Skip to main content
. 2023 Feb 3;10:1050255. doi: 10.3389/fmed.2023.1050255

Table 6.

Prediction model for AKI associated with specific nephrotoxin exposure.

Reference Modeling data sources Data volume Model performance AUC value Type of exposure Machine learning methods Model explanation Diagnostic criteria
Huang et al. (80) American College of Cardiology (ACC) National Cardiovascular Data Registry (NCDR) 947,091 0.752 Contrast agents Extreme gradient boosting None AKIN: Creatinine
Sun et al. (82) Changzhou No. 2 People's Hospital of Nanjing Medical University, China 1,459 0.85 Contrast agents Decision tree
Support vector machines
Random forest
nearest neighbor
Naive Bayes
Gradient boosting machine
None KDIGO: Creatinine and urine volume
Niimi et al. (81) Japan Cardiovascular Database-Keio Interhospital Cardiovascular Studies (JCD-KiCS) 22,958 0.838 Logistic regression
Extreme gradient boosting
None KDIGO: Creatinine
Huang et al. (83) American College of Cardiology (ACC) National Cardiovascular Data Registry (NCDR) 2,076,694 Contrast agent 0.3 mg 0.777 Contrast agents Generalized additive model None Modified definition
Contrast agent 0.5 mg 0.839
Contrast agent 1.0 mg 0.870
Ibrahim et al. (84) Massachusetts General Hospital in Boston, Massachusetts, USA 889 0.79 Contrast agents LASSO regression None KDIGO: Creatinine
Okawa et al. (85) Fujita Health University Hospital, Japan 1,014 0.76 Cisplatin Neural networks
Gradient boosting decision tree
None KDIGO: Creatinine
Yang et al. (86) Center for Medicare and Medicaid Services, US 17,694 0.72 SGLT2 inhibitors Random forest
Resilient network
LASSO regression
None Unknown

KDIGO, Kidney Disease: Improving Global Outcomes; AKIN, Acute Kidney Injury Network; SGLT2, sodium-dependent glucose transporters 2.