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Recent Advances in Nano‑Enabled Seed Treatment 
Strategies for Sustainable Agriculture: Challenges, 
Risk Assessment, and Future Perspectives
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HIGHLIGHTS

• Novel insights on recent advances in nanotechnology-based agro seed treatment formulations.

• Details on reducing the environmental impact of seed treatment by using nanoagrochemicals.

• Applications of potential of nanopesticides and nanofertilizers for sustainable seed treatments.

• Described scope of possible next-generation nanomaterials for seed treatment formulations with associated challenges and risks 
assessment methodologies.

ABSTRACT Agro seeds are 
vulnerable to environmental 
stressors, adversely affect-
ing seed vigor, crop growth, 
and crop productivity. Dif-
ferent agrochemical-based 
seed treatments enhance 
seed germination, but they 
can also cause damage to the 
environment; therefore, sus-
tainable technologies such 
as nano-based agrochemicals 
are urgently needed. Nanoa-
grochemicals can reduce the 
dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical 
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active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, expo-
sure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, 
scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles 
for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible 
risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to 
help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treat-
ment agrochemical formulations, their scope, and potential risks associated with seed treatment.

KEYWORDS Agro seeds; Environmental seed stressors; Nanoagrochemicals; Toxicological implications; Risk regulations

1 Introduction

The agricultural industry plays a significant role in develop-
ing economies and provides food for a rapidly growing world 
population of nearly 7.5 billion people [1, 2]. Since 90% of 
food crops are grown from seed, the seed is a vital input 
for sustainable agricultural productivity and production. A 
healthy agro seed produces healthier, more viable, and vig-
orous seedlings, contributing to effective agricultural prac-
tices. In the current scenario, agriculture faces a wide range 
of challenges, including changing environmental conditions 
like salinity, drought, heavy metal accumulation in soil and 
climate changes etc., which can adversely affect seed ger-
mination, seedling development, and ultimately, crop pro-
duction [3–5]. The quality of seeds may also be reduced by 
seed-borne diseases or destroyed by insects and other pests 
[6]. This can lead to abnormal seed dormancy, non-viability, 
and reduced water absorption, negatively impacting crop 
production and final yield. Therefore, maintaining the seed 
quality is crucial for germination, seedling establishment, 
and crop growth. Agrochemical-based seed treatment can 
prevent these issues and enhance seed quality by protect-
ing agro seeds from biotic and abiotic stresses. In order to 
address and prevent various pests, diseases, and nutritional 
deficiencies, various agrochemicals are used separately and 
in combination with each other for seed treatments [7–12]. 
They include fungicides, insecticides, fertilizers, and ferti-
lizer enhancers. Nevertheless, these chemicals are costly, 
toxic for health, toxic leaching occurs in soil, seed pathogens 
are showing resistance, and the chemicals reach the water 
sources like rivers or sea, causing eutrophication, reducing 
soil fertility, reducing beneficial microbial activity, and alter-
ing the pH of the soil. The abundant use of conventional 
agrochemicals and runoff of their wastes also contributes to 
nutrient and food chain imbalances in ecosystems, leading 

to pollution of the environment and soil [13–15]. For this 
reason, it is imperative to implement sustainable agricul-
tural practices to protect seeds from pests and insects while 
maintaining the agro-ecosystem. Conventional agrochemi-
cals are discouraged as they are not contributing to sustain-
able agriculture seed treatment practices due to the issues 
of leaching, degradation, hydrolysis of agrochemicals. New 
technologies which are safe and economic, and based on 
green chemistry approaches are urgently needed to reduce 
environmental burden on soil [13–15].

New techniques and strategies are constantly evolving to 
address these pertinent issues with agro seeds. To revolu-
tionize modern agriculture practices, nanomaterial-based 
products are being introduced. The high surface area-to-
volume ratio and novel physicochemical properties of these 
materials enable them to meet increasing demand due to 
their high reactivity [16]. Nanotechnology deals with mate-
rials with a size ranging from 1 to 100 nm [17–25]. Moreo-
ver, by increasing the surface area per mass of a material, 
a more significant amount of the nanomaterial can contact 
surrounding materials, influencing its reactivity [26]. The 
surface area of nanomaterials is much larger than that of 
similar masses of larger-scale materials [27]. The applica-
tion of nanotechnology to seed treatment is a relatively new 
area of research. Nanoagrochemicals for seed treatment can 
achieve popularity today because they are more effective 
than conventional agrochemicals, making them economi-
cally viable and environmentally friendly. Nanotechnology 
can significantly contribute to the sustainable develop-
ment of nanoscale agrochemicals for seed treatment and 
can enhance the efficiency of agricultural inputs. There has 
been evidence that nanoparticles increased seed germina-
tion and biomass yield on seeds. The nanoparticles have 
also increased the seed’s resistance to several biotic and 
abiotic stresses. The biological functions of seeds depend 
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on molecular events. There has been little progress at the 
molecular level regarding nanoparticle-induced mechanisms 
and seeds, which is an important step in evaluating potential 
mechanisms. To understand seed’s underlying mechanisms 
and responses toward nanoparticles and the changes in gene 
expression through molecular approaches, it is crucial to 
understand how seeds respond to nanoparticles. In the last 
decade, nanomaterials have demonstrated extensive and ben-
eficial chemical interactions with agro seed systems, rang-
ing from seed disease management and yield improvement 
to environmental safety [17, 28–31]. As shown in Fig. 1a, 
nanomaterials can be surface engineered to provide desir-
able properties and functions for particular seed treatment. 
This will primarily allow them to target the correct locations 
within the seed or seed coat and offer smart release and 
delivery strategies (Fig. 1b). Recent studies have found that 
seeds treated with nanomaterials can activate several genes 
during germination [32–34]. It has been shown that nano-
materials promote seed germination by forming nanopores 
in seed coats, introducing reactive oxygen species (ROS), 
increasing enzyme activity at starch-degrading sites, and 
introducing ROS to the seed coat (Fig. 1c). A variety of 

signaling molecules regulate seed germination, including 
ROS and phytohormones. ROS regulate gene expression 
and phytohormone signaling, and they maintain a balance 
between abscisic acid, gibberellins, auxins, and ethylene [8]. 
In contrast, excessive ROS levels hamper seed germination 
by causing extensive oxidative damage. Therefore, ROS 
levels should be controlled spatiotemporally so they can be 
enclosed in the so-called oxidative window, ensuring proper 
germination. A significant physiological effect on seed ger-
mination appears to be caused by nanoparticles, although 
the exact mechanism is unknown. Some studies revealed 
that, ROS can be generated by nanoparticles by triggering 
the production of •OH radicals. As a result of soaking seeds 
in nanomaterial containing solutions for a certain period of 
time, the •OH radicals produced by bound nanoparticles 
would loosen cell walls, thereby stimulating seedling growth 
[8]. Using nanoagrochemicals to treat seeds is an efficient 
method of altering seed metabolism and signaling pathways, 
which significantly impacts germination and establishment 
of plant’s overall life cycle (Fig. 1d). By applying nanoma-
terials to seeds, we can protect them during storage, enhance 
germination, synchronize germination, improve growth early 

Fig. 1  Application of organic–inorganic nanomaterials in seed germination and plant development. a Nanoparticles’ properties (such as size, 
shape, surface charges, composition, and concentration) affecting the seed interaction. b Surface-engineered nanoparticles with the desirable 
properties for seed treatments. c Nanoparticles induced seed metabolism. d Nanoparticles effect for the improved growth and establishment of 
plants
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on, and significantly reduce the amount of pesticides and 
fertilizers that need to be applied [35].

The literature search has shown that nanomaterials such as 
silver, gold, copper, palladium, selenium, zinc oxide, magne-
sium oxide, titanium dioxide, and iron oxide have been proven 
to promote seed germination and improve crop yields [10, 
19–21, 23, 24, 28, 29, 31]. The revolution of next-generation 
seed agrochemicals will be driven by porous, biogenic, metal-
lic, metal oxide, and polymeric nanomaterials [36–38]. Apart 
from promoting seeds germination, nanomaterials can serve 
as seed protectors as well. They can protect seeds from bacte-
ria, fungi, and pests. In some exceptional cases, nanomaterials 
have been observed to have size- and concentration-dependent 
toxicity, such as reducing germination rates and causing phy-
totoxicity to seedlings [39–41]. Nanoparticle toxicity can be 
reduced by controlling their physicochemical properties, such 
as size, shape, surface charges, composition, and concentra-
tion, which determine their biological response. Using nanoa-
grochemicals for seed treatment raises the possibility of their 
release into the ecosystem and soil. Applying these nanoagro-
chemicals in actual field situations raises concerns about their 
safety, exposure levels, and toxicological consequences for the 
environment and human health [42–44]. Depending on their 
nature and the presence of organic and inorganic constituents, 
nanoagrochemicals may undergo physical, chemical, and bio-
logical transformations once they enter the environment. When 
the nanoagrochemicals are transformed or aggregated, their 
stability, reactivity, toxicity, and selectivity may be affected, 
and their target may be altered [45].

Nanoagrochemicals for seed treatment need to be evalu-
ated more closely to determine their fate in the environment. 
There is no comprehensive review of seed treatment-specific 
nanomaterials development, application, safety, and regula-
tion in the literature. The present discussion aims to provide 
readers with up-to-date information on the latest organic and 
inorganic nanomaterials used for sustainable seed treatments. 
Furthermore, this review provides a detailed overview of the 
safety of nanomaterials in the environment when used for seed 
treatment. In developing nano-based agrochemicals, some 
nanomaterials would be excellent candidates for seed-specific 
treatments and for developing agro products nanoformulations 
for seed treatment. Nanomaterials-enabling technology and 
products have the potential to provide one of the most effective 
and environmentally friendly seed treatment options.

2  Nanotechnology Toward Sustainable Seed 
Treatments

In order to ensure a sustainable future for agriculture, there 
is an urgent need for sustainable seed treatment practices. 
Sustainable seed treatment practices ensure profitability, 
environmental health, social equity, and profitability of 
existing and future generations. As part of sustainable seed 
treatment practices, agrochemical usage is to be getting 
control, since they can contaminate the soil, water, turf, 
and other vegetation, as well as harm nontarget organisms 
such as plants, birds, animals, and fish. Agrochemicals 
which are used for seed treatment are absorbed by sur-
rounding land and water bodies, entering the food chain 
and accumulating in body [13–15]. As far as their effects 
on crops are concerned, excessive application of these 
chemicals generates significant residues. Agrochemi-
cal residues contribute to nutrient imbalance and quality 
reduction of agricultural products. Furthermore, these over 
use of agrochemicals can adversely affect the environment 
by causing abnormal climate change, damaging biodiver-
sity, polluting groundwater and soil, destroying natural 
resources, violating waste management laws, and creating 
noise pollution and air pollution [13–15]. Therefore, it is 
necessary to develop sustainable agricultural practices to 
overcome agrochemical issues. We need smart agrochemi-
cals for sustainable seed treatment in order to achieve this. 
This approach proposes formulations and products that 
fulfill the needs for chemicals that provide sustainable 
nutrient delivery systems that maximize agricultural crop 
yield and minimize environmental impact [46].

The use of nanoscale agrochemicals as smart chemicals 
for seed treatment, such as nanofertilizers, nanopesticides 
and nanofungicides [47–51], has transformed traditional 
agriculture practices to become more sustainable and 
efficient (Fig. 2). Using nanomaterials and nanotechnol-
ogy in agrochemicals overcomes several disadvantages of 
conventional agrochemicals, including poor solubility, low 
bioavailability, easy photolysis, organic solvent pollution 
and excess toxicity. Nanomaterials have been used suc-
cessfully in the development of seed treatment over the 
past few years [52, 53]. The potential applications of nano-
materials for seed treatment can be categorized into active 
nanoparticles and sustained release nanocarrier systems 
[54]. The active nanoparticle is a nanoparticle that can 
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cause a biological effect. Active nanoparticles can act as 
stimulants, anti-pathogens, or both. Active nanoparticles 
include multi-walled carbon nanotubes that act as an effec-
tive agrochemical carrier, metal oxide-based nanoparticles 
for encouraging germination, nanosilver as antimicrobial 
agents, nanotitanium oxide for photocatalytic activity and 
nanosilica to deliver pesticides and fertilizers due to its 
large surface areas [18, 37, 55, 56]. As depicted in Fig. 2, 
several metal nanoparticles, including iron, zinc, manga-
nese, selenium, etc., are critical nutrients for seed germi-
nation and development. Other studies have used nanopo-
lymers and liposomes as renewable, biodegradable, and 
environmentally friendly carriers to encapsulate essential 
oils, pesticides, nutrients, and fertilizers [35, 57–59]. A 
sustained release nanocarrier encapsulates an active ingre-
dient (biological or synthetic) and delivers this compound 
continuously over time instead of releasing it all at once.

More than 99.9% of pesticides fail to reach their targets 
and leave harmful impacts on soil, water, and air health 
while increasing pathogenic resistance and reducing bio-
diversity. Using a controlled release nano-system for tar-
geted seed treatment is an efficient route to upgrading and 

advancing it sustainably. It has been shown that stimuli-
response release nano-systems can be observed using pho-
tosensitive polymers. In this way, nanocomposite-based 
stimuli can intelligently react to the stimulation produced 
by the target or adjacent environment that ultimately trig-
gers the release of agrochemicals to regulate the seed dis-
ease effectively. The controlled release nano-system offers 
several advantages over conventional chemical applica-
tions; the controlled release nano-systems allow more effi-
cient delivery of pesticides and fertilizers more quickly 
into seeds, resulting in a decline in the concentration of 
agrochemicals used [60, 61]. Various nanoparticle-based 
products and smart agrochemical delivery systems using 
nanocomposites are constantly being developed for seed 
treatment (Table 1). The potential of nanocomposite as a 
nanofertilizer, nanoherbicide, nanofungicide, and nanoin-
secticide for the next-generation treatment for seed treat-
ments offer a variety of advantages, including durability, 
effectiveness, wettability, good dispersibility, less toxic-
ity, good biodegradability in soil and environment, and 
photogenerated nature with the least amount of residues 
compared to conventional chemicals [53].

Fig. 2  Role of nanoagrochemicals and nanofertilizers in seed treatment. a Characteristics of nanopesticides, such as enhanced stability, control, 
and targeted delivery of agrochemicals, assist the seed in effectively protecting itself from pathogens and pests during germination. b Nanoferti-
lizers compositions (Se, Zn, N, P, K, Mo, etc.) providing the nutrient-rich element for enhanced seed protection, enhanced stress tolerance, and 
fulfilling nutrient deficiency in the soil for the effective seed germination
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2.1  Nanofertilizer for Seed Germination

The nanofertilizers are considered to be promising candi-
dates for the fertilizer industry, and they hold the promise of 
improving nutrient retention in seed and crop growth [62]. 
Seeds contain ample food reserves that support germina-
tion and seedling growth. For seed germination and seedling 
establishment, the starchy endosperm is the major tissue that 
accumulates seed reserve food material. The results of sev-
eral studies have demonstrated that nanofertilizers can assist 
seeds in germinating in a way that conventional fertilizers 
cannot. In light of these studies, it is clear that nanofertiliz-
ers penetrate seed coats due to their nanosize and increase 
water absorption by upregulating aquaporin genes, thereby 
enhancing seed germination and reducing adverse effects 
of salinity, drought, and heavy metal stresses. Most impor-
tantly, many studies have demonstrated that nanofertilizer 
is not directly applied to the seeds with soil, pre-sowing 
treatment is beneficial with nanofertilizer, so seeds are in 
direct contact with nanoparticles in aqueous medium, and 
seed germination gets induced. Here, nanofertilizer acts as a 
nanocatalyst for enhancing starch degradation enzyme activ-
ity, acting as a mild stress inducer or ROS generator, and 
creating nanopores in the seed coat. The nanofertilizers also 
bring positive effect in the microbial communities around 
seeds, therefore, indirectly contribute to the seed germina-
tion [63]. Compared with conventional fertilizers, nanofer-
tilizers are a more effective means of absorbing and utilizing 
nutrients. This is due to a considerable reduction in leaching 
and volatilization losses [63]. Unlike chemical fertilizers, 
the nanofertilizers diffuse freely through soil structures. As 
nanofertilizers have considerably smaller losses, they can 
be applied in smaller quantities. This is in contrast to syn-
thetic fertilizers, which require greater quantities in order to 
compensate for their significant loss through leaching and 
emission [63]. Nanofertilizers with polymeric coats avoid 
premature contact with soil and water. Thus, loss becomes 
negligible, and nutrient contents of nanofertilizers become 
available when plants are in a position to internalize the 
released nutrients [64].

Nanofertilizers containing nitrogen, phosphorous, and 
potassium have been found to improve plant development 
and crop production [65]. Nitrogen is the principal min-
eral element required in the biosynthesis of amino acids, 
proteins, nucleic acids, enzymes, hormones, vitamins, 
secondary metabolites, etc. Nitrogen plays a key role in 

photosynthesis as it is the main constituent of chloro-
phyll. For plant growth, phosphorous is the second most 
abundant nutrient. It plays a critical role in the synthesis 
of nucleic acids, phospholipids, and phosphor-proteins. 
Furthermore, it is the main component of the metabolic 
energy source adenosine triphosphate. Among the primary 
nutrients, potassium is the third-most important and con-
trols a number of metabolic processes, such as transport, 
opening and closing of stomata, controlling cytoplasmic 
pH, and activating more than 60 enzymes. Potassium 
is known to enhance the defense mechanism of a plant. 
Synthetic fertilizers release their nutrients in 4–10 days, 
whereas nanofertilizers release them in 40–50 days [66]. 
Furthermore, nanofertilizer increases the tolerance of 
seeds to both biotic and abiotic stresses by triggering many 
molecular mechanisms [67]. Badran and Savin [68] suc-
cessfully studied the seed germination and early stages of 
bitter almond seedlings’ growth under saline conditions 
using nanofertilizer (nanourea modified with hydroxyapa-
tite nanoparticles). A copper oxide-based tenorite nanofer-
tilizer was effectively developed by Esper Neto et al. [69], 
for the growth of corn seedlings. Using the seed priming 
technique (pre-soaking of seeds in colloidal solution of 
nanoparticles), Abdel-Aziz et al. [70], investigated the 
effects of engineered nanomaterials alone or in combi-
nation with nitrogen, phosphorous, and potassium on the 
growth and productivity of French beans. Kumar Das et al. 
[71] developed a sustainable design for rice production 
using nitrogen, phosphorous, and potassium fertilizer 
equivalent nano-pyrite seed dressing. Using zerovalent 
iron nanofertilizer, Titir Guha et al. [72] improved the 
germination of aromatic rice (Oryza sativa cv. Gobindab-
hog L.). Kubavat et al. [73] synthesized a chitosan-based 
sustained release nanofertilizer formulation to improve the 
biomass production of Zea mays. In the study by Abdel-
Aziz et al. [70] engineered carbon nanotubes nitrogen, 
phosphorous, potassium and chitosan nanoparticles nitro-
gen, phosphorous, potassium fertilizer was effectively 
tested on the growth of French beans (Phaseolus vulgaris). 
A novel nanofertilizer synthesized by Yusefi-Tanha et al. 
[74] has been evaluated for its influence on soybean seed 
yield (Glycine max cv. Kowsar). A study by Rui et al. [75] 
suggested using iron oxide nanoparticles as a potential 
iron fertilizer for peanuts (Arachis hypogea). These are a 
few recent examples of nanofertilizers that were used to 
promote seed germination and seedling growth. A very 
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limited amount of research is being done in the area of 
nanofertilizers for seed germination and development. 
More research is needed in this area.

2.2  Nanopesticides for Seed Protection

Using nanotechnology to enhance pesticide delivery could 
improve pesticide utilization and reduce runoff into the envi-
ronment, thus reducing environmental pollution and nega-
tive impacts caused by pesticides [76]. On plant surfaces, 
nanopesticide formulations can improve droplet adhesion, 
increasing the dispersion and bioactivity of active ingredi-
ents. Therefore, nanopesticides are more effective at control-
ling crop pests than conventional pesticides. Nanopesticides 
not only improve pesticide dispersion but also enhance their 
bioavailability by accelerating the delivery of their beneficial 
ingredients. Consequently, nanopesticides are widely used 
to reduce the shortcomings of conventional pesticides, such 
as their low efficacy and large doses. In contrast to con-
ventional pesticide formulations, nanopesticides release the 
active ingredient slowly at a predetermined rate to achieve 
their desired efficacy and longevity. By encapsulating pesti-
cides in nanopesticides, the active ingredients of pesticides 
are protected from premature degradation and direct release 
to mankind. Unlike conventional pesticides, nanopesticides 
have a large surface area, which increases their ability to 
interact with target pests at a lower concentration [77]. 
Thus, the application of nanopesticides can be a sustainable 
option for increasing the crop productivity. Nanopesticides 
are pesticides formulated in the nanoscale for agricultural 
applications, whether pesticides are fixed on a nanomateri-
als, encapsulated in a matrix or embedded in enzyme- or 
stimuli-triggered nanocarriers [78]. The term nanopesti-
cide refers to any nanochemical that kills pests, including 
weeds, insects, bacteria, and fungi [79]. Nanomaterials like 
silver, gold, iron oxide, titanium oxide, copper oxide, and 
zinc oxide are antimicrobial and anti-insecticidal, so they are 
ideal for use as nanopesticides. Despite their nanostructure 
and small size, nanomaterials can penetrate cell membranes 
and attach to cell organelles, causing abnormal oxygen spe-
cies to form and causing an alteration to normal cell func-
tioning. A normal level of ROS is necessary for important 
physiological processes, such as cell signaling, gene expres-
sion, and protein redox regulation; however, high levels of 
ROS cause anomalies and interfere with normal functioning, 

which results in cell death. Another molecular mechanism 
of nanopesticides for seed protection involves inhibiting cell 
wall synthesis, depolarising the cell membrane, inhibiting 
protein synthesis, inhibiting amino acid synthesis, and inhib-
iting metabolic pathways in pests and microorganisms [80].

Nanopesticide-mediated ROS not only kill seed patho-
gens, but also enhance seed and plant defense by activating 
antimicrobial peptides and secondary metabolites in plants 
raised from nanotreated seeds. Plant secondary metabolites 
play an important role in their defense, communication, and 
adaptation, but their secondary metabolism in response to 
nanoparticles is not completely understood. Several studies 
[81, 82] demonstrate that nanoparticles trigger ROS produc-
tion significantly across plant species, which result in the 
synthesis of antimicrobial secondary metabolites; however, 
their exact molecular mechanisms are unknown. Although 
it is clear that ROS are involved in transcriptional regula-
tion of antimicrobial secondary metabolites, there is also 
a link between ROS and secondary signaling messengers 
[81]. Thus, ROS generated by nanoparticle interactions may 
interfere with plant secondary metabolism and cause plants 
to produce antimicrobial secondary metabolites to defend 
themselves from pathogens. A nanofungicide made of iron 
nanorods was successfully used to inhibit the growth and 
fabricated zinc oxide nanoparticles as a tool for control-
ling soybean seed-borne phytopathogenic fungi was stud-
ied by Lakshmeesha et al. (2021) [83]. Almaary et al. [84] 
explored the application of seed-borne Penicillium duclauxii 
to the synthesis of silver nanoparticles. The comparative pot 
studies of chitosan and chitosan-metal nanocomposites as 
nanofungicides were conducted by Kaur et al. [85] against 
fusarium wilt of chickpea (Cicer arietinum L.) using tria-
zolyl dithiocarbamate. A potent antifungal nanosilver agent 
has been developed by Sharma et al. [86] against bakanae 
disease of rice. The novel study was delivering pesticides to 
plant parasitic nematodes using tobacco mild green mosaic 
virus as a nanocarrier was carried out by Chariou et al. [87]. 
Sankar and Abideen [88] investigated the nanopesticidal 
effects of silver and lead nanoparticles against the pest Sit-
ophilus oryzae. To protect the faba bean (Vicia faba) from 
insects, Thabet et al. [89] investigated silica nanoparticles as 
potential nanopesticides. A nanoformulation of thiosemicar-
bazone has been developed by Spadola et al. [90] to control 
fungus Aspergillus flavus infection in grains. The above-
mentioned nanopesticides-based studies highlighted their 
potential for use in seed science and technology. As seen 
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in these reports, a substantial amount of research can be 
conducted in the near future to develop nanopesticides for 
seed-borne infection and storage.

3  Nanoparticles: Potential Tool for Seed 
Treatment

The nanoparticles in nanoformulations are the only constant 
component, and they keep changing with the type of product. 
Nanoparticles are classified into inorganic and organic nano-
materials according to their chemical composition. Inorganic 
and organic nanoparticles are used as promising agents for 
seed priming, coating, and pelleting (Table 2). Listed below 
are some examples of most effective nanoparticles that can 
be used for the designing of seed-specific nanoformulations.

3.1  Inorganic Nanoparticles

3.1.1  Iron Oxide Nanoparticles

Iron oxide nanoparticles at low concentrations promoted 
the growth and development of seeds. A study by Maswada 
et al. [91] demonstrated the potential of nanoiron oxide to 
improve sorghum (Sorghum bicolor) germination and seed-
ling growth using soaking and priming of seed under salinity 
conditions. Kasote et al. [92] used onion extract to synthe-
size iron oxide nanoparticles. It was shown that non-toxic 
iron oxide nanoparticles could be applied sustainably to 
watermelon seeds to increase anti-inflammatory properties 
and enhance defenses. Using aqua dispersed nanoparticles 
of ferrous sulfide, Ahuja et al. [93] assessed the phytopatho-
logical effects against the rice born fungus Fusarium ver-
ticillioides. Nanoiron treated rice seed showed significant 
seed germination and inhibition of fungus F. verticillioides 
[93, 94]. Sundaria et al. [95] suggested that biofortifying 
wheat with iron through seed priming could address anemia 
caused by iron deficiency. The given treatment showed a 
significant increase in grain iron content and higher accu-
mulation. Guha et al. [72] reported the use of nanopriming 
using zerovalent iron to increase germination and growth in 
aromatic rice cultivars. Das et al. [71] proposed a seed dress-
ing approach for rice, and their experiments revealed that the 
nano-pyrite seed dressing triggers nitrogen, phosphorous, 
potassium equivalent rice production without compromising 
yield. Thus, the above-mentioned iron oxide nanoparticles 

could be used as a platform for further asset delivery sys-
tem development. Iron oxide nanoparticles can significantly 
reduce the presence of iron in the cotyledon, which inhibits 
the uptake and translocation of nanoparticles. Furthermore, 
these iron oxides are externally aggregated on seeds, making 
them ideal for seed priming and pest control applications.

3.1.2  Zinc Oxide Nanoparticles

Seeds require zinc for many physiological and biochemical 
processes. Many studies show that seed primed with zinc 
oxide nanoparticles has a higher zinc content, which con-
tributes to a higher yield and higher growth rate. According 
to Rizwan et al. [96], zinc oxide nanoparticles positively 
affected wheat growth and decreased cadmium accumulation 
in wheat. Zinc nanoparticles enhanced zinc concentrations 
in roots, shoots, and grains. Overall, nanoparticles signifi-
cantly increase wheat biomass, and nutrient retention, and 
decrease cadmium toxicity. In a study by Itroutwar et al. 
[97], biogenic nanozinc was synthesized for rice seeds 
using brown seaweed extract Turbinaria ornataas a prim-
ing agent, resulting in increased rice seed quality and crop 
yield as a result. Zinc nanoparticles were used by Savassa 
et al. [98] to enhance seed nutrition. This study evaluated 
the effects of different concentrations and sizes of zinc nano-
particles on bean (P. vulgaris) seed germination. Biotrans-
formation of zinc oxide nanoparticles was detected using 
X-ray absorption spectroscopy. It was found that most of 
the zinc absorbed by seed coat was trapped there, while a 
small fraction entered cotyledons. The results demonstrate 
potential for using zinc nanoparticles as an agrochemical 
due to their properties, particularly the slow zinc release 
and lower toxicity than zinc sulfate. According to Latef et al. 
[99], nanozinc effectively prevented seed germination loss of 
Lupinus termis seeds grown under salinity stress. As a result, 
zinc nanoparticles may boost the growth and yield of plants 
growing in salinized soils. The mechanisms by which zinc 
oxide nanoparticles alleviate the adverse effects of salinity 
stress in seeds require further study. The use of biofabricated 
nanozinc as a potent seed priming agent for growth promo-
tion and mildew control in pearl millet was recently reported 
by Nandhini et al. [100]. Chudhary et al. [101] fabricated 
the zinc–chitosan nanoparticles and assessed them via seed 
priming and foliar application in maize. Zinc–chitosan nano-
particles have been shown to act as antifungals and promote 
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Table 2  An overview of the nanoparticle systems used in seed priming and coating, their characteristics, and their main effects on different seed 
species

Type of nanomaterial Size in nanometers Concentrations for seed 
treatment

Seed type Key findings References

Zinc oxide 20–30 nm 25–100 ppm Wheat (T. aestivum L.) Reduce cadmium uptake [105]
15–52 nm 5–200 ppm Rice (O. sativa L.) Improved biofortification [229]
35–40 nm 750–1250 mg/kg Chili (C. annuum L.) High antimicrobial activity [230]
40 and 60 nm 1–5000 ppm Common bean (P. vulgaris 

L.)
Improved biomass [98]

21.3 nm 20–60 mg/L Lupin (Lupini stermis L.) High salinity resistance [99]
32 nm 50–500 ppm Pearl millet (Pennisetum 

glaucum L.)
Antimicrobial resistance [100]

Iron 50 nm 10–500 ppm Sorghum (S. bicolor (L.) 
Moench)

Increased water content in 
leaves

[91]

19–30 nm 20–160 ppm Watermelon (Citrullus 
lanatus (Thunb.) Matsum 
and Nakay varieties)

Increased the activity of 
plant growth regulator

[231]

6–20 nm 30 µg/mL Rice (O. sativa L.) High antimicrobial activity [93]
80 nm 25–1000 µg/mL Wheat (T. aestivum L.), 

types WL711 (low-iron 
genotype) and IITR26 
(high-iron genotype)

Increased harvest yield [95]

33.8 ± 3.59 nm 10–160 mg/L Rice (O. sativa L.) Improved water uptake [72]
25–100 nm 50 µg/mL Rice (O. sativa L.) Improved enzymatic 

activity
[71]

20–30 nm 20–40 ppm Wheat (T. aestivum L.) 
seeds of varieties gal-
axy-13, Pakistan-13, and 
NARC-11

It develops abiotic stress 
resistance in wheat

[103]

Manganese (III) oxide 50 nm 0.1–1 mg/mL Jalapeño (C. annuum L.) Salinity resistance develop-
ment

[105]

Copper 25, 40, and 80 nm 1–1000 mg/L Common bean (P. vulgaris 
L.)

High concentrations 
showed toxic effects on 
seed germination

[102]

15–30 nm 20–40 ppm Wheat (T. aestivum L.) 
seeds of varieties gal-
axy-13, Pakistan-13, and 
NARC-11

Abiotic stress resistance 
development

[102]

Platinum 3.2 ± 0.8 nm Concentrated solution at 
1.0 mM

Pea (P. sativum L.) Decreased microorgan-
ism’s colonization

[198]

Carbon 13–14 nm 70 µg/mL Wheat (T. aestivum L.) Improved harvest [232]
Molybdenum 35–50 nm 10 mg/L Chickpea (C. arietinum L.) Increased antioxidant 

enzymes and harvest
[233]

Silver 6–26 nm 10 and 20 mg/mL Rice seeds (O. sativa L. cv. 
KDML 105)

Increased aquaporin gene 
expression

[119]

11.6 ± 2.40 nm 31.3 µg/mL Onion (A. cepa L.) Potentially increased bio-
chemical activity

[120]

10–35 nm 0–50 mg/L Wheat seeds (T. aestivum 
L.)

Increased seed and seed-
lings vigor

[121]

5–30 nm 10–50 µg/mL Soybean (G. max (L.) 
Merr.)

Potential antimicrobial 
activity

[123]

Gold 10–30 nm 5–15 ppm Maize (Z. mays L.) Improved seed and seed-
lings vigor

[124]

93.68 ± 2.06 nm 31.3 µg/mL Onion (A. cepa L.) Improved seed and seed-
lings vigor

[66]
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seedling growth. Above all, the studies showed that nanozinc 
could be utilized in agriculture, but a thorough understand-
ing of their interactions with seeds is needed.

3.1.3  Copper Oxide Nanoparticles

A number of enzymes are activated by copper, which con-
tributes to RNA synthesis and improves photosystems’ per-
formance. A range of copper oxide nanoparticle sizes and 
concentrations influence P. vulgaris seedling germination 
and growth. According to Duran et al. [102], it was found 
that most copper was in its pristine form through X-ray 
absorption spectroscopy. Seed germination was not affected 
by copper nanoparticles, but seedling weight gain was pro-
moted at low concentrations but inhibited at high concen-
trations. Biosynthesized copper oxide nanoparticles mark-
edly induced and promoted antioxidant enzyme activities. 
The potential role of nanocopper in wheat yield was studied 
by Yasmeen et al. [103]. Size- and dose-dependent toxic 

activity was observed for the biosynthesized copper oxide 
nanoparticles against two wheat grain damaging insects, 
Sitophilus granarius and Rhyzopertha dominica. Findings 
suggested that copper oxide nanoparticles should be used 
at lower concentrations in agricultural fields as insecticides 
that will not inhibit wheat growth. A study by Wang et al. 
[104] examined the concentration-dependent effects of cop-
per oxide nanoparticles on the germination, growth, and 
physiological responses of Brassica pekinensis L. In light 
of these results, nanocopper can serve as a powerful insec-
ticide to facilitate the storage of a wide range of seeds and, 
at lower concentrations, it can significantly improve the seed 
germination rate.

3.1.4  Manganese Oxide Nanoparticles

It was known that manganese helps enhance the seed ger-
mination rate. It has been found that nanoscale manganese 
is less phytotoxic and more effective at minimizing abiotic 

Table 2  (continued)

Type of nanomaterial Size in nanometers Concentrations for seed 
treatment

Seed type Key findings References

Silica 90 nm 300–1200 ppm Wheat (T. aestivum L.) Reduced cadmium uptake [234]

 ~ 100 nm 2 mg/mL Pea seeds (P. sativum L.) Improved seed and seed-
lings vigor

[18]

Chitosan 259.4 ± 4.7 nm 1–100 µg/mL Wheat (T. aestivum L.) Increased plant growth 
regulator (auxin)

[235]

95 ± 2 nm 20 µg/L Common bean (P. vulgaris 
L.)

Increased ROS levels [69]

122 nm 0.05–0.2% Rice (O. sativa L.) Potential antimicrobial 
activity

[129]

560 nm 0.1% Chickpea (C. arietinum L.) Improved activity of plant 
growth regulator

[236]

450 ± 10 nm 0.05–0.0005 mg/mL Tomato (S. lycopersicum 
var. cerasiforme)

Improved harvest yield [237]

400 nm 250 mg/kg Pearl millet (P. glaucum) Improved plant growth 
regulators

[132]

374.3 ± 8.2 nm 0.01–0.16% w/v Maize seeds (Z. mays L.) Improved seed and seed-
lings vigor

[133]

387.7 ± 4 nm 0.01–0.16% w/v Maize seeds (Z. mays L.) Development of biotic 
resistance and improved 
harvest yield

[101]

Lignin 200–250 nm 0.5, 1, and 1.5 mg/mL Arugula (Erucavisicaria 
L.) Cav. subsp. sativa), 
tomato (S. lycopersicum 
L. cv. Ciliegino), and 
chickpea (C. arietinum 
L.)

Improved seed and seed-
lings vigor

[137]
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stresses compared to conventional bulk or ionic manganese 
compounds. There is little information available regarding 
the physiological and toxicological effects of manganese 
nanoparticles on agricultural crops. Manganese oxide nano-
particles were studied as a nanopriming agent by Ye et al. 
[105] to alleviate salinity stress in the Capsicum annuum 
during germination. According to the study, the surface 
charge plays an important role in the behavior of nanoman-
ganese oxide. Manganese oxide nanoparticles have been 
used as seed priming agents to improve chlorophyll and 
antioxidant profiles in watermelon seedlings by Kasote et al. 
[106]. Similarly, bio-engineered magnesium oxide nanopar-
ticles [107] were shown to enhance green gram seedling 
strength. However, more research is needed to determine 
the exact effect of seed priming with manganese on agri-
cultural output, including its role in enhancing abiotic and 
biotic tolerance.

3.1.5  Cobalt Nanoparticles

The micronutrient cobalt is another essential one. Cobalt 
concentrations influence the response of seeds. It promotes 
plant growth in low concentrations but can cause phytotoxic-
ity at higher concentrations. Hong et al. [108] investigated 
the effect of nanoscale zerovalent cobalt on soybean growth. 
Soybean growth and development were positively influenced 
by zerovalent cobalt at nanoscales. Krishnamoorthy et al. 
[109] investigated hexa-amino-cyclotriphosphazene and 
cobalt nanoparticles incorporating polyvinylpyrrolidone 
seed coatings for improving cowpea seed germination. 
Cobalt-coated seeds showed higher imbibition rates, which 
could help reduce drought stress. Nanocobalt-based seed 
coating given to a seedling could increase germination rates 
and enhance stand establishment.

3.1.6  Carbon Nanoparticles

Using multi-walled carbon nanotubes as a nanopriming 
agent, Joshi et  al. [110] developed a new nanopriming 
agent. The use of multi-walled carbon nanotubes in wheat 
significantly increases seed yield. The effects of carbon-
based nanomaterials on seed germination under salt stress 
were investigated by Pandey et al. [111], and nanocarbon 
has been described as promising seed germination and plant 
growth product. Carbon nanomaterials are promising seed 

germination promoters and plant growth regulators. Baz 
et al. [112] reported that carbon nanoparticles might enhance 
seed germination and post-germination growth of lettuce 
under salinity stress. The study showed that soluble nano-
particles improved lettuce seed germination under salt stress, 
which provides fundamental evidence about the potential of 
nanoparticles in agricultural applications to improve crop 
yield and quality.

3.1.7  Graphene Oxide Nanoparticle

A graphene oxide is a unique material that consists of a 
single monomolecular layer of graphite with epoxide, car-
bonyl, carboxyl, and hydroxyl groups containing oxygen 
functionality. Recently, graphene oxide nanoparticles have 
been investigated as seed stimulators in agriculture for 
improving seed germination, seedling growth, and further 
development. According to Yin et al. [113], graphene oxide 
significantly impacted the germination and growth of seeds, 
as well as the uptake of cadmium in solution cultures. As a 
result of this study, graphene oxide can inhibit the adverse 
effects of cadmium on seed germination, seedling growth, 
and uptake of cadmium in solution, and positively stimu-
lates the seed germination. In another study, Kim et al. [114] 
demonstrate that silver–graphene oxide nanoparticles can 
significantly affect the early growth of seeds depending on 
the species. In rice seeds, Li et al. (2020) demonstrated the 
significant effects of graphene oxide nanosheets on rice seed 
growth. Based on these findings, graphene oxide nanosheets 
were found to inhibit the adverse effects of cadmium on 
rice seed germination and to reduce cadmium uptake and 
accumulation in rice seedling roots and shoots, helping to 
determine cadmium’s fate and ecotoxicity [115]. As a result, 
graphene oxide nanoparticles can be utilized as a potential 
seed stimulant.

3.1.8  Silicon Nanoparticles

Silicon decreased malondialdehyde levels in radicles under 
stress, indicating a decreased lipid peroxidation rate. Exog-
enous silicon increased antioxidant defense in bud seedlings, 
improving seed germination and alleviating oxidative stress. 
Cadena et al. [116] demonstrated the enhancement of cin-
namon essential oil activity using nanoparticle encapsulation 
to control seed pathogens. To combat seed-borne diseases, 
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cinnamaldehyde-mesoporous silica nanoparticles were 
incorporated into a sodium alginate seed coating. Hussen 
et al. (2019) [117] determined the effects of nanosilica on 
wheat growth, yield, and cadmium accumulation. Rahimi 
et al. (2021) [118] investigated the potential role of sili-
con nanoparticles in affecting seed germination and vigor 
of calendula (Calendula officinalis L) under drought stress 
induced by polyethylene glycol.

3.1.9  Silver Nanoparticles

A wide range of nanomaterials are used in agriculture 
research, including silver nanoparticles. According to 
Mahakhham et al. (2017) [119], the mechanism of silver 
nanoparticles promoting seed germination has been hypoth-
esized as (i) functioning as a nanocatalyst for enhancing 
starch degradation enzyme activity, (ii) acting as a mild 
stress inducer or ROS generator, and (iii) creating nanopores 
in the seed coat. Silver nanoparticles can be used as a nano-
priming agent for enhancing seed germination and starch 
metabolism of rice-aged seeds. As depicted in Fig. 3, the 
nanopriming of silver could cause an increase in the activity 
of amylase, leading to a higher content of soluble sugars that 
would support seedling growth. As a result of nanopriming 
treatment, amylase activity increased, resulting in a higher 
concentration of soluble sugars. As sugar concentrations 
increase in the cells, the osmotic potential and water poten-
tial decrease. As a result, the difference (gradient) between 
the water potential outside and inside the tissues increases, 
allowing water to move into the seeds through osmosis. Due 
to the increased soluble sugar content and amylase activity 
in nanoprimed seeds, the increase in water uptake may also 
be due to the change in internal osmotic potential caused by 
soluble sugars (solutes). In Mahakhham et al. (2017) [119] 
study, ROS, including hydroxyl radicals, were shown to 
be important for cell wall loosening, testa, and endosperm 
weakening, which is necessary for radicle protrusion.

The nanopriming treatment produced higher ROS levels 
in germinating seeds than the unprime control or other prim-
ing treatments, suggesting both ROS and aquaporins contrib-
ute to seed germination. There was evidence that nanosilver 
can internalize seed coats and support water uptake inside 
seeds, thus promoting seed germination and starch metabo-
lism. Several mechanisms have been proposed for nano-
priming-induced seed germination, including the creation 

of nanopores that enhance water absorption, rejuvenation 
of ROS/antioxidant systems in seeds, and the generation of 
hydroxyl radicals that loosen the cell wall. As seed nano-
priming maintains ROS levels within the oxidative window 
that promotes seed germination, seed nanopriming increases 
seed germination. Nanoparticles can reduce the level of ROS 
in seeds under stress conditions, as they increase the activity 
of enzymes like superoxidase dismutase, catalases, and guai-
acol-peroxidase. This reduces seed cell damage. According 
to the study of Mahakhham et al. (2017), silver nanoparti-
cles penetrated seed coats and created small pores, which 
resulted in increased water uptake and increased expression 
of aquaporin genes involved in water uptake. Acharya et al. 
(2019) [120] synthesized nanosilver from onion extract, 
which was internalized by onion seeds. Several greenhouse 
and field studies have demonstrated that seeds germination, 
growth, and yield are significantly enhanced. The study by 
Kannaujia et al. [121] demonstrated the potential role of 
biogenic nanosilver on wheat growth as a growth promoter 
without any toxic effect typically associated with chemically 
synthesized nanosilver. Using agro-industrial by-products, 
Acharya et al. (2020) [122] synthesized silver nanoparticles 
and used them as nanopriming agents for diploid and triploid 
watermelon seeds. Seed treatment with nanosilver has been 
demonstrated to improve seed germination, growth, and fruit 
quality. Spagnolettia et al. (2019) [123] obtained stable silver 
nanoparticles from the exudate of the soil fungus Macropho-
mina phaseolina using a low-cost, green synthesis process. 
The effect of silver nanoparticle dosage on soybean seed 
germination was also studied to test its potential applicabil-
ity as a seed protection agent.

3.1.10  Gold Nanoparticles

The properties of gold nanoparticles make them attrac-
tive candidates for seed priming applications since they 
have a small size, good biocompatibility, low toxicity, easy 
surface chemistry, and easy surface modification. Accord-
ing to Mahakhham et al. (2016) [124], a nanogold solu-
tion was used to elicit seedling growth and germination 
in aged maize seeds. A study showed that the nanoprim-
ing approach minimized gold translocation from seeds 
into plant vegetative organs. Gopinath et al. (2014) [125] 
studied the effects of gold nanoparticles produced from 
fruit extract of Terminalia arjuna on Gloriosa superba 
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seed germination. It was found that nanogold significantly 
affected seed germination and vegetative growth of Glo-
riosa superba. A study by et al. (2017) [126] examined 
the effect of green synthesized gold nanoparticles on rice 
germination and root growth. Overall, the results indicated 

that gold nanoparticles synthesized by Tiliacora triandra 
can enhance seed vigor and are biocompatible. Brassica 
juncea growth and seed yield are enhanced by gold nano-
particles, as demonstrated by Arora et al. (2012) [127].

Fig. 3  Phytosynthesized silver nanoparticles enhance aged rice seeds’ germination and starch metabolism. a Seeds without silver nanoparticle 
priming treatment have lower metabolic activity because of slow water uptake, and starch is hydrolyzed slowly; as a result, sugar levels are low 
in the initial stage of imbibition, resulting in slow seed germination and growth. b Silver nanoparticle seed priming enhances seed germination. 
This is a reprinted image of Ref. [119] with permission
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3.2  Organic Nanoparticles

Nanoparticles made from natural or synthetic organic 
molecules are called organic nanoparticles. An organic 
nanoparticle can be made from a polysaccharide, lipids, or 
proteins that are biodegradable, biocompatible, and able to 
react to various environmental stimuli like pH, tempera-
ture, etc. [128]. Organic nanoparticles can be effective car-
riers of seed health-promoting compounds when applied 
as seed coatings or seed dressings material. A wide selec-
tion of chemicals can be loaded into these nanoparticles, 
including fungicides, essential oils, plant growth regula-
tors, and fertilizers.

3.2.1  Chitosan Nanoparticles

Nanoparticles made of chitosan are biodegradable, more 
stable, less toxic, and biocompatible. Li et al. (2018) [129] 
examined the effect and mechanism of chitosan nanoparti-
cles on wheat germination and seedling growth. As a result 
of the higher adsorption of chitosan nanoparticles on the 
surface of wheat seeds at low concentrations, chitosan nan-
oparticles provide beneficial effects to the growth of wheat 
seeds. A chitosan guar nanoparticle was prepared by Sathi-
yabama et al. (2020) [129] with high antimicrobial activity 
as a bioprotectant against rice phytopathogens. Accord-
ing to this study, chitosan guar nanoparticles can be used 
as an antimicrobial agent to combat rice blast and blight 
disease. Nanochitosan loaded with nitrogen, phosphorous, 
and potassium is tested as a fertilizer for french beans by 
Azizi et al. (2019) [69]. According to the obtained results, 
nanochitosan loaded with nitrogen, phosphorous, and 
potassium might be used to improve seed germination. 
A study by Divya et al. [130] optimized the synthesis of 
chitosan nanoparticles and investigated their potential 
use as a germination elicitor for rice seeds. Rice seeds 
treated with chitosan nanoparticles remained effective 
when stored at room temperature for seven months. Using 
nanoalginate–chitosan and nanochitosan–tripolyphosphate 
containing gibberellic acid, Anderson do Espirito Santo 
Pereira et al. (2019) [131] designed a seed treatment that 
improved the growth and productivity of Solanum lyco-
persicum under field conditions. Using chitosan nanopar-
ticles, Siddaiah et al. [132] investigated the effectiveness 

of the nanoparticles against downy mildew in pearl millet. 
A study showed that chitosan nanoparticles increased pearl 
millet germination and seedling vigor after seed treatment 
with chitosan nanoparticles. The effect of copper–chitosan 
nanoparticles on physiological and biochemical changes 
during maize seedling growth was investigated by Saharan 
et al. [133]. According to studies, copper–chitosan nano-
particles promote seedling growth through better mobili-
zation of reserved food, such as starch, through increased 
levels of α-amylase.

3.2.2  Cellulose Nanofibers

The cellulose nanoparticles are easy to process, cost-
effective, biodegradable, and have good solubility in many 
organic solvents. Biodegradable cellulose biopolymer-based 
nanofiber seed coatings were used by Xu et al. [134] to 
enhance agrochemical delivery and seedling development. 
The greenhouse studies found that nano-enabled seed coat-
ings effectively deliver agrochemicals at the right place 
while consuming a minimum number of agrochemicals. 
Zhang et al. [135] developed cellulose anionic hydrogels 
based on cellulose nanofibers for significant seed germina-
tion and seedling growth. The present study provided an 
easy and effective method for fabricating cellulose anionic 
hydrogel and evaluated its application in agriculture.

3.2.3  Lignin Nanoparticles

Lignin nanoparticles have excellent antibacterial and anti-
oxidative properties due to their surface chemistry and 
shape. Kacsó et al. [136] used zein and lignin-based nano-
particles to treat soybean seeds. A seed treatment containing 
azoxystrobin-loaded lignin nanoparticles provided almost 
complete antifungal protection for soybean against fungus 
Rhizoctonia solani. The results indicate that nanozein and 
lignin are safe and effective delivery systems for active com-
pounds in seed treatments. Falsini et al. [137] synthesized 
lignin nanocapsules, which were used as potential vectors 
for the delivery of bioactive compounds to tomato and miller 
seeds; it was found that lignin nanocapsules enhanced seed 
growth and development of tomato and miller seeds. It is 
necessary to conduct further studies to determine the pre-
cise mechanisms responsible for the differential effects of 
nanolignin on seeds.
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4  Possible Next‑generation Nanoscale 
Architectures for Future Seed Treatment 
Formulations

Nanoscale systems of the next generation can control sta-
bility, solubility, and bioavailability and provide controlled 
release of bioactive for seed treatment [138]. Liquid and 
solid nanoscale systems are the two main types of design-
ing next-generation nanoscale formulations. Using these 
systems, as depicted in Fig. 4, next-generation seed treat-
ment formulations can be developed for highly effective seed 
treatments.

4.1  Polymeric Nanocapsules and Nanospheres

The polymeric nanocapsule and nanospheres can be fab-
ricated from preformed polymers or by polymerizing 
monomers [139]. The nanocapsule and spheres consist of 
a vesicular or reservoir-type structure with an inner cavity 
surrounded by a polymer coating or membrane. It may be 
possible to prepare seed treatments with pesticide/fertilizer-
loaded nanocapsules using several different techniques, 
including nanoprecipitation, emulsion-solvent diffusion, 
emulsion-solvent evaporation, layer-by-layer self-assembly, 

ionic gelation, polyelectrolyte complexation, and melt-dis-
persion techniques [30]. In a double emulsion technique, 
Kumara et al. (2014) [140] prepared alginate nanocapsules 
containing imidacloprid and neonicotinoid insecticide. A 
successful field study on crop pests was conducted to evalu-
ate the effectiveness of imidacloprid nanoformulation. The 
hydrophilic carbamate insecticide methomyl has been encap-
sulated in an elegant way by Chuxiang et al. [141]. Nanoen-
capsulation of methomyl is necessary to prevent early deg-
radation. Chen et al. [142] developed leaf-adhesive pesticide 
nanocapsules with pH-responsive release to enhance crop 
leaf retention and improve utilization efficiency. The dual-
functionalized pesticide nanocapsule delivery system with 
improved spreading behavior and enhanced bioactivity 
was developed by Cui [143]. In contrast to nanocapsules, 
nanospheres are homogenous, monolithic systems in which 
the bioactive element is evenly dispersed throughout the 
polymer matrix. Aza-loaded polymeric nanospheres have 
been prepared both as suspensions and as powders by da 
Costa et al. [144]. Using freeze-drying, the colloidal sus-
pension was transformed into powders that provide the best 
protection against ultraviolet light-induced degradation of 
the aza in the neem product. Jiang et al. [145] developed 
lignin–xylan hybrid nanospheres with enzyme-mediated 

Fig. 4  Next-generation nanoagrochemicals for enhancing seed germination (nanoagrochemicals with a wide range of morphologies and struc-
tures such as nanomicelles, nanogels, porous silica nanoemulsion, nanosuspension, nanoclay providing controlling stability, solubility, bioavail-
ability, and controlled release of agrochemicals for enhanced seed germinations)
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release properties as pesticide carriers. Pectin nanospheres 
were prepared by Li et al. [146], and their potential impact 
on wheat seed germination and growth was studied. Here 
are a few examples of nanocapsules and nanospheres that 
are effective in their applications. By experimenting with 
nanocapsules and nanospheres, it is possible to create future 
formulations that preserve seeds or improve seed storage.

4.2  Nanomicelles

Nanomicelles are self-assembling colloidal particles formed 
by amphiphilic block copolymers in water. During the 
formation of a micellar core surrounded by a hydrophilic 
corona, hydrophobic interactions are developed that drive 
self-assembly. Zhang et al. [147] developed polyethylene 
glycosylated-camptothecin nanomicelles to control pesticide 
combinations. According to this study, micelles could be 
effective carriers for pesticide combination control. Adak 
et al. [148] developed nanosized micellar aggregates from 
amphiphilic copolymers to make controlled release formu-
lations of imidacloprid using aqueous media self-assemble 
into micellar aggregates upon contacting water. Dong et al. 
[149] developed pH-responsive ultrasonic self-assembly 
spinosad-loaded nanomicelles and studied their antifungal 
activity against Fusarium oxysporum. Nanomicelles have 
not yet been extensively studied for their potential applica-
tions in agrochemical delivery. Researchers have the oppor-
tunity to explore this nanoarchitecture to design an effective 
seed treatment system. Biodegradable and environmentally 
friendly techniques have proven effective seed treatment 
strategies.

4.3  Nanogels

“Nanogel” generally refers to a water-swollen network of 
nanoscale polymers, such as hydrophilic or amphiphilic 
chains that swell without water dissolving. A large surface 
area of nanogels facilitates multivalent bio-conjugation, and 
a strong interior network facilitates the incorporation of bio-
molecules. The transient antiviral activity of chloroincona-
zide was enhanced by alginate-based nanogel, and its effect 
on plant growth was studied by Lv et al. [150]. Lv et al. 
[150] demonstrated the antiviral activity and growth promo-
tion of small molecule pesticides using nanogel carriers for 
the first time. The composition of the nanogel can easily be 

applied to the spray-based delivery of pesticides, represent-
ing a novel strategy for preparing new pesticide preparations 
and using multifunctional pesticides to improve seed germi-
nation. Ziaee et al. [151] prepared the myristic acid–chitosan 
nanogel containing essential oil of Cuminum cyminum to 
manage stored product beetle pests effectively. By using this 
technique, it may be possible to overcome the limitations of 
essential oils in managing stored product insect infections. 
It is still necessary to conduct more experiments to optimize 
nanogels and clarify their toxicity in various commodities, 
environmental conditions, and insects. However, nanogel has 
not been fully explored for seed technology, but it could be 
used to deliver pesticides as it provides pesticidal effects. 
Nanogel is suitable for use in the initial stages of seed ger-
mination and seedling development. Nanogel can be used to 
coat the seeds with nutrients and maintain moisture while 
the seeds germination.

4.4  Nanofibers

Nanofibers are fibers that are nanometers in diameter. Fiber 
diameters ranged from 200 to 400 nm. The nanofibers can 
be fabricated from various polymers and therefore have a 
variety of properties and applications. Nanofibers can be 
synthesized using natural polymers such as collagen, cel-
lulose, silk fibroin, keratin, gelatine, and polysaccharides 
such as chitosan and alginate [152]. Several methods are 
available to create nanofibers, including drawing, electro-
spinning, self-assembly, template synthesis, and thermally 
induced phase separation. Nanofibers are most commonly 
generated through electrospinning due to the simplicity of 
the setup, the ability to synthesize continuous nanofibers 
from various polymers, and the ability to control the fibers’ 
diameter, composition, and orientation [152]. Farias et al. 
[153] used electrospun polymer nanofibers in seed coatings 
for crop protection. According to Farias et al., localized 
pesticide delivery can be achieved by coating seeds with 
cellulose diacetate nanofibers containing abamectin or fluop-
yram. It is found that nanofibrous coatings electrospun on 
soybean seeds do not reduce seed germination regardless of 
coating thickness or uniformity. The in vitro fungal assay 
performed with fluopyram-loaded nanofibers consistently 
inhibited the growth of Alternaria lineariae [154]. Com-
bining sustained release profiles with moisture stability 
suggest that nanofibrous seed coatings can act as a unique 
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platform to control nematodes and fungi in seeds. Enhancing 
agrochemical delivery and seedling development with biode-
gradable, tunable, biopolymer-based nanofiber seed coatings 
was developed by Xu et al. [134]. Nanofiber-coated seeds 
(tomato and lettuce) were studied in greenhouse experiments 
in the presence and absence of a fungal pathogen (Fusarium 
sp) to determine how they germinate and grow over time 
[155]. This seed nanocoating approach may increase yields 
in pathogen-infested soil conditions as a result of the pre-
cise delivery of agrichemical at the right place while using 
a relatively small amount of agrochemical. Greenhouse 
experiments suggest that such nano-enabled seed coating 
approaches may be useful in pathogen-infested soil condi-
tions [156]. The environment friendly effective seed coat 
was developed by Krishnamoorthy et al. [157] using elec-
trospun polyvinyl pyrrolidone incorporated with urea and 
cobalt nanoparticles for use as seed coatings on cowpeas. 
This new nanofiber seed coating method offers precision in 
agrochemical delivery and significantly improves germina-
tion and seedling biomass for model seeds over conventional 
film coating methods, due to its unique nanofiber structure 
and controlled release mechanism.

4.5  Porous Silica Nanoparticles

Agrochemicals can be transported or encapsulated in porous 
silica nanoparticles because of their biocompatibility, high 
load capacity and tuneable porosity. Since these nanopo-
rous particles are used in various applications, they can be 
a viable option for designing nanoformulations for devel-
oping seed treatment. Porous silica nanoparticles allow 
for sustained release of pesticides and fertilizers, intended 
to increase efficacy and reduce doses required to achieve 
desired seed effects. Research is underway to establish the 
potential application of porous silica for effective seed treat-
ments. Sun et al. [158] investigated mesoporous silica nano-
particles ability to enhance wheat and lupin seedling growth 
and photosynthesis. A dramatic increase in growth was 
observed in wheat and lupine exposed to mesoporous silica 
nanoparticles. Furthermore, mesoporous silica nanoparti-
cles localized to chloroplasts in leaves, while photosynthetic 
activity was markedly increased. The growth and physiologi-
cal responses of maize to porous silica nanoparticles in soil 
were studied by Rangaraj et al. [159]. Using nanoscale silica 
in maize is more effective than bulk silica, thus enabling 

sustainable agriculture of maize crops as an alternative 
source of silica fertilizer. Using mesoporous silica nano-
particles, Sattary et al. [160] tested the potential antifun-
gal properties of lemongrass and clove oil against wheat’s 
take-all disease. In this study, essential oils-mesoporous 
silica nanoparticles were a safe product to control take-
all diseases in wheat crops. Cadena et al. [116] reported 
improving cinnamon essential oil activity by encapsulating 
it in mesoporous silica nanoparticles for controlling seed 
pathogens. Study findings showed that mesoporous silica 
nanoparticles could be encapsulated to enhance the antimi-
crobial activity of plant products, thus allowing for the use 
of volatile biocides, such as essential oils, at very low con-
centrations to treat and prevent microbial diseases in crops. 
Study findings showed that mesoporous silica nanoparticles 
could be encapsulated to enhance the antimicrobial activ-
ity of plant products, thus allowing for the use of volatile 
biocides, such as essential oils, at very low concentrations 
to treat and prevent microbial diseases in crops. To promote 
rice seedling growth by regulating amino acid metabolism, 
Zhao et al. [161] developed mesoporous silica nanoparticles 
containing fungicides. By regulating amino acid metabolic 
pathways, fungicide-loaded mesoporous silica nanoparti-
cles protect plants from the negative effects of fungicides 
[162]. In all of these studies, porous silica nanoparticles have 
demonstrated that they could potentially be used as novel 
delivery systems for active ingredients such as pesticides or 
fertilizers. There is huge scope to explore this material for 
seed-protecting treatments since very few studies have been 
done in this field. This material can be a next-generation 
candidate for developing seed treatment nanoformulations.

4.6  Nanoemulsions

Nanoemulsions are emulsions comprised of droplets with 
a size on the nanometer scale. They are kinetically stable 
but are not thermodynamically unstable. Thus, nanoemul-
sions are metastable systems whose stability depends on 
the preparation method. Either high-energy or low-energy 
emulsification methods can prepare nanoemulsions. High-
energy methods utilize high-shear stirring, high-pressure 
homogenizers, and ultrasonic generators, whereas low-
energy methods take advantage of the stored energy in the 
system to produce small droplets. Few reports have been 
published in which nanoemulsions have been applied in seed 



 Nano-Micro Lett. (2023) 15:5454 Page 20 of 37

https://doi.org/10.1007/s40820-023-01025-5© The authors

treatment. The physic mechanical and antifungal properties 
of neem oil nanoemulsion for soybean seed coating were 
studied by Silva et al. [163]. A neem oil emulsion inhib-
ited the growth of fungus A. flavus and Penicillium citrinum 
[164–166]. Soybean seeds coated with this nanoemulsion 
showed positive results in the germination process. These 
new materials have the potential to be used as seed coatings 
because of their fungicidal properties derived from Neem 
oil nanoemulsions. Acharya et al. [122] developed a tur-
meric oil nanoemulsion. This nanoemulsion was success-
fully used to prime the watermelon seeds of two types of 
diploids (riverside) and three types of triploids (maxima) 
using agro-industrial by-products. A new nanoemulsion of 
eucalyptus oil was developed by Adak et al. [167] to treat 
two major storage insects (S. oryzae (L.) and Tribolium cas-
taneum (Herbst) of rice. Compared to eucalyptus oil, their 
nanoemulsions were superior, and they can be recommended 
as a safe, non-toxic alternative to harmful chemical pesti-
cides. This small number of studies prompted a willingness 
to study nanoemulsion development more closely, to design 
future seeds that contain pesticides or fertilizers.

4.7  Nanoclay

The nutrient-rich nature of clay-containing soils and their 
ability to retain water make them valuable soils. A nano-
clay, also known as layered silicates, is a widely used and 
studied nanoagent to prepare nanocomposites. A few of the 
advantages of nanoclays are their widespread availability, 
easy processing ability, high performance, and low cost. 
Nanoclay is prepared through a mixing technique in which 
nanoflakes are dispersed in aqueous media under laminar 
and turbulent flow conditions. Nanoclay helps deliver micro-
nutrients for crop improvement; it is also used to encapsulate 
pesticides in nanomaterials for controlled release, stabiliz-
ing biopesticides with nanomaterials [168]. Nanoclay has 
been shown to reduce water usage by up to 50%. Nuruz-
zaman et al. (2021) [169] studied the ability of organically 
modified montmorillonite nanoclay to deliver imidacloprid. 
Taking into account the imidacloprid release pattern from 
the montmorillonite nanoclay, it can be used as a compo-
nent in a formulation for a slow-release pesticide where the 
nanoclay will minimize the instantaneous release of total 
pesticide. Wang et al. [170] improved the dispersion of nano-
clay by incorporating biochar and biosilica to reduce the 

loss of pesticides. Prepared nanoclay, when added to the 
pesticide, could effectively increase its adhesion, resulting 
in a decreased loss of pesticide and reduced pollution risk. 
Nanoclay application for seed treatment has not received 
much attention from the scientific community. The potential 
use of nanoclay in seed coating or pesticide delivery in seeds 
needs to be explored.

4.8  Nanosuspension

Nanosuspension forms from the dispersion of crystalline or 
amorphous nanoparticles of the active ingredients in a liquid 
medium. Nanosuspension preparation has been carried out 
using several methods, including wet milling, high-pressure 
homogenization, emulsification, and solvent evaporation. 
The nanosuspension enhances the solubility and bioavail-
ability of nonsoluble compounds. For this reason, nanosus-
pension is being considered a possible seed treatment agent 
in the near future [171]. Zhu et al. (2021) [172] developed 
a simple method to prepare agrochemical nanosuspensions 
that combined high concentrations, eco-friendly excipients, 
and an intensified preparation process to enhance potency. 
This study shows that flash nanoprecipitation significantly 
increases the biological potency of agrochemical nanosus-
pension and reduces their dosage, demonstrating a consid-
erable benefit over traditional preparation methods [173]. 
Corrias et al. [174] evaluated nanosuspention of zoxamide 
to improve the solubility of zoxamide and reduce the accu-
mulation and its retention of zoxamide in tomato seeds. The 
results clearly suggest that nanosuspensions may represent 
a promising alternative to using poorly soluble pesticides 
in agriculture. Cui et al. (2019) [175] presented an easy-
to-use method of constructing pesticide nanosuspensions 
through wet milling that improved pesticide (abamectin) 
bioavailability. Using the highly effective nanoformulation 
will improve pesticide efficacy, reduce pesticide dosage 
and reduce environmental pollution. As a demonstration of 
the potential applications of this system, a formulation was 
made with carbofuran, a poorly soluble crystalline insecti-
cide. It was found that the nanosuspension system was physi-
cally and chemically stable after two years. In all the reports, 
the effectiveness of nanosuspension in the development of 
agrochemicals has been demonstrated. The liquid nature 
of nanosuspension makes it useful for seed priming, seed 
soaking, and seed coating [176]. Nanosuspension should be 
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explored for seed treatment, as it may benefit seed storage 
and germination.

5  Challenges and Risk Assessment 
of Nanomaterials‑based Agrochemicals

Nanoparticle concentration is key in determining the cyto-
toxic and genotoxic effects in seed treatment studies, which 
may vary by agro seed species. Various nanoparticle diam-
eters can enter the nucleus via nuclear pores, indicating that 
nanoparticles interact with cell components based on their 
size. Nanoparticles might also disrupt cell cycle checkpoints, 
enter the cell through mechanical or chemical contact with 
enzymes that generate reactive oxygen species (ROS), or 
interfere with cell division mechanisms by binding to pro-
teins and inhibiting protein synthesis. While designing 
seed treatments using nanomaterials, it is important to con-
sider the properties of nanomaterials, such as size, doses, 
exposure times, surface chemistry, structures, immune 
responses, accumulations, and other effects to control the 
toxicity [177]. Nanomaterials can also enter the environment 
and soil systems through seed treatment strategies (Fig. 5). 
Therefore, nanoparticle exposure to seed treatment must 

be critically assessed and managed in the nanoagricultural 
field. Research in human and eco-toxicology can provide 
insight into the complex relationship between the agroen-
vironment, nanoscale agrochemicals, and human exposure 
levels [177]. There is an impasse in nanotoxicology regard-
ing how best to assess the risk of nanomaterials-based agro-
chemicals for environmental monitoring and human health 
[178]. Toxicology testing can be performed on live (in vivo) 
organisms, such as microcrustaceans, fishes, mice, other ani-
mals and plant models or on cell cultures (in vitro) [179, 
180]. Moreover, computational models like quantitative 
structure–activity relationship provide a lot of potential for 
understanding the possible toxicity effects of nanomaterial-
based agrochemicals on humans and the environment [181, 
182]. However, until now, the toxicity of nanomaterial-based 
agrochemicals is not evaluated according to any standards, 
making it difficult to compare the results and reach a con-
sensus on their toxicity [78]. There are no standard methods 
for evaluating nanomaterial-based agrochemicals, as they 
can present a range of physicochemical properties. So far, 
most studies have been adapted from standard methods for 
other substances like drugs, synthetic chemicals, etc. Vari-
ous assays have been proposed, but there is still no standard 

Fig. 5  Possible risks associated with nanoagrochemicals-based seed treatments (nanomaterials which made their way into wastewater and soil 
can contaminate water resource and increases soil pollution. A wide range of soil microbiomes and their nitrogen fixation, mineralization, and 
plant growth-promoting processes may adversely impact by nanomaterials. A nanomaterial can enter the body of an aquatic organism and live-
stock can seep into water bodies and enter the food chain and ultimately effecting the human health)
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protocol. As of now, governments of all nations have not 
adopted a fixed toxicity regulation strategy for nanoparticle 
used to assess human and animal health, safety, and ecologi-
cal impacts.

In the present state of knowledge, the mechanisms of 
toxicity of nanomaterial-based agrochemicals to plants are 
largely unknown [183], and little information exists about 
how nanoagrochemicals might enter seeds, plants and where 
they may end up in the food chain [184]. However, a few 
studies have tried to unravel the toxicity effects and mecha-
nisms of different nanoparticle treatments on seeds and 
plants. A phytotoxicity evaluation method was conducted 
on seeds of Allium cepa, Z. mays (maize), Cucumis sativus 
(cucumber) and Lycopersicum esculentum (tomato) exposed 
to nanoparticles [185]. In vitro studies on seeds and seed-
lings were conducted to determine cytotoxicological effects 
such as mitotic index, chromosomal aberrations, vagrant 
chromosomes, sticky chromosomes, disturbed metaphase, 
breaks, apoptosis, and micronuclei formation. Phytotoxicity 
endpoints can be evaluated through in vitro and in vivo stud-
ies that expose seed systems to different nanoparticle disper-
sion concentrations to evaluate germination rate, root/shoot 
length, adsorption, accumulation, and translocation of the 
nanoparticles [186, 187]. The toxicity of many nanoparticles 
was assessed using biochemical studies on protein expres-
sion analysis, DNA consistency after nanoparticle treatment, 
and enzyme levels in seeds, seedlings and plants [188]. Seed 
structure and toxicity effects can be studied with advanced 
microscopic techniques like electron microscopy. They can 
reveal nanotoxicity by using focused electron beams rather 
than visible light. These approaches can better understand 
the risks associated with nanomaterials and their products 
before using them directly on the field for seed treatment. 
Plant model organisms such as Arabidopsis are useful for 
genetic experiments because it has several important char-
acteristics such as a short generation time, small size, and 
prolific seed production through self-pollination. Arabidop-
sis is useful in toxicity testing of nanomaterials to analyze 
the mutations, accumulation and translocation, physiological 
responses, and oxidative stress generation during the inter-
action of nanomaterials [189]. An assessment of nanotoxic 
effects of nanoagrochemicals on seed germination and plant 
growth can be performed with the help of phytotoxicity 
assays and advanced microscopic techniques.

A plant or seed treated with nanomaterials may produce 
antimicrobial secondary metabolites as a defense against 

various plant pathogens. Plants can benefit from agrona-
nochemicals to an extent because they can improve their 
overall disease resistance. There is a possibility that plants 
raised with nanomaterial-treated seeds will produce phy-
toestrogens. A phytoestrogen is a plant-produced bioactive 
secondary metabolite that plays an integral role in plant 
defenses and accumulates during times of stress or infec-
tion. This phytoestrogen is highly toxic to the human body 
as considered as endocrine disruptors. It interferes with 
hormone regulation in the reproductive system, leading to 
infertility and abnormal estrus cycles in women. In addi-
tion, there is little evidence that phytoestrogens have harmful 
effects on humans, but the use of risk assessment strategies 
to monitor crops raised from nanoagrochemical treated seeds 
is necessary before its consumption. As a safety precaution, 
phytoestrogens can be detected using a Sciex API III heated 
nebulizer atmospheric pressure chemical ionization interface 
coupled with tandem mass spectrometry.

It is well established that nanomaterials considerably 
impact the soil microbiome, including their abundance, 
diversity, and essential microbial processes, such as nitrogen 
fixation, mineralization, and plant growth-promoting activi-
ties [190, 191]. Studying the nanomaterial’s toxicity in soil 
and the influence of soil properties can also provide insight 
into the role of nanomaterials in soil pollution. An adverse 
effect of nanomaterials on soil microbiota can occur when 
they interact with the soil. The negative effects of most nano-
particles in soil are due to higher doses and mainly affect 
the enzymatic activities of soil microorganisms. Nanopar-
ticles can inhibit critical steps in nutrient recycling such as 
ammonification, denitrification, nitrogen fixation, phos-
phate solubilization, and plant growth-promoting activities, 
all crucial for maintaining soil fertility and the ecosystem 
[192]. Zhang et al. [193] observed that silver nanoparticles 
changed the pH of soil and adversely affected soil micro-
organisms involved in nitrogen, carbon, and phosphorus 
cycles. Another study by Li et al. [194] found that soils 
amended with silver nanoparticles reduced seed develop-
ment and caused silver bioaccumulation. Nanoparticles of 
other metallic metals, such as titanium and zinc, have been 
found to have adverse effects on the soil microbiota based on 
concentration and exposure duration [195, 196]. In a study 
by Rahman et al. [197], platinum nanoparticles stabilized 
with poly(vinylpyrrolidone) caused adverse effects on pea 
root microbiota, with a decrease in mycorrhizal fungi and 
rhizobia [198]. Using the soil metagenomic technique, it is 
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possible to uncover the interactions and toxicity of different 
nanomaterials with the soil microbiome. In soil metagen-
omics, a nanomaterial-treated soil cultivation-independent 
molecular approach can be used to explore and exploit the 
immense diversity of soil microbial communities [191]. 
In this technology, soil microbiome DNA is isolated, and 
clone libraries are produced and screened. The nitrogen, 
carbohydrate, and phosphorus cycles are of high environ-
mental importance, and nanomaterials appear to interfere 
with them. Nitrogen is fixed by urease, which converts urea 
into carbon dioxide and ammonia. Nanomaterials have been 
reported to reduce enzyme activity in several studies. An 
assessment of urease activity and its reduction in response 
to nanomaterials can also indicate reduced rhizospheric 
microbes [199].

It is possible for nanomaterial-based agrochemicals can 
seep into water bodies and enter the food chain (bioaccu-
mulation) [40]. Many industries are interested in scaling up 
nanomaterials and nanomaterial-based agriproducts. Efflu-
ents from industrial plants contain nanomaterials that can 
contaminate water bodies. A nanomaterial may enter the 
body of an aquatic organism if it is disposed of in water and 
interfere with its physiology and feeding. A toxicology test 
can be used to evaluate the effects of nanomaterials or nano-
material-based products on aquatic organisms. A toxicology 
test can be used to assess the potential for damage to aquatic 
environments and provide a database of information that can 
be used to assess the risk associated with using nanomateri-
als in a specific situation [42]. A common standard test spe-
cies like fathead minnow (Pimephales promelas), the daph-
nids (Daphnia magna, D. pulex, D. pulicaria and C. dubia), 
the rainbow trout (Oncorhynchus mykiss), the sheepshead 
minnow (Cyprinodon variegatu), the zebra fish (Danio 
rerio), mysids are used commonly as a model organism to 
assess the risk of nanomaterials to examine the aquatic tox-
icity for in vivo studies [200–202]. Studying the genotoxic-
ity effects and physiological responses of aquatic animals 
exposed to nanomaterials is possible through in vivo assays. 
Assays in vivo can provide information about hemocom-
patibility, immune response, histological profiling, protein 
analysis, and gene expression. In vitro assays (Cytotoxicity 
and cell viability assays) can also be used to determine the 
acute toxicity of nanomaterials on fish hepatoma and juve-
nile rainbow trout cell lines [203]. This approach will allow 
us to assess nanoagrochemical’s toxicity on aquatic organ-
isms. Another novel, a new generation of nano-quantitative 

structure–activity/structure–property relationship tools for 
toxicity assessment, is examined. These tools are analyzed, 
including modeling methods and validation procedures, to 
evaluate whether these tools meet the current requirements 
for approving nanoformulations.

The applications of nanoagrochemicals also face major 
challenge due lack of fields data. The increasing reports on 
the applications of nanoagrochemicals have not encouraged 
the translation of laboratory data on field data. The reason 
can be the inadequate level of knowledge about nanoagro-
chemicals to enable reliable assessments of their risk. Sev-
eral studies have investigated the fate of nanoagrochemicals, 
but hazard consequences cannot be determined adequately 
using protocols developed for other chemicals [204, 205]. 
Data insufficiencies result in some significant uncertainties 
related to environmental and consumer safety, essential to 
creating public confidence in products. It is paramount to 
answer several critical questions regarding the current state 
of uncertainty before being tried for field trials [205]. How-
ever, it is important to note that due to the uncertainty of 
regulatory frameworks as well as differing opinions globally, 
nanoagrochemical-based products for agricultural benefits 
are not flourishing and facing difficulties in reaching the mar-
ket for field trials. The applications of nanoagrochemicals 
face major challenges due to emphasis on the sustainable 
development. Considering the United Nations Sustainable 
Development Goals 2030, it becomes increasingly impor-
tant to use sustainable nanoagrochemicals in agricultural 
crop production to ensure compliance with regulation and 
consumer acceptance. The objective of sustainable nanoa-
grochemicals is to maximize their functional and economic 
performance while minimizing their adverse effects on the 
environment and human health [206]. Sustainable nanoagro-
chemicals (nanofertilizers, nanopesticides, nanoinsecticides 
etc.,) were prepared using green chemistry principles and 
encapsulated or coated by natural or biodegradable poly-
meric materials [207]. In order to achieve sustainability, it 
is crucial to integrate fundamental science (e.g., materials 
synthesis, characterization, and modeling) with engineering 
research (e.g., system design, fabrication, and testing) [208]. 
Hence, the application of sustainable nanoagrochemicals in 
the field cannot be judged based on a few studies, and to 
maximize their potential, sustainability nanoagrochemicals 
must be integrated into larger interdisciplinary research pro-
grams and/or government-funded research and development 
centers.
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The successful application of nanotechnology in agro 
seed treatment products requires a comprehensive and 
effective strategy and coordinated risk management. It 
is important to consider the toxicological assessment 
of nanomaterials in seed treatment as a fundamental 
step toward identifying hazards related to applications 
of nanomaterials in the agro seed sector. A number of 
agronano products (Table 3) are now available on the 
commercial market [209], and efforts are being made 
worldwide to address and regulate the production and 
use of nanomaterials, either through legislation or by 
recommendations and guidance [76]. Governments and 
scientific organizations widely recognize the importance 
of nanomaterials-risk management in the agrochemical 
sector. Nanoagrochemicals can be considered a milestone 
in collaborative discussion, and information exchange 
forums are needed to ensure threat mitigation [210]. The 
combined efforts of governmental organizations, scien-
tists, and social communities are required to prevent the 
adverse effects of nanoagrochemicals on humans and 
the environment. To successfully implement this nano-
technology within the profit margins for seed treatment, 
they must be capable of balancing system costs and ben-
efits. For nanomaterials to be commercially useful, they 
must undergo extensive screening and optimization pro-
cesses according to different seed types. A nanoscale 
seed treatment chemical must be developed with a simple 
handling process, low cost, sharp release system, and a 
high degradation rate. Seed treatments must overcome 
the major barriers to commercialization, poor dem-
onstration of nanoscale products in field conditions, 
cost-effectiveness, consumer acceptance, and technical 
feasibility. A lack of public awareness campaign, incon-
sistency of the legal framework, and inconsistency of 
the regulatory framework affect the marketing of such 
nanoagrochemical products. Regulatory guidelines and 
frameworks are becoming increasingly important to 
resolve emerging issues associated with nanoscale agro-
chemicals. Nanoscale agrochemicals can undoubtedly 
alleviate many concerns caused by implementing routine 
agrochemicals, but more testing is necessary to lower 
agroecological risks. Innovative monitoring applications 
make it impossible for sustainable seed development and 
pollution control to be improved without creating nano-
particle contamination as a new hazard [211].
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6  Conclusions and Future Perspective

Nanotechnology can be applied to nanoagrochemical 
delivery to improve the efficacy of seeds, reduce environ-
mental pollution, support the sustainability of agricultural 
systems, and improve food security. By reducing the con-
centration of pesticides and fertilizers applied to the land, 
nanoagrochemical seed treatments increase the precision 
and effectiveness of seed protection products. In agro seed 
treatment, nanocarriers with controlled delivery can offer 
several advantages over conventional chemical delivery 
systems for sustainable agriculture, including biocompat-
ibility, biosorption rate, low synthesis costs, thermo-plas-
ticity, and ease of biodegradation. Developing nanoscale 
materials like nanocapsules, nanogels, nanofibers, nano-
clay, and nanosuspensions can be used to design next-gen-
eration seed treatment strategies. More international and 
national risk assessment and management strategies need 
to be developed to achieve successful implementation. At 
last, we can conclude that using nanoscale products or 
formulations for agro seed treatments is essential for rais-
ing crops, and they have a pivotal role in sustainable crop 
production that cannot be ignored.

It is unclear what molecular mechanisms are responsi-
ble for the changes affecting seeds during and after treat-
ment with nanoagroproducts. To understand the mecha-
nism, further research is needed in the areas of genomic, 
proteomic, and metabolic to unreveal the effect of nano-
formulations on seed responses. If we learn more about 
how nanoscale seed treatment works, we might be able 
to develop a viable seed processing technology. Future 
research should consider several factors to develop nanoa-
grochemicals for an advanced seed treatment; agrochemi-
cal parameters at the nanoscale should be optimized to 
achieve a reproducible and beneficial effect from seed 
treatment. Delivering the nanoagrochemicals to the right 
place and calculating the correct dose are challenging. 
When the parameters of nanoagrochemicals are optimized, 
it is possible to apply them to seeds so that significant 
treatment effects can occur. An appropriately responsive 
strategy and coordinated risk management are required 
to achieve nanotechnology’s positive effects in agro seed 
products. To identify the risks associated with nanoma-
terials used in seed treatment, conducting a toxicological 
assessment of those nanomaterials is crucial to answer 

their environmental issues. Research involving humans 
and eco-toxicology can help us understand how agroeco-
systems, nanoscale agrochemicals, exposure levels, and 
human beings interact. Nanoagrochemicals must be further 
investigated for agroecological toxicity and their mecha-
nistic application.
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