus volume was highest for 3D-CNN (24%, FastSurfer 16%, FSL 11%).
Conclusion The novel 3D-CNN allows accurate thalamus segmentation, similar to state-of-the-art methods, with considerably
improved robustness with respect to scanner-related variability of image characteristics. This might result in higher sensitivity for
the detection of disease-related thalamus atrophy.
Key Points
• A three-dimensional convolutional neural network was trained for automatic segmentation of the thalamus with a heteroge-
neous sample of T1w-MRI from 1975 patients scanned on 170 different scanners.

• The network provided high accuracy for thalamus segmentation with manual segmentation by experts as ground truth.
• Inter-scanner variability of thalamus volume estimates across different MRI scanners was reduced by more than 50%, resulting
in increased sensitivity for the detection of thalamus atrophy.
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Abbreviations
2D/3D Two/three-dimensional
95% CI 95% confidence interval
CNN Convolutional neural network
FastSurfer 2D-CNN software library
FSL Software library https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FIRST
FTHP Frequently traveling human phantom
IBSR Internet Brain Segmentation Repository
MRI Magnetic resonance imaging
MS Multiples sclerosis
std Standard deviation
THALV Thalamus volume
TIV Total intracranial volume

Introduction

There is growing interest in MRI-based volumetry of the thal-
amus, for example, in the management of patients with mul-
tiple sclerosis (MS). The thalamus is among the brain struc-
tures with the earliest signs of atrophy detectable inMRI in the
course of MS [1], and MRI-based thalamus volume is a prom-
ising marker to predict the transition from clinically isolated
syndrome to clinically definiteMS [2]. Furthermore, thalamus
atrophy is among the strongest predictors of cognitive impair-
ment inMS [3] and therefore can serve as a surrogate outcome
for cognition in MS therapy trials [4, 5].

Manual delineation by an expert is the ground truth for
MRI-based volumetry of the thalamus. Methods for automatic
thalamus segmentation have been developed to facilitate thal-
amus volumetry [6–9], as manual segmentation by an expert is
not compatible with the busy clinical routine at most sites.
However, automatic brain volumetry methods are sensitive
to the MRI scanner platform and details of the acquisition
protocol [10–14]. This limits the sharing of normal databases
and/or cutoffs between sites and/or scanners, which in turn
detracts from the utility of automatic brain volumetry for
widespread clinical use. Thus, there is a great need for auto-
matic brain volumetry methods that are more robust with re-
spect to scanner-related variability of image characteristics in
MRI (e.g., gray-to-white matter contrast, signal-to-noise).

Convolutional neural networks (CNNs) outperform con-
ventional machine learning approaches in many medical im-
aging tasks including MRI-based brain volumetry [15, 16].
CNNs are also particularly promising in non-harmonized
multi-site settings, since they can be made robust with respect
to scanner-related variability by training with a heterogeneous
dataset covering the whole range of image characteristics en-
countered in the considered multi-site setting [17].

Against this background, the present study trained a 3D-
CNN for automatic thalamus segmentation in T1w-MRI on a
large heterogeneous dataset. The 3D-CNN was compared

with a publicly available 2D-CNN (FastSurfer [16]) and
FSL [18] with respect to accuracy, intra- and inter-scanner
test-retest stability, and sensitivity to detect thalamus atrophy.

Materials and methods

All datasets used in this study comprise 3D gradient echo T1w
volume images of the brain acquired with scanner-specific
acquisition protocols recommended by the manufacturer for
MRI-based brain volumetry. Slice thickness ranged between
0.9 and 1.3 mm. TE time ranged between 1.7 and 5.1 ms
(mean 3.1 ± 0.6 ms). TR time ranged between 4.7 and
25 ms (mean 10.1 ± 6.0 ms) for GE and Philips scanners,
and between 4.5 and 3000 ms (mean 1837 ± 459 ms) for
Siemens scanners.

A summary of the datasets is provided in Table 1.

Dataset for the training of the 3D-CNN

The training dataset comprised 1975 clinical T1w volume
images of 1975 different patients from 170 different MRI
scanners. The volume images were randomly selected from
a larger dataset to achieve a rather uniform distribution of
patient age between 20 and 90 years. No additional eligibility
criteria were applied to guarantee that the training set covered
the whole range of T1w volume images encountered for MRI-
based volumetry in clinical routine. In particular, there were
no eligibility criteria with respect to the patients’ health status.

IBSR dataset for the assessment of segmentation
accuracy

Eighteen T1w volume images together with masks of the sub-
cortical regions including the thalamus manually delineated
by experts freely available from the Internet Brain
Segmentation Repository (IBSR, https://www.nitrc.org/
projects/ibsr/) were used for the assessment of segmentation
accuracy.

Frequently traveling human phantom (FTHP) dataset
for the assessment of intra- and inter-scanner
variability

T1w volume images of a single healthy middle-aged male
subject who completed 123 imaging sessions on 123 different
MRI scanners were used for the assessment of intra- and inter-
scanner variability. Most imaging sessions comprised three to
five repeat acquisitions (without repositioning) resulting in a
total of 477 volume images of the same healthy subject within
a period of about 2.5 years.
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The FTHP dataset is freely available for research purposes
(https://www.kaggle.com/datasets/ukeppendorf/frequently-
traveling-human-phantom-fthp-dataset).

MS patient dataset to test sensitivity of single subject
analysis

T1w volume images of 127 MS patients were included retro-
spectively to assess the sensitivity of the 3D-CNN to detect
thalamus atrophy. Thirty-three of them had been enrolled in a
clinical study at the Institute of Diagnostic and Interventional
Neuroradiology of the University Hospital Carl Gustav Carus,
Dresden, Germany (age 42.2 ± 10.1 years, Expanded
Disability Status Scale 2.7 ± 1.6, disease duration 5.2 ± 4.8
years). The remaining 94 MS patients had participated in an
observational study at the University Hospital of Zurich,
Switzerland (age 37.3 ± 8.9 years, Expanded Disability
Status Scale 1.3 ± 1.3, disease duration 2.7 ± 4.5 years).

Normal database for single subject analysis

A sample of 4872 T1w-MRI from 4872 different patients
acquired on 160 different MRI scanners for unspecific symp-
toms (headache, dizziness) was used as normal database for
single subject analyses. None of the patients had a history of
or currently ongoing neurological or psychiatric condition. All
volume images were free of abnormalities beyond those ex-
pected for the patients’ age based on visual inspection by the
local radiologist.

Ethics approval and consent to participate

The MRI data of the training set and of the normal database
had been transferred to jung diagnostics GmbH under the
terms and conditions of the European General Data
Protection Regulation for remote image analysis.
Subsequently, the data had been anonymized. The need for
written informed consent for the retrospective use of the
anonymized data in the present study was waived by the ethics

review board of the general medical council of the state of
Hamburg, Germany.

Ethics approval for the retrospective use of the FTHP
dataset was obtained from the same ethics review board. The
single subject had given written informed consent.

The MS patient dataset comprised data from two prospec-
tive studies that had been approved by the local ethics com-
mittees. All patients had given written informed consent. This
included the retrospective use of the data for the present study.

Thalamus segmentation with FSL

The FIRST module of the FSL Software (FSL; version 6.0.2;
http://fsl.fmrib.ox.ac.uk/fsl) provides binary masks of deep
gray matter structures including the thalamus [18].

3D-CNN for thalamus segmentation

A3D-CNN-U-net architecture [19, 20] recently introduced for
the segmentation of white matter hyperintensities in T2w-
MRI [15, 21] was used (Fig. 1). The network was trained for
the simultaneous segmentation of the right thalamus, left thal-
amus, remaining deep gray matter structures, and remaining
total intracranial volume (TIV) (Fig. 1). The additional classes
(beyond the left and right thalamus) were introduced to pro-
vide regional context which has been proven beneficial for
other segmentation tasks [22].

The ground truth for the deep gray matter structures was
obtained with FSL. The ground truth for the TIV was derived
using a validated algorithm [23] based on the Statistical
Parametric Mapping framework (version SPM12, https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/) [24]. The 3D-CNN was
trained using massive data augmentation including simulation
of random bias fields and statistical noise in addition to standard
augmentation techniques (rotation, flipping). Manual quality
control of ground truth segmentation was not performed.

A more detailed description of the 3D-CNN architecture,
the training, and the data augmentation is given in the
Supplementary Material.

Table 1 Overview of the datasets

No. of
scans

No. of
patients

No. of
scanners

No. of Siemens
scanners

No. of Philips
scanners

No. of GE
scanners

No. of 3T
scanners

No. of 1.5T
scanners

Age [years]
mean (std) range

Training dataset 1975 1975 170 110 41 19 124 46 51.8 (19.5) [20, 90]

IBSR 18 18 2 1 0 1 1 1 38.3 (22.4) [7, 71]

FTHP 477 1 123 75 36 12 35 88 49.5 (0.4) [49, 51]

MS patients 127 127 2 1 1 0 1 1 38.4 (9.7) [20, 63]

Normal database 4872 4872 160 109 37 14 44 116 49.7 (16.8) [20, 90]

IBSR, Internet Brain Segmentation Repository; FTHP, frequently traveling human phantom; MS, multiples sclerosis
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The trained 3D-CNN is available from the authors upon re-
quest under a non-disclosure agreement for non-commercial use.

Thalamus segmentation with FastSurfer

The recently introduced FastSurfer pipeline [16] deploys a
2D-U-net-CNN trained on masks automatically generated
with FreeSurfer [25]. FastSurfer is freely available (https://
github.com/Deep-MI/FastSurfer). FastSurfer was used with
default parameter settings and the pre-trained networks.

Segmentation accuracy

The accuracy of bilateral thalamus segmentation by 3D-CNN,
FastSurfer, and FSL in the IBSR dataset was characterized by
the Dice similarity coefficient and the Hausdorff distance rel-
ative to the manual expert delineation. Analysis of variance
for repeated measurements was used to compare the Dice
coefficient and the Hausdorff distance between 3D-CNN,
FastSurfer, and FSL. Bland-Altman plots were used to com-
pare bilateral thalamus volume (THALV) estimates between
the automatic methods and the manual ground truth.

Intra- and inter-scanner variability

Intra- and inter-scanner variability of THALV were assessed in
the FTHP dataset. To measure intra-scanner variability, the re-
siduals with respect to the mean THALV of all repeat scans

with the same scanner (without repositioning) were computed
for each THALV estimate. The intra-scanner residuals were
pooled into a single vector (of length 477). To measure inter-
scanner variability, first the mean values of THALVwere com-
puted for each scanner and pooled into a single vector (of length
123). Then, the mean overall mean values were subtracted
element-wise from this vector, resulting in a vector of inter-
scanner residuals with zero mean. Levene’s test for equality
of variances was used for pairwise comparison of the variance
of intra- and inter-scanner residuals between 3D-CNN,
FastSurfer, and FSL. Bonferroni correction was used to adjust
the significance level for the number of pairwise tests; that is,
p values smaller than 0.05/3 = 0.017 were considered statisti-
cally significant. The 50th and 95th percentiles of the absolute
value of intra- and inter-scanner residuals were determined to
further characterize intra- and inter-scanner variability.

Single subject analysis

Regional brain volumes including THALV are strongly cor-
related with head size [26] and subject age [27]. The TIV
estimated in T1w-MRI using a 3D-CNN specifically trained
for this purpose was used as surrogate of head size. Removing
between-subjects variability associated with TIV and age can
improve the power of MRI-based brain volumetry to detect
disease-related alterations. In the present study, the following
procedure was used to account for the impact of TIV and age
on THALV. First, the THALV-TIV-age relationship was

Fig. 1 The proposed 3D-CNN U-net: A patch-wise approach with a
patch size of 160 × 160 × 160 cubic voxels of 1-mm edge length was
used. A fully convolutional encoder-decoder architecture with 3D convo-
lutions, residual-block-connections, and four reductions of the feature

map size was employed. The network was trained for simultaneous seg-
mentation of the left and right thalamus, remaining deep gray matter
structures, and remaining total intracranial volume
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modeled with THALV = a ∗ TIV2 + b ∗ age2 + c ∗ TIV ∗
age + d ∗ TIV + e ∗ age + f by minimizing the sum of
squared differences in the normal database. Then, the residual
of THALV with respect to this model, denoted resTHALV,
was computed for each subject in the normal database, that is,
resTHALV = THALV − (a ∗ TIV2 + b ∗ age2 + c ∗ TIV
∗ age + d ∗ TIV + e ∗ age + f) [28]. Since regression can
be affected by outliers, a two-step approach was used. After
the first regression, outliers were identified and removed from
the second and final regression. Subjects with resTHALV
< lower quartile − 1.5*inter-quartile range of resTHALV in
the normal database or resTHALV > upper quartile + 1.5*in-
ter-quartile range were considered outliers.

The 95% confidence interval (95% CI) of resTHALV was
computed as [−1.96*std, +1.96*std], where std is the standard
deviation of resTHALV relative to the final THALV-TIV-age
model in the normal database excluding outliers.

Modeling of the THALV-TIV-age relationship in the nor-
mal database was performed separately for THALV estimates
from 3D-CNN, FastSurfer, and FSL. The same TIV estimate
was used for the three thalamus segmentation methods.

For single subject analysis of THALV in MS patients, a two-
sample test approach was used, which is more conservative than
a one-sample test approach [29]. More precisely, the residual
resTHALV of the patient’s THALV was computed with respect
to the THALV-TIV-agemodel (obtained in the normal database)
using the age and the individual TIV estimate for the patient. The
95% CI of the patient’s resTHALV was approximated by the
95% CI of the inter-scanner variability in the FTHP. The pa-
tient’s THALV was considered reduced if resTHALV including
its 95% CI was below the 95% CI of resTHALV in the normal
database (Supplementary Fig. 1) [30]. The proportion of MS
patients with reduced THALV was compared between 3D-
CNN, FastSurfer, and FSL.

Results

Each of the two steps for the 3D-CNN training took approxi-
mately 2 days using a 2.4GHz CPU (Intel Xeon Silver 10-Core)
with a GPU Quadro P5000 with 16GB memory. Computation
time for thalamus segmentation was approximately 1 min with

3D-CNN and FastSurfer (4GB GPU memory needed), and ap-
proximately 5 min with FSL.

Visual inspection did not reveal clear failures of thalamus
segmentation in any of the test cases (IBSR, FTHP, and MS
dataset) with any of the automatic methods.

Segmentation accuracy

The results on segmentation accuracy are summarized in
Table 2 and Figs. 2 and 3. The Dice coefficients of the auto-
matically generated thalamus masks relative to the manual
expert delineation did not differ between 3D-CNN and
FastSurfer; they were slightly higher for FSL (3D-CNN and
FastSurfer 0.86 ± 0.02, FSL 0.87 ± 0.02; ANOVA with
Greenhouse-Geisser non-sphericity correction p = 0.003;
3D-CNN or FastSurfer versus FSL p = 0.002, Cohen’s d =
0.50; 3D-CNN versus FastSurfer p = 0.274, d = 0.01; Fig. 2).
The Hausdorff distance of the automatically generated thala-
mus masks relative to the manual ground truth masks did not
differ between 3D-CNN and FSL; it was slightly higher for
FastSurfer (4.51 ± 0.91 mm, 4.55 ± 0.90 mm, and 5.18 ± 1.03
mm; ANOVA with Greenhouse-Geisser non-sphericity cor-
rection p = 0.033; 3D-CNN versus FastSurfer p = 0.023, d =
0.68; 3D-CNN versus FSL p = 0.848, d = 0.04; FastSurfer
versus FSL p = 0.054, d = 0.65; Fig. 2). All automatic methods
overestimated THALV on average compared to the expert
delineation (p < 0.0005; Fig. 3). This was mainly driven by
overestimation of small THALV for 3D-CNN and FSL, and
by overestimation of large THALV for FastSurfer (Fig. 3).
Examples are shown in Fig. 4.

Intra- and inter-scanner variability

Results on inter- and intra-scanner variability are summarized in
Table 3 and Fig. 5. The variance of the intra-scanner residuals of
THALV in the FTHP dataset was significantly smaller for 3D-
CNN (std = 0.08 mL, p < 0.0005) and FastSurfer (std = 0.09
mL, p = 0.012) compared to that in FSL (std = 0.15 mL). The
reduction of the intra-scanner residuals with 3D-CNN compared
to FastSurfer missed the Bonferroni-corrected significance
threshold (p = 0.023 > 0.017). The variance of the inter-
scanner residuals of THALV was significantly smaller for 3D-

Table 2 Accuracy of automatic thalamus segmentation with 3D-CNN, FastSurfer, and FSL compared to the manual expert delineation in the IBSR
dataset

3D-CNN FastSurfer FSL-FIRST

Dice coefficient relative to manual expert delineation, mean (std) 0.86 (0.02) 0.86 (0.02) 0.87 (0.02)

Hausdorff distance in mm, mean (std) 4.51 (0.91) 5.18 (1.03) 4.55 (0.90)

THALV - IBSR THALV [mL], mean (std) 0.61 (0.76) 0.35 (1.19) 1.26 (0.77)

Pearson correlation coefficient THALV versus IBSR THALV (p value) −0.44 (p < 0.0005) 0.56 (p < 0.0005) −0.28 (p < 0.0005)
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Fig. 2 Dice similarity coefficient
(left) and Hausdorff distance
(right) of thalamus segmentation
with 3D-CNN, FastSurfer, and
FSL relative to the manually de-
rived expert masks in the IBSR
dataset

Fig. 3 Bland-Altman plots of
automatic thalamus volume
estimates from 3D-CNN (a),
FastSurfer (b), and FSL (c) in
comparison with the manually
derived expert masks in the IBSR
dataset

Fig. 4 Manually delineated ground truth thalamus mask (left column)
and the masks automatically generated with each of the three software
tools for two cases from the ISBR dataset (first row: case 6, second row:
case 18). Case 6 had the highest Hausdorff distance between the ground
truth and the 3D-CNN (7.28mm), and case 18 the lowest (3.46mm). True
positive voxels of the automatic masks are shown in blue, false positive

voxels in green, and false negative voxels in red. The examples illustrate
the observed overestimation of the thalamus volume relative to the man-
ual ground truth by all automatic methods. The examples also indicate
that the automatic methods tend to generate smoother segmentation sur-
faces than manual segmentation
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CNN (std = 0.28 mL) compared to that for FastSurfer (std =
0.62 mL, p < 0.0005) and FSL (std = 0.63 mL, p < 0.0005). The
difference of the variance of the inter-scanner residuals between
FastSurfer and FSL was not significant (p = 0.816).

Single subject analysis

Scatter plots of TIV- and age-corrected resTHALV versus age in
the normal database are shown in Fig. 6. The standard deviation
of resTHALV in the normal database was 0.88 mL, 1.09 mL,
and 1.15 mL for 3D-CNN, FastSurfer, and FSL (Table 4).

The proportion of MS patients with reduced THALV was
24%, 16%, and 11% for 3D-CNN, FastSurfer, and FSL
(Table 4; Fig. 6).

Discussion

Thalamus segmentation with the 3D-CNN was similarly accu-
rate as with FastSurfer and FSL, but it was considerably more

robust against repeat scanning, particularly against repeat scan-
ning on different MRI scanners: inter-scanner variability of the
estimated thalamus volume was lower by more than a factor two
with the 3D-CNN (0.28 mL; Table 3) than with FastSurfer (0.62
mL) and FSL (0.63 mL). This might be explained by the large
size and the heterogeneity of the training dataset comprising
1975 T1w-MRI of 1975 different patients from 170 different
MRI scanners. For comparison, FastSurfer was trained on 160
T1w-MRI [16]. Furthermore, massive data augmentation was
used for 3D-CNN training including adding random bias fields
and noise in addition to standard augmentation. This might have
forced the 3D-CNN to focus on the relevant features rather than
tuning results too strongly to specific image characteristics of a
given scanner or acquisition sequence.

Reduction of intra- and inter-scanner variability might be
achieved not only by reduction of variance of no interest (asso-
ciated with scanner-related variability of image characteristics)
but also by reduction of variance of interest associatedwith actual
between-subjects variability (a method that simply returns a thal-
amus volume of 15 mL for all subjects performs perfectly well

Table 3 Intra- and inter-scanner variability of thalamus volume estimates in the FTHP dataset

Intra-scanner Inter-scanner

3D-CNN FastSurfer FSL 3D-CNN FastSurfer FSL

std of THALV residuals [mL] 0.08 0.09 0.15 0.28 0.62 0.63

50th percentile of absolute value of THALV residuals [mL] 0.04 0.05 0.07 0.20 0.41 0.48

95th percentile of absolute value of THALV residuals [mL] 0.16 0.18 0.20 0.57 1.11 1.18

Fig. 5 Intra- (a) and inter-scanner
(b) variability of THALV esti-
mated with 3D-CNN, FastSurfer,
and FSL in the FTHP dataset
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with respect to intra- and inter-scanner variability, but clearly is
useless). The higher proportion of patients with significantly re-
duced thalamus volume in the MS dataset when using the 3D-
CNN (24%) compared to FastSurfer (16%) and FSL (11%) sug-
gests that this is not the case with the novel 3D-CNN. It rather
suggests that the improved intra- and inter-scanner stability of the
3D-CNN resulted in increased sensitivity for the detection of
thalamus atrophy in MS [31, 32]. This is further supported by
the fact that the disease severity in the MS patients was signifi-
cantly correlated with the THALV estimates from the 3D-CNN
and from FastSurfer but not with those from FSL (section
“Impact of the segmentation method on the correlation between
the thalamus volume and disease severity in MS” in the supple-
mentary material). However, the correlations were weak
(Pearson correlation coefficient ≤ 0.29) and therefore should be
interpreted cautiously. The low strength of the observed correla-
tions is in line with previous studies that reported either a signif-
icant weak correlation between EDSS and thalamus volume
(e.g., Datta et al: r = −0.133, p < 0.001, 924 MS patients [31])
or lack of significant correlation (e.g., Tommasin et al: Spearman
correlation coefficient = 0.07, p ≥ 0.01, 163 MS patients [33]).

Intra- and inter-scanner variability of MRI-based regional
brain volume estimates are often reported as absolute (in mL)
or relative differences (in %) [12, 13]. In the context of clinical
applications of MRI-based brain volumetry, in which individ-
ual volume estimates are compared to a normal database, it
might be more appropriate to specify intra- and inter-scanner

variability in relation to the between-subjects variability in the
normal database. Figure 6 demonstrates that the inter-scanner
variability of the thalamus volume estimates in the FTHP
dataset covers a significant fraction of the 95% CI of
between-subjects variability in the normal database. This sug-
gests that inter-scanner variability of thalamus volume esti-
mates significantly contributes to the between-subjects vari-
ability in a normal database comprising scans from different
scanners. Thus, reduction of inter-scanner variability results in
relevant reduction of normal between-subjects variability.
This is highly relevant, because it is expected to result in
greater power for the detection of disease-related alterations.
The ratio of inter-scanner variability (in the FTHP dataset) to
between-subjects variability in the normal database was 0.28/
0.88 = 0.32 for 3D-CNN, 0.62/1.09 = 0.57 for FastSurfer, and
0.63/1.15 = 0.55 for FSL (Tables 3 and 4). The larger fraction
of MS patients with reduced thalamus volume according to
the 3D-CNN estimates is in line with the lower inter-scanner-
to-between-subjects variability ratio for the 3D-CNN.

In clinical applications of MRI-based brain volumetry, re-
liable detection of disease-related alterations is more impor-
tant than estimation of the actual volume of the brain region of
interest with highest possible accuracy (but lower precision).
However, the 3D-CNN provides also high accuracy for thal-
amus segmentation as indicated by the mean Dice coefficient
of 0.86 relative to manual expert delineation. Sitter and co-
workers reported Dice coefficients between repeat manual

Table 4 Between-subjects variability of thalamus volume estimates in the normal database and proportion of MS patients with significantly reduced
thalamus volume

3D-CNN FastSurfer FSL

std of resTHALV in the normal database [mL] 0.88 1.09 1.15

Proportion of MS patients with reduced THALV [%] 23.8 15.9 11.1

Fig. 6 The three plots show the resTHALV of the 4872 subjects in the normal database (blue dots) for 3D-CNN (a), FastSurfer (b), and FSL (c). The red
dots indicate the MS patients. The black dots represent resTHALV for the frequently traveling human phantom (FTHP) dataset
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thalamus segmentation by the same expert ranging from 0.87
to 0.91 [34].

The 3D-CNN resulted in some overestimation of the vol-
ume of small thalami compared to manual segmentation (Fig.
3A), similar to other automatic methods [10]. The reason is
unclear. This requires further investigation, because it might
limit the detection of mild thalamus atrophy in early disease
stages by automatic thalamus volumetry.

Thalamus masks automatically generated by FSL were
used as ground truth in the present study. The use of conven-
tional automatic methods to generate ground truth for deep
learning has been explored previously [35]. Other freely avail-
able software packages also provide segmentation of the thal-
amus (e.g., FreeSurfer [25], CAT12 [36], volBrain [37]) and,
therefore, also could have been used for generation of the
ground truth. The rationale for selecting FSL was that it pro-
vided the best agreement with manual expert delineation of
the thalamus in a study by Sitter and co-workers [34]. Manual
thalamus delineation by experts would have been preferred for
the network training but was not feasible given the large size
of the training set (n = 1975).

Considering the architecture of the 3D-CNN, a U-net struc-
ture and the full 3-dimensional T1w-MRI as input were cho-
sen. U-net-based CNNs are the current state-of-the-art for seg-
mentation tasks [38], also compared to other CNN architec-
tures [39]. FastSurfer [16], a recent development based on
QuickNAT [40], deploys a 2D-U-net that outperformed a
3D-U-net tested by the developers of FastSurfer. A possible
explanation provided by the authors is that their 3D-U-net used
small volume patches due to GPUmemory constraints [16]. In
the present study, the 3D-CNN used rather large patches cov-
ering approximately 2/3 of the brain (Fig. 1). Therefore, suffi-
cient context information was contained in each patch.
Furthermore, instance normalization was used in the present
study instead of the standard batch normalization to cope with
the limited batch size. We hypothesize that the 3D design
allowed the 3D-CNN to become particularly robust with re-
spect to camera-specific variability of image characteristics.

No manual correction of the automatic segmentation re-
sults was performed in this study. Clinical use of automatic
thalamus volumetry should include visual quality control of
the segmentation and manual correction if required.

In conclusion, the proposed 3D-CNN provides accurate thal-
amus segmentation that is particularly robust with respect to
MRI scanner and protocol changes. This might improve the
sensitivity to detect disease-related thalamus atrophy in multi-
site/multi-scanner settings without the need for scanner-specific
normal databases, despite the fact that the 3D-CNN tended to
slightly overestimate the volume of small thalami. Further im-
provement might be achieved by training with manual thalamus
segmentation as ground truth. The 3D-CNN provides segmen-
tation of the left and the right thalamus. Thalamus parcellation
into nuclei and subnuclei would require further specific training.
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