Skip to main content
. 2023 Feb 3;10:1050255. doi: 10.3389/fmed.2023.1050255

Table 2.

AKI prediction model for critical care settings.

References Modeling data sources Data volume Model performance AUC value External verification Machine learning methods Model explanation Diagnostic criteria
Data source Data volume Model performance AUC values
Shawwa et al. (26) Mayo Clinic 98,472 0.69 MIMIC-III 51,801 0.656 Gradient boosting model Yes KDIGO: Creatinine and urine volume
Li et al. (16) MIMIC-III 14,470 0.779 None Naive Bayes
Support vector machines
Logistic regression
Random forest
Gradient boosting decision tree
None KDIGO: Creatinine and urine volume
Zimmerman et al. (14) MIMIC-III 23,950 0.783 None Logistic regression
Random forest
Artificial neural networks
None KDIGO: Creatinine
Zhang et al. (20) MIMIC-III 2,395 0.88 The First Affiliated Hospital of Fujian Medical University, China 499 0.78 Extreme gradient boosting
Adaptive boosting
Random forest
Logistic regression
Multilayer perceptron
None KDIGO: Creatinine
Liang et al. (21) SHZJU- ICU and MIMIC-III 58,492 0.86 AmsterdamUMCdb 15,341 0.86 Multiple logistic regression
Random forest
Extreme gradient boosting
Adaptive boosting
Light gradient boosting machine
Gradient boosting decision tree
None KDIGO: Creatinine and urine volume
Sun et al. (15) MIMIC-III 14,469 0.83 None Logistic regression
Random forest
Naive Bayes
Support vector machines
None KDIGO: Creatinine
Alfieri et al. (23) eICU and MIMIC-III 35,573 0.89 None Deep learning
Logistic regression
None AKIN: Creatinine and urine output
Qian et al. (18) MIMIC-III 17,205 0.905 None Logistic regression
Support vector machines
Random forest
Extreme gradient boosting
Light gradient boosting machine
Convolutional neural networks
None KDIGO: Creatinine and urine output
Wei et al. (19) MIMIC-III 25,711 0.926 None Extreme gradient boosting
Logistic regression
Yes KDIGO: Creatinine and urine output
Fujarski et al. (22) AmsterdamUMCdb 23,106 0.883 None Categorical boosting
Support vector machines
KDIGO: Creatinine and urine output
Sato et al. (17) eICU AKI I 5,342 0.742 None Convolutional neural networks None KDIGO: Creatinine
AKI II 1,450 0.844
Le et al. (25) MIMIC-III 12,347 0.86 None Convolutional neural networks
Extreme gradient boosting
None KDIGO: Creatinine
Parreco et al. (24) eICU 151,098 0.834 ± 0.006 None Gradient boosting decision tree
Logistic regression
Deep learning
None KDIGO: Creatinine

AUC, Area Under Curve; MIMIC-III, Medical Information Mart for Intensive Care III; AmsterdamUMCdb, The Amsterdam University Medical Centers Database; eICU, eICU Collaborative Research Database; SHZJU- ICU, The Second Affiliated Hospital of ZheJiang University School of Medicine, China; LightGBM, Light gradient boosting machine.KDIGO, Kidney Disease: Improving Global Outcomes; AKIN, Acute Kidney Injury Network.