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Abstract
Microscopy has long played a pivotal role in the field of assisted reproductive technology (ART). The advent of artificial 
intelligence (AI) has opened the door for new approaches to sperm and oocyte assessment and selection, with the potential 
for improved ART outcomes.
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Introduction

Since Antony van Leeuwenhoek first observed human 
sperm through an early compound microscope in 1677, 
microscopy has played an important role in the diagno-
sis and treatment of reproductive disorders. Today, the 
assessment of male factor infertility typically begins with 
a semen analysis (SA), assessing sperm number, motility, 
morphology, and vitality [1, 2]. All of these tests require 
microscopy for scoring, often via automated approaches 
(as in CASA, computer-assisted sperm analysis [3]) and 
sometimes via manual visual inspection. While each of 
the parameters examined via SA possesses some pre-
dictive power to diagnose male infertility, a substantial 
fraction of patients whose parameters fall within refer-
ence ranges for fertile men still struggle to have children. 
Recent approaches seek to improve the microscopy tech-
niques performed on reproductive cells and the analysis 
of images obtained from such microscopy using artificial 
intelligence (AI)–based approaches.

Conventional sperm morphology analysis

The percentage of sperm with “normal forms” is a stand-
ard parameter reported in SA. Normal sperm morphol-
ogy has been defined by examining sperm bound to the 
cervical mucosa following coitus, with the assumption 
that sperm that can make its way rapidly to the upper por-
tion of the female reproductive tract possesses a greater 
chance of fertilization. Analysis of sperm morphology 
requires extensive training and at least two sets of crite-
ria: the “standard” WHO and the “strict” Kruger stand-
ards have been applied at different periods in the past. 
Even among men of known fertility, only a small fraction 
(4–14% in different versions of the WHO sperm analysis 
manual, with the lower bound of the most recent refer-
ence range being only 4% [1]) of sperm are often found 
to meet these strict morphological criteria.

The use of standard sperm morphological analysis as a 
predictive tool for fertility outcomes has shown varying 
results. A comprehensive literature review performed in 
1998 showed a generally positive correlation between 
patients classified as falling within the WHO reference 
range and fertilization and pregnancy rates [4]. More 
recent studies suggest that the predictive power of sperm 
morphology may be limited, particularly in cases where 
intracytoplasmic sperm injection (ICSI) is utilized [5–7].

A major concern with the use of sperm morphology 
within conventional SA is the variability introduced in 
the assessment of sperm by different individuals [8]. A 
possible solution for this limitation is the introduction of 
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machine learning–based analysis approaches, in which a 
computer is trained by an expert to recognize sperm with 
optimal morphology. This approach could potentially 
provide any infertility clinic in the world access to the 
opinions of leading, experienced experts in sperm mor-
phology analysis. Several algorithms have been trained 
using manually annotated sperm data sets, which contain 
information about common classes of sperm head mor-
phologies as reported in the WHO manual [1, 9–11]. Each 
of these algorithms uses different approaches to identify 
and classify the morphologies present in the training set 
of images and obtain generally good accuracy in classi-
fying sperm based on previous manual annotations. As 
with all machine learning–based approaches, the quality 
of the input data ultimately determines the quality and 
robustness of the outputs. Thus, as more data examining 
sperm morphology is generated and published, we can 
hope that the accuracy of these algorithms will improve 
further. Commercial, AI-driven semen analysis platforms 
already exist. However, a recent study examining one 
such system found substantial differences between manu-
ally determined values and those generated by the system 
[12]. Further, and larger, studies systematically compar-
ing systems that can measure sperm morphology will be 
necessary to compare how these devices perform relative 
to the current gold standard of manual analysis.

Intracytoplasmic morphologically selected 
sperm injection (IMSI)

With the advent of ICSI, the choice of which individual 
sperm to use in embryo generation became an important 
question. Embryologists generally rapidly select motile 
sperm with normal shape when performing this technique. 
A modified version of ICSI, called IMSI (intracytoplas-
mic morphologically selected sperm injection), utilizes 
high powered (6000–10,000 ×) light microscopy to select 
sperm with more strictly defined “normal” morphology. 
Initial studies indicated that IMSI could improve success 
rates of assisted reproduction [13, 14], but a larger scale 
meta-analysis of several trials failed to find a significant 
improvement compared to conventional ICSI [15]. It has 
been suggested that IMSI may be useful in selected situa-
tions, for instance when sperm samples possess high levels 
of DNA fragmentation [16]. The argument against the use 
of IMSI as a standard procedure is the time and training 
required for its implementation. A highly trained embry-
ologist must spend substantial time examining sperm prior 
to selection for each embryo to be generated. AI tech-
nologies may provide a solution to remove these limita-
tions. Algorithms trained to recognize sperm as selected 

in IMSI (i.e., with few or no vacuoles [17]) could be used 
to identify sperm, which an embryologist could then pick 
for use in ICSI (following manual visual confirmation). 
These algorithms could potentially classify sperm faster 
than the human eye, allowing larger numbers of sperm 
to be screened prior to selection. The goal would thus be 
to integrate AI-based screening approaches in the micro-
scopes used by embryologists for micro-injection, allow-
ing for sperm selection recommendations validated by the 
embryologist and resulting in the use of sperm with the 
highest developmental competence.

Investigating sperm motility with AI

Sperm motility is another major feature measured in con-
ventional SA. While this parameter was originally meas-
ured manually in all clinics, CASA for measuring sperm 
motility has become standard in many clinics around the 
world [3]. Video analysis using AI offers the possibility to 
examine differences more accurately (and rapidly) in the 
way that sperm move.

A recent study used AI to measure sperm motility in a 
set of videos taken from 85 men in Norway [18]. This study 
found that the best performing algorithm was able to match 
or exceed the performance of standard approaches in the 
classification of motility. Of note, the full analysis (including 
sample processing) required only 5 min, substantially faster 
and with less effort than that required for a conventional 
motility analysis.

Another recent study compared classification of sperm 
motility performed by a cloud-based AI system to grading 
generated by a well-trained expert in 47 individuals [19]. 
A correlation of 0.90 was found between expert-generated 
grades and automatically calculated sperm motility per-
centage, suggesting this approach may provide a rapid and 
less expensive alternative approach to conventional SA. 
The system tested in this study was designed for at-home 
SA, using smartphone cameras to capture the movies used 
for their analysis, an interesting possible extension to clini-
cal SA. More frequent analyses may be possible if testing 
is performed by the patient directly, giving a more accurate 
picture of semen quality over time.

AI may allow identification of subtle differences in 
sperm motility patterns, allowing classification into mul-
tiple groups and perhaps revealing the underlying etiol-
ogy of motility defects. The data set used in Hicks et al. 
included additional demographic and hormonal parameters 
[18], which did not improve classification of motility when 
added to the data set used to train their algorithm. This 
rich data set has been made available to the public [20], 
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allowing other researchers to try other approaches [21], 
with the potential to identify differences in sperm motil-
ity patterns associated with features such as BMI or sex 
hormone levels.

Machine learning algorithms to see 
beyond the obvious

Perhaps the most exciting possibility for using AI in sperm 
selection lies in its exquisite ability to detect minute dif-
ferences in images. This means that it is in theory possi-
ble for an algorithm to observe differences in sperm, not 
obvious to a human observer. Several sperm features have 
been shown to negatively influence reproductive outcomes. 
Many of these features are, however, only detectable fol-
lowing staining and fluorescence microscopy. Sperm pro-
cessed for such assays are generally not suitable for use in 
ART, as processing may involve fixation or denaturation 
toxic to sperm, and even in cases where live-imaging is 
performed, the presence of fluorescent dyes in sperm could 
impair embryonic development.

By performing assays for sperm function using fluores-
cence microscopy, while simultaneously acquiring bright-
field microscopic images of sperm morphology, it is possible 
to identify subtle features in these bright-field images that 
can predict the presence features with a negative impact on 
embryonic development and health. A study using this ration-
ale, examining sperm DNA fragmentation, associated with 
increased rates of recurrent pregnancy loss [22], was recently 
performed [23]. McCallum et al. used acridine orange (AO) 
staining (a method which localizes damaged DNA follow-
ing denaturation by heat or acid [24, 25]) to identify sperm 
with high DNA fragmentation, and then trained an algorithm 
to predict the AO level based solely on a bright-field image 
[23]. This algorithm demonstrated a moderate ability to iden-
tify sperm with differing levels of DNA fragmentation. Con-
versely, DNA fragmentation levels were not predictable just 
from normal morphology (as judged by a trained expert), sug-
gesting that this approach adds additional information relative 
to standard morphological examination.

While exciting, adoption of these approaches in the 
clinic likely requires more work. The AO staining protocol 
involves denaturation with acid and detergent, which could 
alter the shape of sperm, meaning that a fully untreated 
sample may not possess the same variation identified here. 
Secondly, to be useful in clinical application features iden-
tified by the algorithm would need to be robustly identi-
fied in living, motile sperm, which may prove difficult. 
However, further refinement of such methods should be 
possible and may provide clinical embryologists a very 
useful aid in improving overall ICSI success rates.

Evaluation of oocyte developmental 
competence

As standards in ART have moved toward single embryo 
transfer [26], efforts to improve non-invasive embryo 
selection represent a pivotal area of research in the field 
of reproductive medicine. Studies in animal models have 
shown that oocytes with varying DNA configurations 
differ in their capacity to support the development of an 
embryo [27, 28]. These configurations are not readily 
visible in unperturbed light microscopy images. Recent 
work using mouse oocytes has shown that training AI 
algorithms with fluorescence microscopy images allows 
for highly accurate identification of oocytes with a higher 
developmental potential [29]. A study training an algo-
rithm using time-lapse images of unstained mouse oocytes 
found many features that could sub-divide mouse oocytes 
of differing qualities, including zona pellucida texture 
and area of the perivitelline space [30]. This algorithm 
was then applied to examine human oocytes that failed to 
properly respond to hormone stimulation [30]. They found 
that the texture of the zona pellucida was also associated 
with a lower chance to complete meiotic maturation. A 
major caveat to this analysis is that the examined oocytes 
were excluded from use in ART due to lack of maturation; 
however, these results suggest that features visible in light 
microscopy of the oocyte could be predictive of oocyte 
quality. Future investigations will seek to further correlate 
imaging of oocytes prior to ART and subsequent reproduc-
tive performance with regard to fertilization and embryo 
development. One challenge for training algorithms using 
oocyte information, as opposed to sperm, is the fact that 
numbers will be substantially more limited, and thus, 
imaging training sets will be of substantially smaller size, 
making robustness more challenging to establish.

Looking to the future: alternative imaging 
approaches

The approaches explained above generally focus on using 
standard light microscopy with more advanced analysis 
approaches to improve understanding of these images. A 
myriad of alternative imaging approaches already exists, 
with diverse clinical and research applications in humans 
and other species (Table 1, adapted and modified from 
[31]). These approaches hold the potential to reveal novel 
and dynamic changes in reproductive tissues, such as 
oocytes and embryos, with promise for basic reproduc-
tive research and clinical ART. As an example, fluores-
cence lifetime imaging microscopy (FLIM) has been used 

237Journal of Assisted Reproduction and Genetics (2023) 40:235–239



1 3

to study oocyte mitochondrial dysfunction in a knockout 
mouse model [32], and to identify differences in metabolic 
signatures between euploid and aneuploid human blastocysts 
[33]. Advances in this area are likely to pave the way for new 
insights into cell cycle dynamics and novel tools for the non-
invasive assessment of sperm, oocytes, and embryos.

Conclusion

Advanced microscopy in the field of ART is rapidly evolv-
ing with the advent of AI, with great promise for new 
approaches to sperm, oocyte, and embryo assessment and 
selection, and the potential for improved ART outcomes.

Table 1  Non-invasive imaging approaches of gametes and embryos for use in reproductive research and ART (adapted and modified from [31])

Imaging approach Information obtained Species

Polarized light microscopy -Oocyte spindle formation/location
-Oocyte and embryo zona layers
-Sperm acrosomal status
-Sperm head vacuoles
- sperm DNA arrangement

Mouse
Hamster
Rat
Bovine
Human
Insect

Fluorescence lifetime imaging microscopy (FLIM) -Detection of metabolic differences in blastocysts Mouse
Human

Multi-photon excitation (MPE) -Oocyte and embryo mitochondrial distribution
-Embryo cell lineage

Rhesus
Mouse

Second-harmonic imaging microscopy (SHIM) -Spindle dynamics
-Oocyte zona layers
-Oocyte organelle localization
-Embryo lipid droplet distribution

Mouse

Fourier transformed infrared spectroscopy (FTIR) -Oocyte zona pellucida secondary protein structure
-Oocyte lipid phase transition temperature

Human
Bovine
Porcine
Murine

Raman spectroscopy -Sperm mitochondrial status
-Sperm DNA damage
-Oocyte oxidative damage
-Oocyte quality
-Oocyte maturational status

Fish
Human
Mouse
Xenopus
Sheep

Coherent anti-stokes Raman spectroscopy (CARS) -Oocyte lipid content Mouse
Bovine
Porcine
Human

Optical quadrature microscopy (OQM) -Embryo cell counts Mouse
Phase subtraction: combination of differential interference controls 

(DIC) and optical quadratic microscopy (OQM)
-Embryo cell boundaries/overlaps Mouse

Optical coherence tomography (OCT) -Clumping of unknown cytoplasmic structures following  
embryo vitrification

Mouse

Biodynamic imaging (BDI) -Cumulus cells, oocyte, zygote, and blastocyst observation  
of subcellular motion

Porcine

Quantitative orientation independent microscopy: combination of 
differential interference controls (DIC) and polarization micros-
copy

-Spermatocyte microtubule and chromosome distribution Crane Fly

Multimodal microscopy: three-dimensional combination of multiple 
imaging modalities on one common platform, for example, DIC, 
epifluorescence, OQM, laser scanning confocal, two-photon

-Imaging of blastocysts Mouse
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