Table 6.
Prediction model for AKI associated with specific nephrotoxin exposure.
| Reference | Modeling data sources | Data volume | Model performance AUC value | Type of exposure | Machine learning methods | Model explanation | Diagnostic criteria | |
|---|---|---|---|---|---|---|---|---|
| Huang et al. (80) | American College of Cardiology (ACC) National Cardiovascular Data Registry (NCDR) | 947,091 | 0.752 | Contrast agents | Extreme gradient boosting | None | AKIN: Creatinine | |
| Sun et al. (82) | Changzhou No. 2 People's Hospital of Nanjing Medical University, China | 1,459 | 0.85 | Contrast agents | Decision tree Support vector machines Random forest nearest neighbor Naive Bayes Gradient boosting machine |
None | KDIGO: Creatinine and urine volume | |
| Niimi et al. (81) | Japan Cardiovascular Database-Keio Interhospital Cardiovascular Studies (JCD-KiCS) | 22,958 | 0.838 | Logistic regression Extreme gradient boosting |
None | KDIGO: Creatinine | ||
| Huang et al. (83) | American College of Cardiology (ACC) National Cardiovascular Data Registry (NCDR) | 2,076,694 | Contrast agent 0.3 mg | 0.777 | Contrast agents | Generalized additive model | None | Modified definition |
| Contrast agent 0.5 mg | 0.839 | |||||||
| Contrast agent 1.0 mg | 0.870 | |||||||
| Ibrahim et al. (84) | Massachusetts General Hospital in Boston, Massachusetts, USA | 889 | 0.79 | Contrast agents | LASSO regression | None | KDIGO: Creatinine | |
| Okawa et al. (85) | Fujita Health University Hospital, Japan | 1,014 | 0.76 | Cisplatin | Neural networks Gradient boosting decision tree |
None | KDIGO: Creatinine | |
| Yang et al. (86) | Center for Medicare and Medicaid Services, US | 17,694 | 0.72 | SGLT2 inhibitors | Random forest Resilient network LASSO regression |
None | Unknown | |
KDIGO, Kidney Disease: Improving Global Outcomes; AKIN, Acute Kidney Injury Network; SGLT2, sodium-dependent glucose transporters 2.