Skip to main content
. 2023 Feb 16;15:54. doi: 10.1007/s40820-023-01025-5

Table 2.

An overview of the nanoparticle systems used in seed priming and coating, their characteristics, and their main effects on different seed species

Type of nanomaterial Size in nanometers Concentrations for seed treatment Seed type Key findings References
Zinc oxide 20–30 nm 25–100 ppm Wheat (T. aestivum L.) Reduce cadmium uptake [105]
15–52 nm 5–200 ppm Rice (O. sativa L.) Improved biofortification [229]
35–40 nm 750–1250 mg/kg Chili (C. annuum L.) High antimicrobial activity [230]
40 and 60 nm 1–5000 ppm Common bean (P. vulgaris L.) Improved biomass [98]
21.3 nm 20–60 mg/L Lupin (Lupini stermis L.) High salinity resistance [99]
32 nm 50–500 ppm Pearl millet (Pennisetum glaucum L.) Antimicrobial resistance [100]
Iron 50 nm 10–500 ppm Sorghum (S. bicolor (L.) Moench) Increased water content in leaves [91]
19–30 nm 20–160 ppm Watermelon (Citrullus lanatus (Thunb.) Matsum and Nakay varieties) Increased the activity of plant growth regulator [231]
6–20 nm 30 µg/mL Rice (O. sativa L.) High antimicrobial activity [93]
80 nm 25–1000 µg/mL Wheat (T. aestivum L.), types WL711 (low-iron genotype) and IITR26 (high-iron genotype) Increased harvest yield [95]
33.8 ± 3.59 nm 10–160 mg/L Rice (O. sativa L.) Improved water uptake [72]
25–100 nm 50 µg/mL Rice (O. sativa L.) Improved enzymatic activity [71]
20–30 nm 20–40 ppm Wheat (T. aestivum L.) seeds of varieties galaxy-13, Pakistan-13, and NARC-11 It develops abiotic stress resistance in wheat [103]
Manganese (III) oxide 50 nm 0.1–1 mg/mL Jalapeño (C. annuum L.) Salinity resistance development [105]
Copper 25, 40, and 80 nm 1–1000 mg/L Common bean (P. vulgaris L.) High concentrations showed toxic effects on seed germination [102]
15–30 nm 20–40 ppm Wheat (T. aestivum L.) seeds of varieties galaxy-13, Pakistan-13, and NARC-11 Abiotic stress resistance development [102]
Platinum 3.2 ± 0.8 nm Concentrated solution at 1.0 mM Pea (P. sativum L.) Decreased microorganism’s colonization [198]
Carbon 13–14 nm 70 µg/mL Wheat (T. aestivum L.) Improved harvest [232]
Molybdenum 35–50 nm 10 mg/L Chickpea (C. arietinum L.) Increased antioxidant enzymes and harvest [233]
Silver 6–26 nm 10 and 20 mg/mL Rice seeds (O. sativa L. cv. KDML 105) Increased aquaporin gene expression [119]
11.6 ± 2.40 nm 31.3 µg/mL Onion (A. cepa L.) Potentially increased biochemical activity [120]
10–35 nm 0–50 mg/L Wheat seeds (T. aestivum L.) Increased seed and seedlings vigor [121]
5–30 nm 10–50 µg/mL Soybean (G. max (L.) Merr.) Potential antimicrobial activity [123]
Gold 10–30 nm 5–15 ppm Maize (Z. mays L.) Improved seed and seedlings vigor [124]
93.68 ± 2.06 nm 31.3 µg/mL Onion (A. cepa L.) Improved seed and seedlings vigor [66]
Silica 90 nm 300–1200 ppm Wheat (T. aestivum L.) Reduced cadmium uptake [234]
 ~ 100 nm 2 mg/mL Pea seeds (P. sativum L.) Improved seed and seedlings vigor [18]
Chitosan 259.4 ± 4.7 nm 1–100 µg/mL Wheat (T. aestivum L.) Increased plant growth regulator (auxin) [235]
95 ± 2 nm 20 µg/L Common bean (P. vulgaris L.) Increased ROS levels [69]
122 nm 0.05–0.2% Rice (O. sativa L.) Potential antimicrobial activity [129]
560 nm 0.1% Chickpea (C. arietinum L.) Improved activity of plant growth regulator [236]
450 ± 10 nm 0.05–0.0005 mg/mL Tomato (S. lycopersicum var. cerasiforme) Improved harvest yield [237]
400 nm 250 mg/kg Pearl millet (P. glaucum) Improved plant growth regulators [132]
374.3 ± 8.2 nm 0.01–0.16% w/v Maize seeds (Z. mays L.) Improved seed and seedlings vigor [133]
387.7 ± 4 nm 0.01–0.16% w/v Maize seeds (Z. mays L.) Development of biotic resistance and improved harvest yield [101]
Lignin 200–250 nm 0.5, 1, and 1.5 mg/mL Arugula (Erucavisicaria L.) Cav. subsp. sativa), tomato (S. lycopersicum L. cv. Ciliegino), and chickpea (C. arietinum L.) Improved seed and seedlings vigor [137]