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Abstract
Purpose Deep learning neural networks have been used to predict the developmental fate and implantation potential of 
embryos with high accuracy. Such networks have been used as an assistive quality assurance (QA) tool to identify perturba-
tions in the embryo culture environment which may impact clinical outcomes. The present study aimed to evaluate the utility 
of an AI-QA tool to consistently monitor ART staff performance (MD and embryologist) in embryo transfer (ET), embryo 
vitrification (EV), embryo warming (EW), and trophectoderm biopsy (TBx).
Methods Pregnancy outcomes from groups of 20 consecutive elective single day 5 blastocyst transfers were evaluated for the 
following procedures: MD performed ET (N = 160 transfers), embryologist performed ET (N = 160 transfers), embryologist 
performed EV (N = 160 vitrification procedures), embryologist performed EW (N = 160 warming procedures), and embryolo-
gist performed TBx (N = 120 biopsies). AI-generated implantation probabilities for the same embryo cohorts were estimated, 
as were mean AI-predicted and actual implantation rates for each provider and compared using Wilcoxon singed-rank test.
Results Actual implantation rates following ET performed by one MD provider: “H” was significantly lower than AI-
predicted (20% vs. 61%, p = 0.001). Similar results were observed for one embryologist, “H” (30% vs. 60%, p = 0.011). 
Embryos thawed by embryologist “H” had lower implantation rates compared to AI prediction (25% vs. 60%, p = 0.004). 
There were no significant differences between actual and AI-predicted implantation rates for EV, TBx, or for the rest of the 
clinical staff performing ET or EW.
Conclusions AI-based QA tools could provide accurate, reproducible, and efficient staff performance monitoring in an ART 
practice.

Keywords Artificial intelligence · Quality assurance · Trophectoderm biopsy · Competency · Embryo transfer · Embryo 
vitrification and warming

Introduction

Since the birth of the first baby conceived with assisted 
reproductive technology (ART) in 1978 [1], the field of 
ART has expanded exponentially with more than 200,000 

ART procedures reported annually in the USA [2] and over 
2 million procedures reported annually worldwide [3]. The 
penultimate goal of achieving a healthy live singleton birth 
relies on a multitude of factors, ranging from patient to phy-
sician to clinical contributors. As the volume and complex-
ity of cases continue to increase, achieving and maintaining 
optimal staff performance in the ART practice is key [4, 
5]. From an embryology perspective, successful fertiliza-
tion, extended culture, and transfer depend on each indi-
vidual embryologist’s technical dexterity, making them a 
crucial part of the ART process [4]. Despite their critical 
role to ART success, ART staff performance is innately 
“human” [6] with a high degree of variability between dif-
ferent embryologists [4, 5], making quality assurance/quality 
control among ART staff essential [7]. Timely identification 
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of performance issues and variations becomes the biggest 
obstacle to overcome to achieve consistent outcomes and 
ensure the high-quality fertility care.

Quality assurance (QA) measures are key to reliably 
providing high-quality care over time and among differ-
ent practices [8]. Accreditation bodies, such as the Clini-
cal Laboratory Improvement Amendments of 1988 (CLIA) 
and the College of American Pathologists (CAP) recognize 
the need for continual quality monitoring and require every 
ART practice to continuously monitor for maintenance of 
accreditation [9]. Studies suggest that healthcare provider 
performance is one of the main determinants for successful 
embryo transfer (ET) [5, 10], prompting the Maribor [11] 
and the Vienna consensus [12] to propose key performance 
indicators (KPIs) within the ART setting. As implantation 
rate is considered to be a more reliable indicator of ART 
practice performance [12], embryo quality needs to be fac-
tored in as it has a significant impact on ART outcomes 
[13]. While grading was standardized by the Gardner’s cri-
teria [14], a significant degree of subjectivity, variability, 
and time [15, 16] exists with traditional manual grading, 
necessitating national semiannual proficiency tests among 
embryologists to ensure homogeneous embryo grading [17]. 
This lack of objectivity and consistency resulted in reliance 
on other indicators that take longer to detect, like clinical 
pregnancy, or are more rare, like no blastocyst survival after 
cryopreservation [11, 12]. Finally, embryo survival after tro-
phectoderm biopsy, embryo cryopreservation, or warming 
does not necessary imply good implantation potential and 
pregnancy outcome [18]. Even though registering all sup-
plies, including culture media, disposables, and other equip-
ment, could be standardized and is regularly done to identify 
supply chain issues [7], efficient and reliable monitoring of 
staff performance remains a challenge.

Artificial intelligence (AI) serves as a cutting-edge tool 
to address this QA challenge. Although recently developed, 
eliminating subjectivity and ensuring high reproducibility 
have already made AI systems highly promising [19, 20] in 
the field of ART. AI-based image analysis networks, such as 
convolutional neural networks (CNN), integrate easily into 
fertility care [21], among many different medical special-
ties [22–25], as imaging plays a critical role in decision-
making. AI’s pattern recognition capabilities are far beyond 
human visual discrimination abilities [26]. CNNs have 
revolutionized computer vision with its ability to achieve 
exceptional consistency while removing human subjectivity 
from embryo grading [19, 20]. Also, emerging evidence sup-
ports AI’s efficacy in predicting an embryo’s developmental 
[27, 28] and implantation outcomes [29]. As such, in this 
study, we aimed to utilize AI-based tools as QA measures 
to assess the performance of attending physician (MD) and 
embryologist providers in a variety of procedures, includ-
ing ET, embryo vitrification (EV), embryo warming (EW), 

and trophectoderm biopsy (TBx). AI models were used to 
predict implantation potential of the embryos and these pre-
dictions were compared with actual implantation outcomes. 
This way, we aimed to objectively factored in embryo quality 
to isolate and assess provider performance.

Materials and methods

Study design and embryo imaging

Data from ET performed at a single academic fertility 
center in Boston, Massachusetts, were retrospectively 
reviewed. This study was approved by Partners Healthcare 
Institutional Review Board (IRB# 2019P001000). Embryo 
development was recorded using EmbryoScope (Vitrolife, 
Sweden) time-lapse imaging. A Leica 20x -based imaging 
system with light from a single 635 mm LED was used 
to capture images every 10 min. Images included in this 
study were all acquired at specific time of embryo develop-
ment (113 hours post insemination, hpi). All images were 
assessed by embryologists with at least 5 years of expe-
rience. The image collection was cleaned by removing 
completely indiscernible images of embryos. Embryos 
included in this study had images available at 113 hpi and 
known implantation outcomes. Embryos included in this 
study consisted of both untested and PGT-A tested euploid 
embryos comprising all cohorts.

Artificial intelligence/convolutional neural network

The AI algorithm used for embryo assessments in this study 
was a CNN that was developed and trained as previously 
described [20, 30, 31]. Briefly, the previously developed 
CNN used the Xception architecture and was trained as a 
supervised binary classifier to predict implantation outcome 
using embryo images collected at 113 hpi. This AI system 
was around 75.3% accurate in predicting embryo implanta-
tion when assessing a cohort of euploid embryos [20, 30, 31].

Embryo transfer, vitrification, warming, 
and trophectoderm biopsy

Blastocyst quality higher than 3CC was considered as the 
criterion for EV and TBx [32]. Irvine Scientific Vitrifi-
cation and Warming solutions (FujiFilm) was used for all 
EV and EW procedures. Embryos undergoing PGT were 
hatched on day 3 with a 1.48 µm diode laser. Approxi-
mately 3–5 trophectoderm cells were removed using 
the same laser. Eight MD providers (A–H) performed 
day 5 blastocyst transfers in the same academic fertility 
practice. Eight embryologists (A–H) performed ET, EV, 
and EW, while six embryologists (A–F) performed TBx. 
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AI-predicted and actual implantation outcomes were reg-
istered for the most recent 20 procedures (ET, EV, EW, or 
TBx) performed by each provider (MD or embryologist) 
and compared to assess operator performance. Through-
out the study, all authors were blinded to the identity 
of the MD providers and the embryologists, in order to 
minimize associated bias.

Statistical analysis

AI-predicted and actual implantation outcomes were 
registered for each embryo and classified according to 
provider (MD or embryologist) performing the procedure 
(ET, EV, EW, or TBx). Average AI-predicted, standard 
deviation (SD), and average actual implantation rates 
were estimated according to provider (MD or embryolo-
gist) and procedure performed (ET, EV, EW, or TBx). 
Wilcoxon singed-rank test was used to compare the AI-
predicted and actual implantation outcomes of the same 
embryos within the same provider (MD or embryologist). 
Statistical significance was set as p value < 0.05. Statisti-
cal analysis was performed with R (v4.1.0; The R Foun-
dation for Statistical Computing).

Results

Embryo transfer performed by MD

Implantation rates for 8 different MD providers (A–H) for 
their most recent 20 ETs were evaluated. Overall, in almost 
all cases (87.5%, 7/8 MD providers), actual implantation 
rates for ET performed by MD providers did not differ sig-
nificantly (p > 0.05) from AI-based implantation prediction 
(Fig. 1). The greatest difference between the AI-predicted 
and the actual implantation rate was for MD provider H 
(61% vs. 20%, p = 0.001), which represented the only MD 
provider that had a performance significantly different from 
the AI-predicted performance. MD provider H’s implanta-
tion rate was also the lowest of the eight in our cohort (20% 
vs. 40–60%). The AI model prediction was perfectly accu-
rate for MD provider G performance (AI prediction: 50% 
vs. actual: 50%, p = 0.985). Additionally, actual implanta-
tion rates following ET performed by most MD providers 
(62.5%, 5/8 MD providers) fell within 1 standard deviation 
(SD) of the AI prediction [AI prediction (SD) vs. actual: MD 
B, 53% (22%) vs. 60%; MD D, 66% (16%) vs. 60%; MD E, 
51% (20%) vs. 45%; MD F, 58% (18%) vs. 40%; MD G, 50% 
(23%) vs. 50%] (Fig. 1).

A B C D E F G H

Actual 50% 60% 55% 60% 45% 40% 50% 20%

AI prediction 68% 53% 68% 66% 51% 58% 50% 61%

AI - 1SD 55% 31% 56% 50% 31% 40% 27% 44%

Wilcoxon test 0.083 0.596 0.177 0.522 0.571 0.083 0.985 0.001
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50%

60%

70%

80%

AI-predicted and actual implantation rates following 
Embryo Transfer performed by different MD providers

Fig. 1  Artificial intelligence (AI) predicted and actual implantation rates following embryo transfers (ET) performed by different MD providers
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Embryo transfer performed by embryologist

Implantation rates for 8 different embryologists (A–H) for 
their most recent 20 ETs were evaluated. AI prediction was 
not significantly different (p > 0.05) from the actual implan-
tation rates of the same embryos for all but one embryolo-
gist (87.5%, 7/8 embryologists) (Fig. 2). AI prediction was 
significantly different from the actual implantation rate in 
the case of embryologist H (AI prediction: 60% vs. actual: 
30%, p = 0.011). Embryologist H’s implantation rates were 
also the lowest observed in our embryologists’ cohort (30% 
vs. 50–70%) and the only one with more than 1 SD dif-
ference compared to AI prediction [AI prediction (SD) vs. 
actual: embryologist A, 63% (16%) vs. 60%; embryologist 
B, 57% (23%) vs. 65%; embryologist C, 62% (19%) vs. 70%; 
embryologist D, 62% (18%) vs. 65%; embryologist E, 64% 
(21%) vs. 50%; embryologist F, 62% (17%) vs. 65%; embry-
ologist G, 63% (18%) vs. 60%] (Fig. 2). Finally, AI model’s 
average implantation predictions exhibited less variation in 
ET performed by embryologists compared to MD providers 
(57–64% vs. 50–68%).

Embryo vitrification

Regarding embryo vitrification performance, implantation 
rates of the 20 most recently vitrified embryos of each of the 

8 embryologists (A–H) were compared with AI prediction. 
AI-predicted implantation rates did not differ significantly 
(p > 0.05) from the actual rates observed following EV for 
any of the embryologists (100%, 8/8 embryologists) (Fig. 3). 
The largest disparity between AI prediction and actual 
implantation rate was following EV performed by embry-
ologist G (AI prediction 63% vs. actual 45%), although it did 
not reach statistical significance (p = 0.076). Implantation 
rates were closely predicted by AI (within 1 SD) among 
all embryologists except embryologist G (87.5%, 7/8) per-
forming EV [AI prediction (SD) vs. actual: embryologist A, 
56% (15%) vs. 65%; embryologist B, 65% (21%) vs. 60%; 
embryologist C, 63% (20%) vs. 65%; embryologist D, 52% 
(13%) vs. 55%; embryologist E, 56% (17%) vs. 55%; embry-
ologist F, 61% (18%) vs. 55%; embryologist H, 57% (21%) 
vs. 60%] (Fig. 3).

Embryo warming

Embryologists’ performance in warming embryos for trans-
fer was assessed by comparing actual implantation rates of 
the 20 most recently warmed embryos of the 8 embryologists 
(A–H) with the rates predicted by the AI models. For most 
embryologists performing EW (87.5%, 7/8), actual implan-
tation rates were not significantly different (p > 0.05) from 
the AI-predicted implantation rate (Fig. 4). AI-prediction for 

A B C D E F G H

Actual 60% 65% 70% 65% 50% 65% 60% 30%

AI prediction 63% 57% 62% 62% 64% 62% 63% 60%

AI - 1SD 47% 34% 43% 44% 43% 45% 45% 42%

Wilcoxon test 0.701 0.701 0.546 0.869 0.245 0.985 0.596 0.011

0%

10%

20%

30%

40%

50%

60%

70%

80%

AI-predicted and actual implantation rates following 
Embryo Transfer performed by different Embryologists

Fig. 2  Artificial intelligence (AI) predicted and actual implantation rates following embryo transfers (ET) performed by different embryologists
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A B C D E F G H

Actual 65% 60% 65% 55% 55% 55% 45% 60%

AI prediction 56% 65% 63% 52% 56% 61% 63% 57%

AI - 1SD 41% 44% 43% 39% 39% 43% 48% 36%

Wilcoxon test 0.596 0.701 0.956 0.927 0.784 0.498 0.076 1.000

0%

10%

20%

30%

40%

50%

60%

70%

80%

AI-predicted and actual implantation rates following 
Embryo Vitrification performed by different 

Embryologists

Fig. 3  Artificial intelligence (AI) predicted and actual implantation rates following embryo vitrification (EV) performed by different embryologists

A B C D E F G H

Actual 50% 60% 70% 50% 55% 60% 60% 25%

AI prediction 53% 63% 58% 59% 60% 67% 55% 60%

AI - 1SD 33% 46% 41% 42% 41% 48% 35% 38%

Wilcoxon test 0.841 0.701 0.388 0.294 0.522 0.571 0.648 0.004
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AI-predicted and actual implantation rates following 
Embryo Warming performed by different 

Embryologists

Fig. 4  Artificial intelligence (AI) predicted and actual implantation rates following embryo warming (EW) performed by different embryologists
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implantation rate was significantly different from the actual 
only for embryos warmed by embryologist H (AI-predicted 
60% vs. actual 25%, p = 0.004). Actual implantation rates 
for embryos warmed by embryologist H were the lowest 
observed in our embryologists’ cohort (25% vs. 50–70%). 
All other embryologists (87.5%, 7/8) actual implantation 
rates were within 1 SD of the AI predictions [AI-predicted 
(SD) vs. actual: embryologist A, 53% (20%) vs. 50%; embry-
ologist B, 63% (17%) vs. 60%; embryologist C, 58% (17%) 
vs. 70%; embryologist D, 59% (17%) vs. 50%; embryologist 
E, 60% (19%) vs. 55%; embryologist F, 67% (19%) vs. 60%; 
embryologist G, 55% (20%) vs. 60%] (Fig. 4).

Trophectoderm biopsy

TBx performance of 6 different embryologists (A–F) was 
assessed by comparing AI-predicted with actual implanta-
tion rates of the 20 most recently biopsied embryos by each 
embryologist. AI-predicted implantation rates were not sig-
nificantly different for the actual implantation rates of the 
cohort of embryos biopsied by all embryologists (100%, 6/6 
embryologists). Additionally, AI predictions were within 1 
SD of the actual implantation rates for embryos biopsied 
by all embryologists (100%, 6/6) [AI-predicted (SD) vs. 
actual: embryologist A, 59% (18%) vs. 70%; embryologist 
B, 65% (19%) vs. 65%; embryologist C, 54% (12%) vs. 50%; 

embryologist D, 61% (15%) vs. 50%; embryologist E, 65% 
(17%) vs. 60%; embryologist F, 60% (13%) vs. 70%] (Fig. 5). 
The largest difference observed between AI prediction and 
actual implantation rates was in embryos biopsied by embry-
ologist D (AI-predicted 61% vs. actual 50%) but was not 
statistically significant (p = 0.154) and within 1 SD of AI 
prediction. Among embryos biopsied by embryologist B, 
AI models were able to perfectly predict implantation rates 
(AI-predicted 65% vs. actual 65%).

Discussion

Our study evaluated the utility of AI-predicted implantation 
rates as a QA measure for provider performance in a vari-
ety of procedures (ET, EV, EW, and TBx). Overall, results 
suggest that AI predictions were not significantly different 
and within 1 SD from actual implantation rates following 
procedures performed by most providers. Even though we 
found significant differences between predicted and actual 
implantation rates for one provider in our cohort performing 
ET and EW respectively, there were no significant differ-
ences for providers performing EV or TBx. Additionally, in 
the cases that there was a significant difference of more than 
1 SD, actual implantation rates were lower than AI-predicted 
implantation rates, with that provider noted in having the 

A B C D E F

Actual 70% 65% 50% 50% 60% 70%

AI prediction 59% 65% 54% 61% 65% 60%

AI - 1SD 41% 46% 42% 46% 48% 47%

Wilcoxon test 0.475 0.985 0.430 0.154 0.596 0.622
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20%
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40%

50%
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70%

80%

AI-predicted and actual implantation rates following 
Embryo Biopsy performed by different 

Embryologists

Fig. 5  Artificial intelligence (AI) predicted and actual implantation rates following embryo biopsy (TBx) performed by different embryologists

246 Journal of Assisted Reproduction and Genetics (2023) 40:241–249



1 3

lowest implantation rates compared to the rest. In a differ-
ent perspective, the gross deviations from the AI SD show 
the value of this system to objectively identify performance 
metrics that deviate from the clinic average. The AI system 
was able to identify MD A and H for ET and Embryologist H 
for ET and EW as outliers in performance, showing that this 
system can not only distinguish between providers but also 
integrate predicted implantation potential to the expected 
performance results. While all high-quality blastocysts have 
implantation potential, each embryo’s implantation poten-
tial is not equal and needs to be individually assessed when 
using implantation potential as a KPI. For instance, for MD 
A within the ET evaluation, as the actual implantation rate 
as noted to be 50%, MD A may not have been marked during 
performance evaluation through traditional metrics evalua-
tion. However, when including the AI-predicted implanta-
tion potential of the cohort, the MD A performance was 
noted to be more than 1 SD from the predicted potential, 
flagging their performance within the AI system. The 
AI prediction can serve as a benchmark of performance, 
with significant deviation potentially suggesting need for 
improvement in provider technique, serving as a warning 
signal for potential adverse quality performance events. With 
the aid of AI, QA tools could be standardized and would 
allow real-time adjustments to act upon and resolve quality 
performance issues that could impact an ART practice.

While AI system-generated implantation potential can be 
utilized as a reliable QA measure, the impact of this system 
is rooted in thoughtful integration and value-based imple-
mentation within a clinical system. A cutoff of 20 proce-
dures was considered appropriate to assess performance over 
set time intervals, signifying appropriate safety checkpoints 
for continuous monitoring and adjustment of performance. 
This number of procedures in our practice roughly repre-
sents a monthly estimate of each provider’s procedure work-
load. Specifying intervals for QA evaluation is important to 
ensure consistency through time and to promptly identify 
clinical deviations or procedural variations among provid-
ers to allow for timely intervention. We found that even this 
relatively limited number of procedures could make a major 
contribution to QA monitoring with the aid of AI. By utiliz-
ing these suggested AI-based QA measures, we could isolate 
the impact of operator performance from embryo quality on 
procedure outcomes and have access to more meaningful QA 
indicators than survival or degeneration rates. The number 
of procedures between quality assessment intervals could 
be adjusted according to individual practices and workload.

It has been well-described that ART practice success 
relies heavily on healthcare provider’s performance [4, 5]. 
Cirillo et al. [5] found significant variation ET success 
among 32 operators performing ET, varying as much as 
27% between individual operators. These observed differ-
ences were responsible for 44.5% of the heterogeneity in 

ongoing pregnancy rates [5]. Interestingly, outcomes did 
not improve with an increased number of procedures per-
formed by the provider [5], suggesting that the difference 
may originate from subtle differences among ET tech-
niques utilized. Damage to the endometrial lining, uterine 
contractions induction, and depth of catheter insertion are 
integral parts of the ET technique and could all influence 
the outcome [10, 33, 34]. Similar concerns have been 
raised for embryologists’ performance [4].

Two consensus meetings aimed to define clinical and 
laboratory quality indicators for ART practices [11, 12]. 
A key part of the quality management system was clearly 
defining and consistently monitoring performance indica-
tors [35] to maintain the practice accreditation status [9]. 
Some of these indicators have proven their utility in timely 
detection of laboratory practices variations that could have 
a relevant clinical impact [36]. Regarding operator perfor-
mance, an indicator suggested by the Maribor consensus 
to monitor ET competence is clinical pregnancy rate [11]. 
Clinical pregnancy, however, is a delayed outcome meas-
ure that could take weeks to quantify, limiting its ability as 
a prompt warning tool. A plausible alternative suggested 
by the Vienna consensus would be measuring implantation 
rates [12]. Implantation, however, can be impacted by a 
number of factors, such as embryo quality [13], leaving it 
a relatively subjective measure. Although embryo grading 
relies on specific predetermined criteria [14], traditional 
manual morphologic assessment is challenging, inher-
ently reliant on a skilled human eye’s subjective evalua-
tion, resulting in high inter- and intra-observer variability 
[15, 16]. 

AI systems have a huge potential to assist ART practices 
in addressing this challenge. AI-based assessment is a highly 
objective and consistent [19] and can aid in process automa-
tion and acceleration, reducing the amount of time and effort 
required by the embryologist. AI is capable of accurately 
predicting embryo quality and developmental potential [27, 
37]. To date, there has only been one study published dem-
onstrating the utility of AI as a QA measure [20], which 
focused on determining the utility of an early warning AI-
based system for culture monitoring and intracytoplasmic 
sperm injection (ICSI) competence assessment. None of the 
traditional indicators were able to identify culture condi-
tions variations, except for the one AI-generated indicator 
(R2 = 0.9063) [20]. When evaluating competency in ICSI, 
results suggest minor differences between manual and AI 
determined fertilization, blastocyst, and high-quality blasto-
cyst development [20]. AI systems have also been shown to 
be able to predict implantation potential of embryos reliably 
and accurately [29].

Strengths of this study include the robustness of the 
AI algorithm and the large pool of providers assessed. We 
included both MD and embryologist providers, showing the 
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power of AI-based QA among all aspects of ART practice. 
Additionally, we demonstrated the reliability and consistency 
of AI when assessing a wide range of practitioners while also 
demonstrating the variability among practitioners at baseline. 
Furthermore all cycles were performed within one institution, 
allowing for tight control of stimulation protocols, culture con-
ditions, and practice management. Weaknesses of our study 
include that all CNNs were developed based only on Embryo-
scope images, with no images from other platforms included in 
our training, validation, or test sets. Additionally, although we 
have a mid- to large-sized practice, including more providers, 
both embryologists and MDs, would increase the reliability 
of our findings. Also, we trained our AI systems with 2440 
images. As we increase the images available for use in training 
and validation, the accuracy of our AI systems will increase, 
decreasing the risk of unintentional bias introduced into the AI 
system when making predictions, and expanding our models to 
different settings and populations. Moreover, even though our 
AI-based models were able to identify deviations in individu-
al’s performance with only 20 procedures, future studies could 
implement these processes over a larger number of procedures 
and over a longer time period. The identity of the MD provid-
ers and embryologists were not revealed, and thus we did not 
have available data on specific techniques used and were not 
able to make the relevant comparisons. Finally, our approach 
did not account for certain patient cycle and transfer character-
istics that could also influence pregnancy rates, including age, 
sperm quality, oocyte yield, and the complexity of the transfer.

Future studies should incorporate a larger sample size 
for training, validation, and testing, and should account for 
cycle or stimulation characteristics to allow for more accu-
rate predictions. Additionally, assessing different intervals 
of testing would be helpful in meaningful integration of this 
technology based on clinic volume. Numeric scores could be 
implemented to represent blastocyst grades to further objec-
tify these processes [38]. Moreover, apart from embryo qual-
ity and operator performance, there are patient, cycle, and 
transfer factors that could be considered to further enhance 
indicators utility [39]. Looking ahead, the future of AI sys-
tems seems extremely bright with a tremendous potential to 
provide an important edge for QA monitoring in many parts 
of an ART practice.

Conclusion

Our study found evidence that AI systems could be imple-
mented as a QA tool for staff performance monitoring. 
This study demonstrates the novel first application of AI 
models for quality control and KPI assessment in the ART 
laboratory. AI-based indicators could provide an edge over 
traditional indicators as they could be more objective, con-
sistent, and time-efficient. In the future, additional potential 

confounders could be taken into account by AI to provide 
a more reliable and holistic evaluation of each provider’s 
performance.
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