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The first international conference on artificial intelligence 
(AI) and fertility, AI Fertility, was held on September 15–18, 
2022, in Dubrovnik, Croatia. The objective of the AI Fer-
tility Conference was to provide a forum for scientists and 
researchers from academia and industry to discuss critical 
strengths, weaknesses, challenges, and opportunities for AI 
and fertility. The summit was co-chaired by Nikica Zani-
novic, PhD and Zev Rosenwaks, MD (Weil Cornell Medical 
College), Cristina Hickman, PhD (Apricity), and Velimir 
Šimunić, MD (Medical Faculty in Zagreb) and the newly 
formed AI Fertility Society. The meeting was sponsored by 
a number of AI, related vendors, without which a meeting 
of this caliber would not have been possible.

The conference opened with a celebratory and sobering 
presentation by Professor Dr. Šimunić. As a field, we have 
accomplished so much, but we have a long way to go in 
terms of worldwide IVF access, technology implementation, 
and success rates [1]. Worldwide, comparisons are difficult, 
because ART presents with different technologies, popula-
tions (age, OB, DOR, POR), mild or minimal ovarian stimu-
lation vs goal of more oocytes retrieved, and embryo selec-
tion methods, transfer timing (ET vs FET), eSET, blastocyst 
culture, and a myriad of other variables, resulting in country-
to-country differences in success rates. It was noted that the 
3.2 million ART cycles performed yearly grows at a 10% 
rate and that just 10 countries (China, Japan, USA, Spain, 
Russia, France, Germany, Italy, Australia, and UK) perform 
80% of all cycles (ICMART/ESHRE 2022), with Europe 
and China accounting for a stunning 50% of those cycles. 
Some continents, such as Africa, perform just 1–2% of all 
ART cycles. The ICMART World Collaborative Reports for 
assisted reproductive technology (ART) for 2018, the latest 
year that data are available, shows delivery success rates 
of 22% per autologous oocyte aspiration, 31% per frozen 
embryo transfer, and 46% per “PGT” embryo transfer. The 

reported autologous ART cumulative delivery rate per aspi-
ration varies from 21 (Africa) to 49% (North America). The 
mean age of IVF patients has risen worldwide, and while 
success rates have increased, the rate of multiple gestations 
has decreased, that is amazing progress! There are still sig-
nificant opportunities to improve certain metrics, such as 
cycle cancellation, multiple gestation, and cumulative deliv-
ery rates. We must ask, what are top performing regions 
doing differently?

Iman Hajirasouliha, PhD (Weill Cornell Medicine), spoke 
about the promise of precision medicine and tailoring the 
best treatments to individuals based on their own genetic 
uniqueness [2]. The precision medicine of the future will 
transcend a single source of data, such as DNA sequencing, 
include a variety of data types (imaging, electronic health 
records), and make use of artificial intelligence. IVF can 
benefit from AI to combine the pros of morphology selection 
(quick and cost effective) with the precision of PGT.

David Sable’s, MD, discussion (former REI turned 
investor and reproductive economist) covered the strengths, 
weaknesses, opportunities, and strategies for startups and 
the technology investment landscape. Women’s health 
and IVF are poised to move from an “organ and systems” 
approach to a cellular, biochemical, and personalized genetic 
approach [3]. Unlike other fields of medicine, like oncol-
ogy, we are just now at the cusp of moving away from the 
slow, incremental, “analog” human intelligence method to 
problem-solving, to digitalizing the diagnoses, prognosis, 
and treatment pathways for infertility. This epistemological 
shift is necessary to accomplish the “missing” 20 million 
IVF babies per year that he estimates we need, 40 times the 
efficiency of the current IVF industry! What would the world 
look like if IVF were as common as eye glasses are now? 
Digitization has the ability to provide value propositions for 
strict outcome measures: dollars to baby, time to baby, and 
“life-disruption” to baby, while informing risk management 
with big data. Investments in technology and commerciali-
zation of solutions will benefit from focus on “big ticket” 
items that may make the most difference in overcoming the 
barriers to IVF care. We must target with our inventions and 
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our funds the “bottlenecks” of the industry: medical labor 
(clinical and embryology), laboratory space and complex-
ity, and reliance on generic drugs. The future of IVF is a 
parallel industry that is built from the ground up to pro-
vide the enormous numbers of “missing” IVF babies. The 
industry as it stands now has some serious limitations; data 
are heterogenous and not at all “large”; too much of IVF is 
“unobservable” (sperm genetics, the embryo after transfer); 
there are few baselines and biased initial data, subjecting all 
of our work to confounders.

Santiago Munné, PhD (Overture Life), well known for 
co-developing one ART revolution (reproductive genetics), 
now focuses his efforts on technology automation in the in 
the IVF lab. Automated platforms can solve the problem of 
inconsistency, provide labor savings, and convenience. Vari-
ability between IVF centers is high: embryo aneuploidy rates 
from egg donor oocytes vary from 20 to 60% [4]; pregnancy 
rates in egg donor recipients varies from 10 to 80% [5]; 
methods and skills vary from center to center and from oper-
ator to operator [6]. Automation is now enabled by afford-
able robotics, microfluidics, miniaturized imaging systems, 
and “IoT” connectivity (internet of things). Freezing oocytes 
and embryos and performing ICSI are two processes where 
automation can increase the efficiency of the IVF lab to scale 
the industry, possibly even to the aspirational 40-fold goal 
mentioned above. The automated systems to achieve these 
complex procedures are now in development [7].

The second session focused on AI in fertility as it is today. 
The audience enjoyed a communal laugh as we all consid-
ered where we were 5 years ago, where we are today, and 
where we might be in the next 5 years.

Evaluating reproductive cells is essential to fertility treat-
ments. Dan Nayot, MD (Future Fertility and The Fertility 
Partners) pointed out that every sperm sample is evaluated, 
every embryo is graded at every milestone from 2PN to blas-
tocyst, and every endometrium is evaluated prior to embryo 
transfer; however, oocyte scoring systems are rare in clinical 
practice. Artificial intelligence applications have been suc-
cessfully developed to predict fertilization potential, blasto-
cyst formation, and embryo quality from oocyte images [8]. 
These predictions can be useful for patients and clinicians. 
The contribution of the oocyte to a failed cycle can start to 
be parsed and quantified. Embryo choice can be augmented 
with this additional information. Patients undergoing oocyte 
cryopreservation can use the information to make choices 
(undergo additional retrievals or not), and oocytes from 
donors can be divvied up and distributed based on potential. 
Future directions for oocyte AI will extend the predictive 
capabilities to pregnancy, confirm nuclear maturity, auto-
matically label dysmorphisms, and uncover new metrics and 
clinical variables of success.

In the same sense and despite every semen sample being 
evaluated, the semen analysis is also ripe for an overhaul. 

It is manual, time-consuming, and subjective, and while 
requiring highly skilled, trained, and experienced technolo-
gists, it is also a “routine” and repetitive task. Alejandro 
Chavez Badiola, MD presented the case for AI to digitize 
and optimize sperm analysis and selection [9]. Sperm are 
a particular challenge to image and select for ICSI. At less 
than 6 microns, the healthiest sperm are highly motile, and 
the particulars of imaging for ICSI, i.e., optics that must 
be able to glimpse through embryo-safe plastics, media, 
and PVP, must be considered. Current solutions (IMSI, 
MSOME, DFI) are inadequate or too expensive. AI automa-
tion can be useful for other time-consuming andrology tasks, 
such as differentiating rare sperm cells from other cellular 
debris in the case of vasectomy or a surgical semen sample.

Daniella Gilboa, MSc discussed how AI is ushering in 
a new era of embryology, computational embryology, and 
a new type of computational embryologist. The computa-
tional embryologist will have a different tool kit [10] at their 
disposal and use a different vocabulary that includes meas-
ures of true PN scoring, halo effects [11], cytoplasm rear-
rangement, values and ratios of time events, cell edges [12] 
and dynamics, speed of blastulation and hatching, embryo 
pumping [13], and non-invasive predictions of ploidy [14], 
among others [15]. The promise of AI-mitigated freedom for 
the computational embryologist is not just a new toolkit but 
the re-acquisition of free time, free time to perform at the 
higher levels as only humans can, higher order data analysis, 
research, intellectual work, training, mentoring, and quality 
functions.

Piotr Wygocki, PhD (MIM Solutions) is advancing repro-
ductive ultrasonography with AI. Follicle ultrasound is used 
to predict the number of MII oocytes, 2PNs, and blastocysts 
and to adjust the dosage of exogenous gonadotrophins or the 
timing of the trigger shot. Ultrasound appointments account 
for over half of the patients in person fertility clinic visits, 
and it has been estimated that the human eye misses one out 
of every three follicles. AI can not only reduce the number of 
patient visits, but also allow the procedure to be performed 
by a greater number of medical professionals, such as at a 
general gynecological office.

There is an underappreciated reluctance to use well-estab-
lished ART, despite high levels of reimbursement in some 
countries. This indicates that cost is not the only barrier to 
treatments, but stress and other factors play a significant role. 
Due to high stress associated with ART treatment, patients 
can also prematurely discontinue ART, even when further 
treatment is likely to be beneficial [16]. Mylene Yao, MD 
(Univfy) is using AI to improve empathetic, patient centric 
care and increase access to IVF through AI-driven patient 
conversion and retention. Many IVF prediction models are 
based in large part on age, even though 86% of patients have 
a significantly different probability of live birth than pre-
dicted by age alone [17]. AI provides advantages, such as 
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accurate and personalized prognostics, over other modeling 
methods. It is simple for fertility clinics to present success 
rates against age; it becomes increasingly difficult to include 
additional factors to improve prognostication. Machine 
learning can link outcomes from fresh and frozen embryo 
transfers; relevant clinical variables, such as age, body mass 
index, ovarian reserve, reproductive history, clinical diag-
nosis, and male partner’s health data; semen analysis; and 
clinical outcomes, to build truly accurate prognostic tools 
for patient counselling.

Embryo and oocyte DNA content, growth patterns, and 
morphology are not the only signals by which to predict 
potential. Samuel Ojosnegros, PhD (Institute for Bioengi-
neering of Catalonia), an expert in using photo-stable imag-
ing in the near-infrared (NIR) [18] biological transparency 
window, is applying AI to the spectral signatures of small 
molecules to create three-dimensional renderings to meta-
bolically classify embryos and oocytes non-invasively. Small 
molecules like metabolites can also offer tantalizing clues to 
potential. The hyper spectral imaging presented can excite 
six metabolites (FAD, NADH, retinal, and protoporphirins, 
for example) in a single shot, significantly enriching our 
view of the embryo.

High-performing technology, like AI, relies on big data 
[19, 20], which can be supported by government-funded 
databases [21], but its clinical adoption has been slow. Three 
main challenges, explainability [22], actionable insights, 
and integration into clinical workflows, can slow success-
ful adoption of AI-driven clinical decision support systems. 
Hyejun Lee, MD (Kai Health) led an insightful discussion 
about the opportunities and weaknesses in each of those 
domains. For example, AI companies should not just provide 
an embryo prediction but explain the decision by showing 
with a visual tool, like a heat map, what the AI is looking at 
to provide clinicians with a measure of explainability.

Big data are necessary and so are new methods to stream-
line data processing and digitize the vast reams of data col-
lected during a single IVF cycle. For decades, Jonas Malm-
stem, DPS (Weill Cornell Medical) has been interconnecting 
hardware devices in the IVF lab to databases, cleaning those 
data with AI, and transforming those data into research for 
many years [23]. He knows well the curse of too many data 
files. As an example, a timelapse incubator will take images 
at 11 different focal planes, every 20 min for 5 days. A thou-
sand patients, each with 10 embryos, become 40 million 
images or about 1.2 terabytes of data. Instruments can also 
generate poor data (up to 2% of all images); embryo images 
can be “missing”; there can be translocated wells and out of 
focus embryos. An AI model can be trained to select the best 
images for future AI projects and separate out the “noise.” 
Every part of an IVF lab has the ability to evolve over time; 
therefore, models must be robust enough to handle data gath-
ered over time and subject to longitudinal biases. Lastly, 

the concept of “AutoML,” an emerging technology that can 
create AI models without prior art, could one day combine 
data types, tabular, image, video, and natural language, to 
predict a single outcome.

Data quality, quantity, and diversity are central to 
machine learning’s ability to generalize and perform well at 
any IVF Clinic. Jens Rimestad, MSc (Vitrolife) advised the 
audience from the perspective of developing the iDAScore, 
AI embryo selection support tool for the Embryoscope, a 
timelapse incubator that is available for use worldwide [24, 
25]. The performance of an AI Model (area under the curve) 
relates to image data quality (resolution), and confounders 
(bias from embryo hatching), as well as the “ground truth” 
or the outcome label used, the selection of which can be 
noisy and uncertain (Gardner score) or somewhat cleaner 
(known implantation). Increasing the size and diversity 
(FETS and fresh transfers, day of transfer, media type, age) 
of data is important to increase AI model performance.

Hadi Shafiee, PhD (Harvard) has published more than 
forty publications and patents using neuronal networks for 
IVF applications [26] and is an expert on overcoming data 
bias and those stubborn confounders of AI decision-making 
[27]. The selection of an AI model for a certain task, data 
imbalances, type of training or the evaluation, and interpre-
tation of the model can distort the meaning of the results. 
The performance of AI models can change for subgroups of 
a population due to bias, for example, based on insurance 
status or skin tone. AI system performance can be improved 
by forcing the system to focus on clinically relevant features 
in high-quality images before being trained on lower quality 
images (MD-Nets), in order to tackle “domain shift” and 
“under-specification” data quality issues [28].

Tony Gordon, PhD (Cooper Surgical) is bringing the 
technology of AI to PGT to tackle subjectivity, human error, 
and bias (PGTai 1.0 and 2.0) [29]. Five to ten cells are taken 
during trophectoderm biopsy. The DNA from those cells 
needs to be amplified a million times, and some areas of the 
genome amplify better than others, introducing bias. There 
is also subjectivity in traditional next-generation sequencing 
(NGS) “calling” (i.e., distinguishing which base-indicating 
“peak” signal is true from the noise). Errors in base calling 
are rare, but the sheer volume of high-throughput data means 
that a “one in a thousand” mistake will be made once every 
10 days. Human interpretation can be subjective and vary 
from lab to lab, and data entry clerical errors can occur. 
Machine learning algorithms can be trained to decipher the 
difference between true signal and noise patterns for “statis-
tical calling” of next-generation sequencing data.

The third session focused on responsible innovation, tak-
ing ideas and turning them into useful products. There are 
several steps along that timeline, from inception of an idea 
to running randomized clinical trials and collecting clinical 
trials data to finally introduction into clinical practice.
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Ze’Ev Bomzon, PhD (AIVF) has led the transition of sev-
eral ideas from inception to product and discussed the qual-
ity control of responsible innovation for AI product devel-
opment. AI products, like AIVF’s EMA embryo evaluation 
software [30], need to extract data from hardware (timelapse 
incubators) and software (EMRs), which have many different 
formats. In general, products need to have a user interface 
and backend software, all connected to the AI model(s). 
However, those are not what make a successful product. On 
top of the product, lots of “extras” are needed for proper 
functioning. The product must be easy to install, collect, and 
store training and validation datasets (proper version con-
trol); there must be system monitoring tools to ensure proper 
functioning, algorithm monitoring tools, automated model 
re-training, and “MLOPS” (a set of practices that aims to 
deploy and maintain machine learning models in production 
reliably and efficiently. The word is a compound of “machine 
learning” and the continuous development practice in the 
software field), and lastly, cybersecurity.

Taking a 30,000 foot view on the implementation of AI in 
healthcare, Michelle Perugini, PhD (Life Whisperer, Presa-
gen) spoke about the significant challenge of aligning incen-
tives across multiple stakeholders with diverse needs. Cli-
nicians and embryologists have an ultimate duty to patient 
outcomes but also desire time efficiency and operational 
improvements. Patients need access, affordability, better 
outcomes, and treatment transparency. AI technology can 
align those needs via support of clinical decision-making, 
standardization [31], and by improved accuracy [32]. Intro-
ducing these AI innovations to the market is all about build-
ing trust; how does AI work and can we explain it? Does it 
meet legal requirements to be marketed? Does it solve practi-
cal clinical problems? Does it benefit patients and improve 
outcomes? Does the value outweigh the costs to the patient 
and the provider? Can we mitigate the risks (data security 
and regulation)? And how can we as an industry educate 
the clinicians and the patients on these new technologies, 
help them verify and validate the innovations, and explain 
the results?

The randomized clinical trial (RCT) is the so-called gold 
standard to determine the efficacy of a treatment or inter-
vention. Usually, an intervention that undergoes a clinical 
trial quickly gains trust through transparency of the trial 
design, data collection, and analysis. For AI research, one 
of the salient questions is if the RCT is indeed the appro-
priate vehicle. Cristina Hickman, PhD bravely led the dis-
cussion to thoroughly challenge the notion that an RCT is 
the only acceptable way to validate a new technology [33] 
and deftly countered the narrative that live birth rate is the 
only acceptable benefit of technology. Despite being the 
gold standard, RCTs present with a number of challenges. 
They are expensive and time-consuming, designed to benefit 
the most patients possible, and may not be appropriate for 

“precision” medicine applications; the population of an RCT 
may not reflect the real population of patients (biasing the 
results), and are not designed explicitly for prognostic tools. 
Prognostic tools are based on data; they are a precursor to 
an intervention [34]. The performance of AI specifically is 
based on training datasets, meaning the more diverse data 
you feed the model, the more accurate it becomes, and it is 
optimized in real time and can be personalized per patient. 
There is a range of autonomy in AI technologies; from low 
risk “assistive” AI (data presentation, clinical decision sup-
port) to medium risk (conditional automation) and higher 
risk “autonomous AI” (high automation and full automa-
tion), but it seems as though regulators are demanding the 
same level of rigor across the board, no matter what the level 
of autonomy and risk is.

Clinical trials data are shifting from tabular to image 
based, and drug development companies like Ferring have 
the resources to power large RCTs in the domains of ART 
that can be shaped by image analysis, antral follicle count, 
follicle development, fertilization, embryo selection, and 
embryo transfer. Patrick Heiser, PhD and Thomas Ellebaek, 
MSc (Ferring) are using new and innovative ways to apply 
AI to clinical trials databases to extract every bit of clinical 
and scientific data from expensive, large, and rigorous RCTs 
with dozens of endpoints [35]. Novel AI-driven data moni-
toring techniques can learn patterns of good quality data in 
unstructured clinical trials datasets, allowing for real-time 
surveillance of data from study sites and correction before 
it can compromise the trial’s results.

The fourth session focused on driving connected intelli-
gence. Artificial Intelligence is connected intelligence, and 
those connections impact everything from data collection 
for clinical trials, to generalizability, AI publications, and 
complete “end to end” workflows from; stimulation, gamete 
production and collection, through IVF, and from start-up 
through IPO.

If we are to apply AI to precision medicine, Gaurang Daf-
tary, MD (Ferring) postulates that data collection, annota-
tion, and structure must transcend the population level and 
achieve the personal level. Individualized biomarkers recog-
nize that each and every one of us is different and unique in 
our own special way. For example, every ovary is different; it 
has different supply and demands for pharmacological mol-
ecules [36]. Concomitantly, drug dosage and bioavailability 
of fertility treatments should reflect that [37]. AI for clinical 
trials can incorporate digital biomarker signatures, adverse 
events form data, trial surveillance (incomplete or spuri-
ous data), end-point adjudication, and missing data (impute 
specific values or interpret meaning of missing values. AI-
driven analyses for improved inclusion and exclusion cri-
teria, selection, and stratification of patient populations for 
clinical trials can allow for higher success rates, smaller tri-
als, improved efficiency, and success. Looking to other areas 
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of medicine, such as the COMPANION cardiac clinical trial 
[38], provides an excellent roadmap for how AI can bring 
precision medicine to fertility.

When a brilliant physicist like Jonathan Hall, PhD (Presa-
gen, Life Whisperer) takes the stage, he puts mathematics 
vocabulary to work (“asymptotes off”) and uses his knack for 
analogizing to make hard concepts accessible. Untrainable 
Data Cleansing (UDC) is a concept, whereby AI is turned 
on itself to flag suspected or apparent mislabeled data, to 
identify and clean datasets, remove suspected noise, and 
improve performance. Having BIG data is not good enough. 
Real-world data tends to be messy, noisy, and confounded. 
Ultimately, “noise” in the training and test sets (misdiagno-
sis, rare confounding variables) can removed so that the AI 
can be retrained and avoid learning the wrong things [39]. 
Combined with Federated Learning approaches, UDC can 
boost the performance of AI on diverse data [40].

In 2018, Carol Lynn Curchoe, PhD (ART Compass, 
AIVF) et al. noted a significant increase in AI abstracts at 
ASRM and ESHRE and a high variance in reporting (data 
types, sizes, accuracy, etc.) [41]. As our field grows, the 
challenges with AI Publication standards for reporting, 
acceptance criteria, risk of bias, and the availability of well-
trained reviewers to quickly and accurately review AI-related 
work increase. Further, our EMRs were designed for bill-
ing and revenue generating activities. They are missing the 
features necessary to collect, structure, and access big data 
for fertility AIs, and there is no question that data entry and 
computational scientists will be part of the twenty-first cen-
tury IVF care team [42]. Questions of authorship may arise, 
as the use of databases [43] grows, and in some cases, access 
to these data is sold for shares in private start-up compa-
nies. Additionally, while several checklists exist (TRIPOD, 
PROBAST, PRISMA), our field may benefit from convening 
a working group to establish a fertility-specific checklist that 
includes, for example, data annotations for repeated implan-
tation failure, sibling embryos and oocytes, and clustered 
observations. It could combine the best elements of exiting 
checklists (presence of an item, with a measure of the quality 
of that item, and the risk of bias, plus a full description of 
these data) for publication standards, referees, and readers.

In lieu of a fertility-specific AI checklist, how we read 
AI papers is critical. Assaf Ben Meir, MD (Fairtility) led 
an insightful discussion on how biologists and clinicians 
can understand where the pitfalls and numerous biases 
in AI publications lie. The quality of AI research hinges 
on the scope of inclusion criteria, balance of data, sam-
ple size, and the performance metrics reported [44]. The 
so-called confusion matrix beautifully demonstrates in 
a single graph the classes predicted, true positive, false 
negative, false positive, true negative, precision, negative 
predictive value, sensitivity, specificity, and accuracy. The 
critical reader must consider the size and distribution of 

the dataset, how it was annotated, if there is “overfitting” 
of the model, and the transparency of the results.

Gerard Letterie, DO (Seattle Reproductive Medicine), 
could have continued along in the same vein by present-
ing his excellent AI compendium [45], “Three Ways of 
Knowing,” and we, the audience, would have been greatly 
enriched in our understanding of AI manuscripts. How-
ever, he presented another pressing aspect, legacy deci-
sion-making [46] and smarter workflows [47], enabled by 
better decisions, analyzed, and adjusted in real time by AI 
systems. To adjust AI models optimally, we may need to 
actually reduce input and plumb the depths of what is nec-
essary and sufficient (can we reduce our complex models 
to the one variable that is the driving force?).

Our technologies must make it to the market in order to 
help others. David Sable, MD gave a condensed master-
class on how to turn an idea into an “IPO” (initial public 
offering) and reminded us not to “make stuff up, to know 
our denominators, biology always wins, and to always tip 
the waitstaff well!” Pitching technology ideas, corporate 
communications and structures, funding cycles, and intel-
lectual property protection are not necessarily in the wheel 
house of embryologists and REIs, and it takes strength in 
all of those elements to get funded.

The last session of the conference focused on AI Devel-
opment. The embryologist plays an essential role in the 
evolution of technology and the implementation of “The 
Digital Future” in the IVF clinic. AI promises to make IVF 
safer, more accessible, and patient centric. We are tasked 
not to lose the emotional intelligence during the applica-
tion and integration of AI technology to IVF patient care.

Occasionally, people fret that AI could “take our jobs.” 
Borut Kovacic, PhD has a vision for the role of the embry-
ologist in the high-tech lab of the future. The role of the 
clinical scientist has always evolved along with technology 
[48]. It has changed in the past and will certainly keep 
changing in the future. Embryologists do many more 
adjunct tasks than embryology. We organize the flow of 
work and manage the risk and quality of the lab, perform 
extraordinary procedures (IVM, TESE, IMSI), audit data, 
perform research, write abstracts and papers, grant appli-
cations, and mentor, teach, and train the new generations 
of embryologists.

We are all familiar with seeing reproductive tissues in 
two dimensions, using Hoffman Modulation Contrast or 
bright field microscopy. Timelapse incubator users can see 
embryos both over time and in two dimensions. Chloe He 
(PhD Student, Imperial College, London) is one of the new 
generation of scientists bringing new three-dimensional 
imaging technologies to embryology. Who knows what 
profound future insights may be gleaned from such tech-
nologies? Certainly, high-tech imaging is a foundational and 
rapidly advancing technology for our field [49].
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How can the IVF lab prepare for a digital future? We are 
likely far from ready to accept and adapt these technologies 
into our labs. Marcos Messeguer, PhD (IVI, Valencia) is an 
expert at introducing and validating timelapse and AI tech-
nologies into a clinical workflow [50, 51]. Implementing a 
new technology requires an investment of time to learn (for 
example, preparing growth chambers for timelapse incuba-
tors) but can save a significant amount of time once profi-
ciency is achieved (3 h of manual labor and observations to 
6 min with automation). Internal correlation studies com-
paring new technologies (EMA Score) with the outcome 
measure of interest will give a high degree of confidence 
for clinical use [10].

Making IVF safer, accessible, and more patient-centric is 
a top goal of Charles Bormann, PhD (Massachusetts General 
Hospital). He noted that with just practicing 13,000 REIs 
in the USA and 50 completing fellowships per year, like all 
of healthcare in general, fertility is impacted by workforce 
shortages. There is debate in the field for how exactly to 
address this significant problem. Some suggestions, such 
as shortening the RE fellowship period and using “general-
ists” (if they really can be called that…) gynecologists and 
midlevel providers, but these are not ideal solutions. Just 
“one” solution probably does not exist; we need to tackle 
these problems from many angles. We must apply technol-
ogy to solve the pain points and inefficiencies in fertility 
healthcare. Bormann and collaborators have created and 
validated AI-driven technologies to address accessibility and 
safety at almost every point in the IVF life cycle [52], from 
home semen analysis devices connected to mobile phones 
[53], to quality control and assurance in the IVF lab [54], to 
upending the current mode of “witnessing” embryos [55].

The application and integration of AI in fertility were 
presented by early adaptor of AI and technology for the IVF 
patient flow [56], Amber Cooper, MD (Kindbody). There are 
treatment “dropout hotspots” along every step of the patient 
flow, from becoming a new patient, to evaluation, diagnosis, 
and financial counseling, to successful transfer. The bulk 
of new IVF patients are now “digital natives”: Millennials, 
Gen Z, and increasingly Gen Alpha. AI-driven technologies 
can turn treatment dropout hotspots into opportunities to 
engage. Virtual visits, consenting, medications education, 
and coping support to allay anxiety are opportunities to offer 
compassionate care and shared decision-making through 
technology.

The final talk of the meeting addressed mental health, 
perhaps one of the final frontiers in ART treatment. IVF and 
infertility are a major life crisis; the distress (depression, 
anxiety) felt by those suffering from infertility is equivalent 
or worse than cancer, divorce, or death of a family member. 
The risk for suicide in infertility patients is quite high; how-
ever, there are serious barriers to accessing mental health-
care for infertility [57]. Elizabeth Grill, PsyD (Weill Cornell) 

brings the patient’s voice to the forefront of “emotional AI” 
research. Mobile health apps like Ferticalm and Fertistrong 
are putting a therapist in the pocket of the IVF patient to 
overcome challenges of access, cost, and psychological bar-
riers to care. Virtual reality, mobile, and AI-driven chat bots 
and psychological tools can reduce patient drop out, increase 
pregnancy rates, provide coping strategies, and help IVF 
patients regain a sense of control.

Summary

The inaugural AI Fertility World Conference concluded 
with a call to create an AI Fertility Society that can take the 
lead in creating an ongoing international forum to discuss 
frameworks and validations; discuss ethical uses of AI, peer 
review, and publication standards; help inform decisions by 
national policymakers and others; formulate regulatory rec-
ommendations and guidelines; and promote coordination for 
key stakeholders (patients, startups, industry) and for robot-
ics, automation, and integration with software.

Data availability  Recordings of the AI Fertility oral presentations will 
be made available through the AI Fertility Society at https://​aifer​tility.​
org/.
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