Table 1.
Superfamily | Family | Protein | Bacteria | References |
---|---|---|---|---|
CDF | CDF | MntE1 | Streptococcus pneumoniae | (Rosch et al., 2009) |
MntE | Streptococcus suis | (Xu et al., 2017) | ||
MntE | Streptococcus pyogenes | (Turner et al., 2015) | ||
MntE | Staphylococcus aureus | (Grunenwald et al., 2019) | ||
MntE | Deinococcus radiodurans | (Sun et al., 2010) | ||
MntE | Enterococcus faecalis | (Lam et al., 2020) | ||
MneP2 | Bacillus subtilis | (Huang et al., 2017) | ||
MneS2 | Bacillus subtilis | (Huang et al., 2017) | ||
EmfA3 | Rhizobium etli | (Cubillas et al., 2014) | ||
EmfA3 | Brucella abortus | (Johnsrude et al., 2019) | ||
YiiP4 | Salmonella Typhimurium | (Ouyang et al., 2022) | ||
SmYiiP | Sinorhizobium meliloti | (Raimunda and Elso-Berberián, 2014) | ||
LysE | LysE (DUF204) | MntP | Escherichia coli | (Waters et al., 2011) |
YebN | Xanthomonas oryzae | (Li et al., 2011) | ||
MntX | Neisseria meningitidis | (Veyrier et al., 2011) | ||
MntX5 | Neisseria gonorrhoeae | (Veyrier et al., 2011) | ||
MntP4 | Salmonella Typhimurium | (Ouyang et al., 2022) | ||
UPF0016 | Mnx | Synechocystis sp. | (Brandenburg et al., 2017) | |
MneA | Vibrio cholerae | (Fisher et al., 2016) | ||
MneA | Vibrio fischeri | (Zeinert et al., 2018) | ||
MneA | Streptomyces sp. | (Zeinert et al., 2018) | ||
TerC | YceF2 | Bacillus subtilis | (Paruthiyil et al., 2020) | |
YkoY2 | Bacillus subtilis | (Paruthiyil et al., 2020) | ||
P-type ATPase | P-type ATPase | CtpC | Mycobacterium tuberculosis | (Padilla-Benavides et al., 2013) |
PII-type ATPase | MgtA1 | Streptococcus pneumoniae | (Martin et al., 2019) | |
Ca2+:cation exchanger | YRBG | BP34106 | Bordetella pertussis | (Capek et al., 2021) |
BPP35607 | Bordetella parapertussis | (Capek et al., 2021) |
1The export of Mn2+ is primarily controlled by MntE. MgtA exports both Ca2+ and Mn2+ under conditions of extreme Mn2+ toxicity induced by a specific genetic background.
2MneP and MneS are primary exporters. The effect on suppression of manganese toxicity of YceF and YkoY is detectable only in the ΔmneP and ΔmneS double deletion mutant. Intriguingly, Alx, a TerC family protein from E. coli, does not appear to act as an exporter, although it is under the control of the Mn-sensing riboswitch. Indeed, expression of Alx in the presence of manganese leads to increased levels of intracellular manganese (Zeinert et al., 2018).
3EmfA represent a transporter responsible for efflux of Mn2+ and Fe2+. While R. etli EmfA exports both Mn2+ and Fe2+, B. abortus EmfA exports only Mn2+.
4MntP was induced by iron and manganese, whereas YiiP levels remained unchanged. Deletion of both genes had additive effects when S. Typhimurium was challenged by excessive manganese, suggesting a scalable response.
5In the case of N. gonorrhoeae, most strains carry a frameshift mutation in the mntX gene.
698% of fully sequenced isolates of B. pertussis carry an inhibitory duplication that prevents the export activity of the Mn exporter BP3410.
7All but one isolate Bpp5 carry a frameshift mutation in the Mn exporter BPP3560.