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Abstract 

Background  Microbiomes are now recognized as the main drivers of ecosystem function ranging from the oceans 
and soils to humans and bioreactors. However, a grand challenge in microbiome science is to characterize and quan‑
tify the chemical currencies of organic matter (i.e., metabolites) that microbes respond to and alter. Critical to this has 
been the development of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has drasti‑
cally increased molecular characterization of complex organic matter samples, but challenges users with hundreds of 
millions of data points where readily available, user-friendly, and customizable software tools are lacking.

Results  Here, we build on years of analytical experience with diverse sample types to develop MetaboDirect, an 
open-source, command-line-based pipeline for the analysis (e.g., chemodiversity analysis, multivariate statistics), 
visualization (e.g., Van Krevelen diagrams, elemental and molecular class composition plots), and presentation of 
direct injection high-resolution FT-ICR MS data sets after molecular formula assignment has been performed. When 
compared to other available FT-ICR MS software, MetaboDirect is superior in that it requires a single line of code to 
launch a fully automated framework for the generation and visualization of a wide range of plots, with minimal cod‑
ing experience required. Among the tools evaluated, MetaboDirect is also uniquely able to automatically generate 
biochemical transformation networks (ab initio) based on mass differences (mass difference network-based approach) 
that provide an experimental assessment of metabolite connections within a given sample or a complex metabolic 
system, thereby providing important information about the nature of the samples and the set of microbial reactions 
or pathways that gave rise to them. Finally, for more experienced users, MetaboDirect allows users to customize plots, 
outputs, and analyses.

Conclusion  Application of MetaboDirect to FT-ICR MS-based metabolomic data sets from a marine phage-bacterial 
infection experiment and a Sphagnum leachate microbiome incubation experiment showcase the exploration capa‑
bilities of the pipeline that will enable the research community to evaluate and interpret their data in greater depth 
and in less time. It will further advance our knowledge of how microbial communities influence and are influenced 
by the chemical makeup of the surrounding system. The source code and User’s guide of MetaboDirect are freely 
available through (https://​github.​com/​Coaya​la/​Metab​oDire​ct) and (https://​metab​odire​ct.​readt​hedocs.​io/​en/​latest/), 
respectively.
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Background
Microorganisms play crucial roles in a host of fundamen-
tal ecological processes and are needed for maintaining a 
healthy global ecosystem [1, 2]. They are responsible for 
the mobilization, transformation, and storage of natural 
organic matter (NOM)—the complex mixture of organic 
compounds present within any system—thus driving the 
cycling of elements essential for life (e.g., carbon, nitro-
gen, sulfur) [2–5]. Microorganisms further contribute to 
the NOM pool, especially the dissolved organic matter 
(DOM) pool, in both aquatic and terrestrial systems [3, 
6]. Environmental conditions such as temperature, and 
water availability can strongly influence the microbial 
community structure and function and thus its interac-
tion with NOM [7, 8].

Microorganisms are capable of directly assimilating 
low molecular weight DOM (< 600 Da) for their meta-
bolic processes, while also producing microbial-derived 
products and residues that become integral components 
of NOM such as proteins, polysaccharides, and cell wall 
polymers [9]. The quantity and the quality of OM in a 
given ecosystem are dependent on its microbiome com-
position and the environmental conditions present in 
that system. They are also dependent on several micro-
bial regulatory processes, such as transcription, transla-
tion, protein interactions, and their interactions with the 
biotic and abiotic components of the system [10–14]. 
Characterizing OM molecular composition is therefore 
vital for understanding the role that microorganisms play 
in all major element biogeochemical cycles and can con-
stitute an important predictor of the response of the bio-
logical systems to environmental perturbations [8, 15].

Natural organic matter is a complex mixture of 
organic compounds whose size, and other molecu-
lar properties are perceived as a continuum [16, 17]. 
Because separating and analyzing each component 
of the NOM is not completely possible, resolving the 
components of this mixture requires the use of the 
substance-specific, molecular-level order mass spec-
tra residing in the (sub)millimass space (mDa), which 
cannot be accessed by low-resolution mass spectrom-
eters [16]. However, advances in analytical mass spec-
trometry techniques and in particular the introduction 
of high-resolution mass spectrometry (HR-MS) in the 
last 20 years have allowed for high-precision formula 
assignment of diverse organic compounds based on 
ultra-high mass accuracy and have led to more sensi-
tive, selective, robust, and repeatable analyses [16–18]. 
Thus, FT-ICR MS has evolved during the past two 

decades into a powerful tool to study the molecular 
composition of small-molecule organic complex mix-
tures (e.g., DOM in ocean waters and soil organic mat-
ter (SOM)) in diverse ecosystems [18].

One analytical approach using FT-ICR MS is direct 
injection mass spectrometry (DI-MS), which involves 
the introduction of liquid samples directly into the 
mass spectrometer without an attached fractionation 
step. This technique considerably reduces the analysis 
time, as it is amenable to the use of auto sample han-
dlers, allowing to process hundreds of samples per day. 
Even though DI-MS has ample coverage and can detect 
a wide range of compounds (e.g., lipids, sugars, amino 
acids, or lignin), some drawbacks are its inability to 
separate chemical isomers, lack of fine resolving power, 
and most importantly signal suppression or enhance-
ment that can confound downstream data analysis due 
to ion suppression caused by the injection of all com-
pounds together at the same time [19]. Nonetheless, 
the use of direct infusion FT-ICR MS (DI FT-ICR MS 
or just FT-ICR MS) can provide a comprehensive over-
view of the molecular profile of the NOM and a base-
line to understand how biological systems respond to 
changes in the biotic or abiotic factors acting upon 
them. A wide range of studies have used FT-ICR MS as 
a powerful tool to characterize NOM changes in envi-
ronmental samples [20–23] and its use continues to 
increase every day.

Numerous tools for signal processing and assign-
ment of molecular formulas of raw FT-ICR MS  data 
exist. They include proprietary tools but also open-
source software such as Formularity [24] and most 
recently CoreMS [25], which provides a comprehensive 
software framework, including signal processing and 
sample-agnostic molecular formula assignment. Signal 
processing and molecular formula assignment steps 
will ultimately produce large data matrices containing 
the elemental composition and measured abundance 
of the peaks present in each sample. These large data 
sets often require specialized data analysis pipelines 
for filtering, interrogation, comparison, and visualiza-
tion [26]. Open-source software and pipelines available 
for the analysis and visualization of FT-ICR MS data 
include web-based applications such as UltraMassEx-
plorer (UME) [27], FREDA [28], MetaboAnalyst [29], 
and DropMS [30]. Even though the graphic user inter-
face (GUI) of these software packages is user-friendly, 
these types of software can be very restrictive in their 
use and do not allow users to fully customize their 
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analysis to their research needs. Other more program-
ming-friendly software packages include the visualiza-
tion tools i-van Krevelen [31] and OpenVanKrevelen 
[32] and the more comprehensive data analysis tools 
PyKrev [33] and ftmsRanalysis [26]. These approaches 
however require users to be competent in coding and 
programming in either R (for ftmsRanalysis) or Python, 
which further limits their usefulness for researchers 
without those skills. Thus, despite the broad availabil-
ity of software packages for the analysis of FT-ICR MS 
data, they often incur in a compromise between flexi-
bility/customizability and user-friendliness that we aim 
to address with MetaboDirect by making it a fully auto-
mated pipeline capable of easily generating all the fig-
ures, plots, and analysis that are commonly used by the 

scientific community to visualize, analyze, and inter-
pret FT-ICR MS data sets (Table 1).

Here, we introduce MetaboDirect, an easy-to-use, 
command-line-based pipeline for the analysis of direct 
injection FT-ICR MS-based metabolomic data col-
lected from diverse ecosystems (soil, river, plants, bac-
terial cultures, etc.), which combines the easy usage of 
the web-based applications with the flexibility and cus-
tomizability of the more programming-friendly software 
currently available. MetaboDirect was designed to facili-
tate data exploration, data visualization, chemodiversity, 
and statistical analysis of metabolomic profiles, as well 
as the generation of transformation networks based on 
mass differences. The pipeline accepts peak abundance 
and assigned molecular formula data produced after an 

Table 1  Comparison of the features of MetaboDirect with other available software for the analysis of FT-ICR MS-based metabolomics 
data sets

Abbreviations: DBE Double-bond equivalent, NOSC Nominal oxidation state of carbon, AI Aromaticity index, GFE Gibbs free energy
a Also available as the web-app FREDA[28]
b No coding experience is required to run MetaboDirect, but some experience in R is needed if fully customized plots are desired
c For LC-MS spectra
d MetaboAnalyst can construct and analyze networks, but the list of nodes and edges must be provided by the user and are not generated directly by their pipeline

Feature MetaboDirect MetaboAnalyst PyKrev ftmsRanalysis UME

Software appearance User interface Command line Web GUI Python module R packagea Web GUI
Platform Cross platform

Language Python, R R, Java Python R R

Coding knowledge required Minimalb No Yes Yes No

Open source ✔
Documentation ✔

Data pre-processing Raw spectra processing ✖ ✔c ✖ ✖ ✖
Mol. formula assignment ✖ ✔ ✖ ✖ ✔
Filtering and normalization ✔
Thermodynamic indices calcula‑
tion

✔
(DBE, GFE, AI, NOSC)

✖ ✔
(DBE, AI, NOSC)

✔
(DBE, GFE, AI, NOSC)

✔
(DBE)

Molecular class assignment ✔ ✖ ✔ ✔ No

Data Exploration Van Krevelen diagrams ✔ ✖ ✔ ✔ ✔
Molecular composition plots ✔ ✖ ✔ ✖ ✖
Thermodynamic indices plots ✔ ✖ ✔ ✔ ✔
Chemodiversity indices ✔ ✖ ✔ ✖ ✖
Pairwise comparisons ✔ ✖ ✖ ✔ ✖
Database mapping ✔ ✔ ✖ ✔ ✖

Statistical analysis PERMANOVA ✔ ✖ ✖ ✖ ✖
NMDS ✔ ✖ ✖ ✖ ✔
PCA ✔ ✔ ✔ ✖ ✖

Molecular trans-
formation network 
analysis

Transformation calculation ✔ ✖ ✖ ✖ ✖
Network construction ✔ ✖d ✖ ✖ ✖
Network Analysis ✔ ✖d ✖ ✖ ✖

Extras Customizable plots ✔ Limited ✔ ✔ ✖
Multiple grouping variables ✔

(up to 2)
✖ ✖ ✔ ✖
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initial processing of raw FT-ICR MS spectra or any other 
high-resolution MS technique. MetaboDirect is designed 
to run using a single line of code to automatically pro-
duce all the analyses, figures, and tables described in its 
documentation without requiring long computing times 
(0.5–2 min for the main MetaboDirect pipeline, but 
longer if transformation networks are calculated). To fur-
ther ease the access of MetaboDirect to scientists of all 
programming-skill levels, detailed information regard-
ing its functioning, and available options for data filtering 
and normalization methods is available through its User’s 
Guide (https://​metab​odire​ct.​readt​hedocs.​io/​en/​latest/).

In this manuscript, we showcase the use and outputs 
of MetaboDirect through the analysis of two FT-ICR 
MSdata sets. The first metabolomics data set was gen-
erated from an established, ecologically relevant marine 
phage-host model system [34–36] designed to study new 
virus-host-nutrient interactions and their impact on the 
composition of bacterial metabolites [37]. The second 

metabolomics data set was obtained from a study that 
aimed at elucidating plant leachate, in particular Sphag-
num fallax leachate, degradation pathways and bio-
chemical transformation in the presence and absence of 
microorganisms [12].

Implementation
The MetaboDirect pipeline
The MetaboDirect pipeline was developed in Python 3.8 
[38] and R 4.0.2 [39] and is available to install through the 
Python Package Index (https://​pypi.​org/​proje​ct/​metab​
odire​ct/). It requires the Python dependencies NumPy 
[40], pandas [41, 42], seaborn [43], py4cytoscape, and 
matplotlib [44]. This software is compatible and has been 
tested to function on Windows, Linux, and MacOS. The 
full documentation for the pipeline can be found on 
its ReadTheDocs webpage: https://​metab​odire​ct.​readt​
hedocs.​io.

Fig. 1  Workflow steps in the MetaboDirect pipeline. The MetaboDirect pipeline consists of six main steps for the analysis of FT-ICR MS data. At each 
step, several tables and plots will be generated automatically based on the users’ input

https://metabodirect.readthedocs.io/en/latest/
https://pypi.org/project/metabodirect/
https://pypi.org/project/metabodirect/
https://metabodirect.readthedocs.io
https://metabodirect.readthedocs.io
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The MetaboDirect pipeline consists of 6 major steps/
categories (Fig.  1): (i) data pre-processing, (ii) data 
diagnostics, (iii) data exploration, (iv) chemodiversity 
analysis, (v) statistical analysis, and (vi) transformation 
network analysis. All these steps can be run directly 
with the “metabodirect” command. An additional script, 
“test_normalization” is included to help users select the 
best normalization method and can be run before the 
main MetaboDirect pipeline. Even though MetaboDirect 
does not provide raw spectra data preprocessing, it has 
been designed to work with the output file (in .csv for-
mat) generated directly by Formularity [24] which uses 
FT-ICR MS data in .xml format. The Formularity out-
put file includes a list of assigned molecular formulas, 
and their corresponding peak intensities (monoisotopic 
peaks) and m/z values. Because the Formularity algo-
rithm filters formulas based on the “Seven Golden Rules” 
[45], some peaks will not be assigned a molecular for-
mula. MetaboDirect can work with any list of masses and 
their corresponding molecular formulas generated by any 
other software such as DataAnalysis (Bruker Daltonics, 
Bremen, Germany) or Xcalibur (Thermo Scientific), the 
open-source CoreMS or a combination of software such 
as MassSpecWavelet [46] followed by MFAssignR [47] as 
long as the .csv file is formatted according to the Metabo-
Direct documentation. The selection of the best tool for 
raw spectra processing will depend on each researcher 
and their particular dataset [48].

Selection of the best normalization method  The com-
panion script “test_normalization” uses the Statistical 
Procedure for the Analysis of Normalization Strategies 
(SPANS) [49] to aid in the selection of an appropriate 
normalization method for the intensities of the detected 
peaks. This approach has been previously demonstrated 
to work well with FT-ICR MS data [50] and uses a 
modified “spans_procedure” function from the R pack-
age pmartR [51], which evaluates the amount of bias 
that normalization methods available in MetaboDirect 
may introduce to the data. The result of this step will be 
dependent on the nature of the data set and the grouping 
variable that was analyzed. The calculated SPANS scores 
for the combination of normalization and subset meth-
ods are presented in a heatmap.

Data pre‑processing  This is the first step of the main 
MetaboDirect pipeline. During this step, detected peaks 
are filtered by their m/z values (based on the user’s 
input), isotopic presence (13C peaks), error in formula 
assignment (0.5 ppm), and based on the number of sam-
ples that they are present in (threshold determined by 
the user). Compound classes of each of the filtered peaks 
are then determined based on the assigned molecular 

formula using the criteria specified in Supplementary 
Table 1 [23, 52].

The molecular properties and hypothetical decompos-
ability of the filtered peaks that received a molecular for-
mula assignment are determined by calculating several 
thermodynamic and molecular indices based on each 
peak’s elemental composition (equations used to calcu-
late all thermodynamic indices are included in Supple-
mentary Table  2). These indices include nominal oxida-
tion state of carbon (NOSC) that describes the average 
carbon oxidation state of the assigned peak based on its 
elemental composition [53], Gibbs free energy (ΔG°C-ox 
or GFE) that indicates how likely the compound is to be 
degraded [53], modified Aromaticity Index (AImod) that 
reflects the “density” of carbon-to-carbon double bonds 
within a molecule [54, 55], and finally double bond equiv-
alent (DBE) that represents the amount of unsaturation 
in a molecule and can indicate the presence of aromatic 
structures [55].

Furthermore, peak intensities are normalized in this step 
based on the user’s input. Normalization methods avail-
able in MetaboDirect are based on the methods used in 
other similar tools [33, 50], are detailed in Supplementary 
Table 3, and include “max,” “minmax,” “mean,” “median,” 
“total sum,” and “zscore.” Even though other normaliza-
tion methods such as the Probabilistic Quotient Nor-
malization (PQN), Quantile Normalization, and Vari-
ance Stabilization have also been used for the analysis of 
metabolomics data [56], the ones available in Metabo-
Direct were selected because of their broad use, relative 
simplicity, and easy-implementation, compared with oth-
ers such as PQN that requires a conscious selection of a 
reference spectrum [57], which are not often available for 
complex samples or present in exploratory analysis.

This pre-processing step generates several .csv files con-
taining the list of filtered peaks with their respective ther-
modynamic and molecular indices and the normalized 
and unnormalized intensities which will be used in the 
next steps of the pipeline.

Data diagnostics  This part of the pipeline generates 
plots of the total number of peaks detected in each sam-
ple after filtering (based on previous step) and the num-
ber of peaks that received a molecular formula assign-
ment in each sample out of the total number of peaks. 
Both the total number of peaks and the total number of 
molecular formulas assigned per sample are reported in 
.csv tables and plotted as bar plots. Additionally, the data 
diagnostics step plots the error distribution of assigned 
molecular formulas as faceted scatterplots.
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Data exploration  This step produces several plots 
based on the molecular and thermodynamic properties 
of the peaks that received molecular formula assign-
ment. During data exploration, MetaboDirect generates 
van Krevelen diagrams [58] of the peaks with molecular 
formulas; density and violin plots of the thermodynamic 
indices calculated in  the pre-processing step, including 
whether or not there is a significant difference between 
the different groups using Tukey post hoc tests; bar plots 
with the molecular and elemental composition for each 
group/treatment; and finally pairwise comparison plots 
based on the user’s selected grouping variable/s. Pairwise 
comparisons are used to show which peaks are unique 
and which are shared between the different groups using 
van Krevelen diagrams, Venn diagrams, and upset plots. 
As an additional option available in this step, Metabo-
Direct can use the assigned molecular formulas to query 
the KEGG database [59] using the R package KEGGREST 
[60] to provide putative KEGG Pathway, Module, and 
Brite annotations as .csv files.

Chemodiversity analysis  In this step, the MetaboDirect 
pipeline calculates indices that were originally designed 
for biological species but can be adapted to other organ-
izational levels [61]. These indices are then applied at a 
macromolecular diversity level [62]. To this end, raw 
peak intensities are sum-normalized [13] and used to 
calculate diversity metrics using functions from the R 
packages vegan [63] and SYNCSA [64]. Metrics gener-
ated include richness and rank abundance that represent 
the number of detected metabolites, as well as diversity 
indices that take into account the evenness of the spe-
cies abundances (how close are the abundances of each 
metabolite among samples) or their functional traits [61]. 
Since the majority of FT-ICR MS spectra are collected 
using electrospray ionization (ESI) [65], a “soft” ioniza-
tion technique, with little to no fragment ions observed 
[66], this approach, while dependent on the total number 
of peaks detected, is valid especially if all spectra within 
a given data set are collected using the same instrument 
parameters. Abundance-based diversity is measured 
with the Shannon diversity index [67], the Gini-Simpson 
index [68, 69], and the Chao1 richness estimator [70]. 
Functional-based diversity, based on the compound’s 
elemental composition, potential decomposability, and 
unsaturation/aromaticity, is measured with Rao’s quad-
ratic entropy index [71]. All diversity indices are visual-
ized as box plots grouped by the user’s defined grouping 
variables and exported as .csv files.

Statistical analysis  In the data statistical analysis step, 
the normalized intensities of the peaks (from pre-pro-
cessing step) are transformed into Bray-Curtis, Euclidean, 

or Jaccard distances (depending on the selected nor-
malization method) using the “vegdist” function for the 
vegan package and then used to perform a permutational 
analysis of variance (PERMANOVA) [72]. The ordina-
tion of the data, based on the normalized intensities, is 
calculated using non-metric multidimensional scaling 
(NMDS) [73], as it provides a robust approach and can 
use any of the dissimilarity (distances) metrics mentioned 
before [74]. NMDS scores are then visualized as scatter 
plots using the first two components as axis, while the 
results of the PERMANOVA are exported as a .csv file. 
Additional ordination of the data is provided as Principal 
Component Analysis (PCA) [75] scree plots and biplots 
based on the molecular composition and magnitude-
averaged thermodynamic indices of the samples [76].

Transformation networks  This is an optional step of the 
MetaboDirect pipeline as it is time-consuming and, in 
most cases, is only needed to be run once per each data 
set. Molecular transformation networks for each sample 
(mass difference network-based approach) are gener-
ated in this step, where nodes represent peaks detected 
in the different samples and edges represent the putative 
chemical transformations happening between the nodes 
[21, 77, 78]. This step consists of two main processes: the 
calculation of mass-based chemical transformations and 
the creation of the molecular transformation networks.

Because identification and annotation of specific com-
pounds cannot be done with FT-ICR MS, this analysis 
utilizes molecular mass-based transformations that are 
determined by calculating the differences between the 
m/z of all peaks present in each sample and compar-
ing them to the list of pre-defined masses of common 
metabolic reactions (biochemical transformations key) 
[77]. Mass differences with a maximum error of 1 ppm 
against the reference biochemical transformation keys 
are kept as a putative mass-based transformation, as such 
small differences are unlikely to be observed by chance, 
and thus, they may have chemical significance [77]. The 
transformations included in the predefined biochemi-
cal transformation key are further classified in biotic or 
abiotic transformations based on a previous study in peat 
bogs [12]. If preferred, the authors recommend users to 
create a user-specific biochemical transformation list 
that can be used in this step. This user-specific biochemi-
cal transformation may contain commonly observed 
biochemical transformations for the analyzed system 
or those that the users are interested in. The results are 
exported as .csv “edge” files containing the potential 
transformations occurring between the masses in each 
sample. Additional files with the number of transforma-
tions occurring per sample are also generated. Networks 
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are then constructed using Cytoscape [79] and colored 
based on their molecular class. Transformation networks 
can then be used to inform the chemical connections 
between the detected compounds. Furthermore, network 
statistics will be calculated and reported as .csv tables 
and bar plots.

Pipeline testing
The performance of the MetaboDirect pipeline was 
tested here using two previously analyzed FT-ICR MS 
data sets collected in negative ion mode. The first came 
from the exometabolome of a marine phage-host model 
system that uses a known, ecologically relevant marine 
bacterium (Pseudoalateromonas) and two contrastingly 
different infecting phages (podovirus HP1 and siphovi-
rus HS2) that have been extensively characterized via 
genomics and time-resolved transcriptomics and pro-
teomics under nutrient-rich conditions [34–37]. Since 
viruses control microbes that provide essential ecosys-
tem services through infection and reprogramming of 
the host cell metabolism, they can impact the composi-
tion of bacterial exometabolites in the ecosystem. This 
data set is used here to show how MetaboDirect can 
help develop foundational approaches to studying how 
viral infection of bacterial communities could impact 
ecosystem outputs with significant repercussions on 
ecosystem functioning. Specifically, MetaboDirect was 
applied to determine how different infecting phages 
influence the metabolites produced under nutrient (P) 
rich conditions [37].

The second data set was obtained from an incubation 
experiment of S. fallax leachate that was conducted 
in the presence and absence of microorganisms [21]. 
This data set was used to demonstrate how MetaboDi-
rect can be used to help elucidate how organic matter 
degradation pathways can change in the presence or 
absence of microbial communities.

Additionally, we benchmarked the compute time 
required for the main pipeline of MetaboDirect to be 
completed for mock data sets differing in their num-
ber of samples and the average number of metabolites 
that were assigned a molecular formula. Mock data sets 
were generated by randomly subsampling unpublished 
data.

It is important to note that the goal of this paper is to 
provide two comprehensive examples of the applica-
tion of the MetaboDirect pipeline, contrasts its capabili-
ties against other available software, and benchmarks its 
“clock times” (i.e., compute time), but not necessarily to 
provide biological interpretations of the data analyzed. 
Information regarding the incubation parameters, soil 
organic matter extraction protocols, and high-resolution 

mass spectrometry data collection is provided in the Sup-
plementary information.

Code availability
The complete code for the MetaboDirect pipeline is 
freely available at its GitHub repository: https://​github.​
com/​Coaya​la/​Metab​oDire​ct.

Results and discussion
Here, we demonstrate MetaboDirect’s functionality 
in data processing, filtering, and visualization (Fig.  1) 
through the analysis of two distinct FT-ICR MS data sets. 
The bacterium-phage model system data set included 
metabolites or mass spectrometry peaks present in 36 
samples from bacteria infected by two different phages 
and a control treatment under nutrient-rich conditions 
at different time points. The S. fallax leachate incubation 
metabolomics data set consisted of 4 samples, two sam-
ples where the plant leachate was incubated anaerobically 
in the presence of in situ microbial communities and two 
samples where the plant leachate was incubated in the 
absence of any microbial communities.

MetaboDirect pipeline testing
One of the advantages of the MetaboDirect pipeline 
is that it allows to automatically run all the analysis at 
once in a reproducible manner. The main steps of the 
MetaboDirect pipeline (steps I through V) run quickly, 
facilitating the rapid exploration of the data using dif-
ferent user-defined parameters in an efficient manner. 
When the compute time of MetaboDirect was bench-
marked without its optional steps (KEGG mapping and 
the construction of transformation networks using data 
sets of different size), 40 samples were processed in less 
than 1 min whereas 120 samples took as little as 2 min 
to generate all the figures, plots, and outputs discussed 
above at once. Even though the variation in execution 
time in MetaboDirect depends on both the number of 
samples analyzed, and the number of molecular formu-
las assigned per each sample (Supplementary Fig. 1), the 
MetaboDirect pipeline is still superior to other FT-ICR 
MSsoftware where the user is expected to plot the data 
one sample at a time and one figure type at a time.

For the bacterium-phage data set a “report” file pro-
duced by Formularity [24] was processed through the 
whole MetaboDirect pipeline. The data set had an aver-
age of 1025 peaks detected across the whole data set (n = 
36 samples) and an average of 495 peaks that got assigned 
a molecular formula. The main steps of the MetaboDirect 
pipeline (without KEGG database mapping or calculating 
transformation networks) took less than 1 min (~36 s) for 

https://github.com/Coayala/MetaboDirect
https://github.com/Coayala/MetaboDirect
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this data set. The analysis including KEGG mapping and 
calculation of the putative biochemical transformations 
took around 10 min. The full analysis includes KEGG 
mapping, calculating the putative biochemical transfor-
mations and creating the networks took about 21 min. 
For the S. fallax data set, the data was obtained from the 
paper supplementary tables [12] and rearranged to fit 
the format needed for MetaboDirect. This was a smaller 
data set (n = 4 samples) with an average of 1793 assigned 
molecular formulas across the whole data set. For this 
data set, the main steps of the MetaboDirect pipeline 
were clocked at around 30 s. However, due to the larger 
number of assigned molecular formulas, a full analysis of 
this data set (including KEGG mapping and construction 
of molecular networks) took about 32 min.

Outside MetaboDirect, KEGG mapping is usually 
performed using KEGG MAPPER [80], a tool avail-
able directly through the KEGG website. While this tool 
searches various KEGG objects, including genes, KOs, 
EC numbers, metabolites, and drugs, against KEGG 
pathway maps, it requires the user to first identify the 
KEGG ID of each metabolite before manually import-
ing the data to this MAPPER tool. MetaboDirect on the 
other hand performs all these steps automatically. The 
generation of biochemical transformations is currently 
done using the Cytoscape app MetaNetter_2 [81] that 
can only generate one network at a time, and the user has 
to provide three files for each sample at a given time and 
manually set up network generation parameters such as 
mass tolerance. These files include (1) a list of accurate 
masses per sample from the FT-ICR MS data, (2) a list 
of accurate masses of common biochemical transforma-
tions that the user is interested in quantifying within the 
sample, and (3) a metadata file that includes the different 
characteristics of each accurate mass. MetaboDirect on 
the other hand performs all these analyses at once and for 
all samples within a given data set.

For both data sets, the first step was to use the “test_
normalization” companion script to help determine 
which normalization method worked the best. FT-ICR 
MS  data typically carries high biological or technical 
variation, and normalization is the first required step 
to enable data quantification. Proteomic analyses have 
shown [82] that normalization methods are data set-
dependent. As such, MetaboDirect relies on the use of 
SPANS to identify an appropriate normalization method 
for each data set that can improve the structure of the 
data without introducing bias [49]. It is important to 
note that even though SPANS have been shown to be an 
appropriate strategy for selecting normalization methods 
for FT-ICR MS data sets [50], it may not be appropriate 
for data sets with systematic differences in intensity dis-
tributions among the groups of interest [49, 50]. In this 

case, the user may test various normalization strategies 
and choose the one that works the best.

Median and z score normalization appeared to be the 
appropriate normalization methods for the  test data 
sets as they had the highest SPANS scores respectively 
(Supplementary Fig. 2). Thus, z score normalization was 
selected for the bacterium-phage data set and median for 
the S. fallax data set for data normalization and statistical 
analysis in the subsequent steps.

Following normalization testing, the data pre-pro-
cessing step was used to filter out specific peaks and to 
identify any problems within the data set. In the bac-
terium-phage data set, ~200 masses were filtered out 
from the data set because they were assigned molecu-
lar formulas containing an isotopic carbon. The diag-
nostics step further identified one sample with a very 
low number of assigned molecular formulas compared 
to the other samples, which can be a potential outlier 
for the analysis (Supplementary Fig.  3). No peak was 
filtered in the S. fallax data set as it was previously fil-
tered by the authors of that study.

Following the data pre-processing, the data explo-
ration step was used to provide an overview of the 
molecular composition and thermodynamic charac-
teristics of each of the user-defined groups for each 
data set: the type of bacteriophage (HP1 vs. HS2 vs 
control) or the treatment (control vs inoculation). The 
use of the molecular properties and thermodynamic 
indices calculated by MetaboDirect are useful in stud-
ying how biotic and abiotic factors can influence the 
metabolites’ lability (NOSC and ΔG°C-ox) and degree 
of saturation of the metabolites present in each set of 
samples [20, 83].

Exploratory analysis of the bacterium-phage data set 
showed that the chemical composition of the exometabo-
lome of cells, infected with the HS2 phage, changed at 30 
min post-inoculation, but then, it returned to be similar 
to the chemical composition of the uninfected cells (Sup-
plementary Fig. 4A), while the molecular composition of 
exometabolome from cells infected with the HP1 phage 
did not change throughout the experiment. This change 
in molecular composition resulted in changes in the 
modified aromaticity index (AI_mod), and the double-
bond equivalent (DBE) remains similar to the other treat-
ments, showing a possible thermodynamic redundancy 
between the infected and uninfected cells.

MetaboDirect automatically generates all pairwise 
comparisons for the selected grouping factors being 
analyzed. In this manner, the pipeline allows to identify 
which metabolites are common between the different 
conditions and which metabolites are unique to each 
treatment. For the bacterium-phage data set, this analy-
sis showed that most detected metabolites were shared 
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between the infected and uninfected cells (Fig.  2A) and 
that the unique metabolites were mostly protein-like, 
lignin-like, and lipid-like metabolites (Fig.  2B, C). Con-
versely, pairwise comparisons of the S. fallax data set 
showed that the number of unique metabolites in the 
control and the inoculated samples was almost the same 
as the number of shared metabolites (Supplementary 
Fig.  5A), with lignin-like metabolites being most of the 
unique metabolites in the inoculated samples and tan-
nins being present only on the control samples (Supple-
mentary Fig. 5B).

Diversity metrics, originally designed to study ecologi-
cal species, have been adapted to analyze other systems, 
such as metabolites at the macromolecular level [62]. In 
this case, molecular formulas are akin to individual spe-
cies, while their peak intensity is used for abundance [84]. 
Commonly used diversity metrics in the study of metab-
olite assemblages include the measure of molecular rich-
ness (based only on the number of molecular formulas) 
[13, 14, 85]; the use of abundance-based diversity metrics 
such as Shannon, Gini-Simpson [84, 86, 87], or the Chao 
1 [13, 14] indices, which (based on the richness and the 

relative intensity of the metabolites); as well as the use 
Rao’s quadratic entropy to measure functional-based 
diversity [84, 87] (which uses different molecular charac-
teristics as traits). MetaboDirect assists with calculating 
and visualizing all the diversity indices mentioned above.

Chemodiversity analysis for the bacterium-phage 
data set found little differences in the metabolite diver-
sity between the infected and uninfected cells for either 
abundance-based diversity or functional diversity (Sup-
plementary Fig. 6A, C). For the S. fallax incubation data 
set, inoculating the S. fallax leachate with microorgan-
isms increased the diversity of the metabolites (i.e., 
richness) (Supplementary Fig.  6B) but decreased the 
functional diversity, suggesting that the metabolites in 
the inoculated samples were less diverse in terms of their 
decomposability or reactivity, aromaticity, and elemental 
composition (Supplementary Fig. 6D).

Multivariate analysis such as NMDS, PCA, and PER-
MANOVA can be used to better understand the rela-
tionships of the normalized peak intensities or the 
molecular characteristics of the metabolites and the 
biotic and abiotic factors, as well as to find trends among 

Fig. 2  Exploratory plots of the bacterium-phage data set. A Upset plot showing the number of metabolites that are shared and unique between 
the uninfected and infected cells. B Van Krevelen diagram showing metabolites that are shared and unique between cells infected with the two 
different phages, HP1 and HS2. C Molecular composition of the unique metabolites showing that there are unique protein-like, lignin-like, and 
lipid-like metabolites in cells infected with each phage
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a large number of samples at the same time [13, 68, 88]. 
We used these methods to try to illustrate the effect of 
phage type and the time of the incubation on the rela-
tive amount and molecular characteristics of the metab-
olites produced by the bacterial-phage system during 
infection. Even so, the type of phage (or lack thereof ) 
infecting the cells seems to produce a significant differ-
ence in the metabolite/organic compound content of the 
samples (PERMANOVA p value < 0.05, Supplementary 
Fig. 7C). The ordination analysis was not able to discrim-
inate among the sample groups suggesting that the dif-
ferences are subtle (Supplementary Fig. 7A and B).

The last step of MetaboDirect produces molecular 
transformation networks for each of the samples. These 
networks are generated ab  initio from the masses that 
are determined through high-resolution mass spectrom-
etry and are based on the fact that the ultra-high mass 
accuracy of the method allows for identifying chemi-
cally transformed species using clearly defined mass dif-
ferences [77, 78]. The number of transformations can be 
used to quantify the differences in the microbial meta-
bolic pathways between different groups and to iden-
tify potential hub metabolites that are involved in many 
pathways and reactions and that can be important for the 
regulation of the studied system. The type of biochemical 
transformations on the other hand provides information 
on the type of reactions that are occurring within a given 
sample/system that take place either through enzymes 
whose presence can be validated through other omics 
analysis or through non-enzymatic metabolite intercon-
versions within the cell/system that we usually do not 
account for in most microbiome studies. For the bacteri-
ophage data set, the most abundant chemical transforma-
tion was methylation (i.e., loss or gain of a methyl group). 
However, we did not observe significant changes in the 
quality and quantity of all biochemical transformations 
with infection. Interestingly, analysis of the transforma-
tion networks produced by MetaboDirect for the bacte-
rium-phage data set showed that for most of the samples, 
there was always a cluster of protein-like metabolites 
interacting with phenol (lignin)-like metabolites (Fig. 3B) 
suggesting that these ab initio networks will be very use-
ful for future scientific discoveries especially when such 
studies are complemented with other omics data sets.

Comparison with other available software
MetaboDirect was designed for reproducible analysis of 
direct injection FT-ICR MS data, ranging from diagnos-
tics and data exploration to chemodiversity and statistical 
analysis (Table  1), and it is fully automated with a single 
line of code and offers an automated pipeline for the gen-
eration and visualization of mass-based transformation 
networks. Previously, this type of analysis was mostly 

performed through the use of the Cytoscape plugin Meta-
Netter_2 [81], in a laborious and time-consuming process 
which involves exhaustive file preparation as it must be 
done on a per sample basis. While some software packages 
with a GUI, such as the web-based apps MetaboAnalyst, 
UltraMassExplorer, and FREDA are user-friendly, they are 
restricted to some of the most common analysis tools for 
FT-ICR MSdata such as the generation of van Krevelen 
plots and multivariate statistical analysis, and they lack 
customization. On the other hand, more comprehensive 
software packages, which are presented in the form of 
libraries for commonly used programming languages, such 
as PyKrev and ftmsRanalysis, allow the users to deeply cus-
tomize their data analysis. However, they require medium 
to advanced skills in computer programming to be able to 
take full advantage of their parameterization.

MetaboDirect stands in the middle of those groups, 
requiring minimal coding experience, as all the output 
files are obtained using a single line of code. Moreover, 
MetaboDirect provides the user with all the R scripts 
used in the generation of all the tables and visualiza-
tions, thus allowing the user to fully customize any of 
the figures and tables produced by MetaboDirect and 
to use that data in any additional analysis. Therefore, 
MetaboDirect can be attractive to users with all pro-
gramming skill levels, allowing them to take advantage 
of a fully automated pipeline that can be easily cus-
tomizable if needed.

As observed in Table 1, MetaboDirect can perform all 
the analyses offered by the other available software for 
FT-ICR MS data, except for “raw spectra processing” 
and “molecular formula assignment”. Nonetheless, these 
first two steps in the processing of FT-ICR MS data can 
be easily achieved by using Formularity, CoreMS, the R 
packages MassSpecWavelet and MFAssignR, or vendor 
software such as the SmartFormula Calculator (Bruker) 
or the molecular formula assignment module within 
Xcalibur (Thermo Fisher).

Conclusion
The use of high-resolution mass spectrometry, specifi-
cally FT-ICR MS, to characterize the molecular compo-
sition of NOM in different systems is increasing quickly, 
and thus, the development of reproducible open-source 
tools for the analysis of such data is urgently needed. 
Here, we present MetaboDirect, a user-friendly, accessi-
ble, and highly comprehensive tool for scientists working 
to characterize how different biotic and abiotic factors 
influence organic compound composition in diverse set-
tings and systems that can be used to provide a quick 
overview of the data, upon which more in-depth analysis 
can be built. The highly reproducible nature of the analy-
sis provided by MetaboDirect, coupled with the detailed 
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user manual, will allow scientists of all skill levels to fully 
explore and work with FT-ICR MS data. This in return 
will greatly facilitate the integration of metabolomics 
within current microbiome studies and advance our 
knowledge of how microbial communities influence and 
are influenced by the chemical makeup of the surround-
ing system.

Abbreviations
DOM	� Dissolved organic matter
FT-ICR MS	� Fourier-transform ion cyclotron resonance mass spectrometry
GUI	� Graphical user interface
NMDS	� Non-metric multidimensional scaling
NOM	� Natural organic matter
PCA	� Principal component analysis
SOM	� Soil organic matter

Fig. 3  Mass-based transformation network analysis of the bacterium-phage data set. A Heatmap with the top 15 more abundant transformations 
among all the samples converted into a percentage of the total number of transformations in each sample. B Molecular network for the sample 
P_rich_C_T30_R3. Like most of the other samples, the transformation network showed a cluster of lignin-like metabolites interacting with a cluster 
of protein-like metabolites. The zoomed panel at the left shows that the transformation networks have the masses of each sample as nodes, while 
the edges between those nodes represent the transformations
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Additional file 1. Materials and methods used for extracting metabolites 
and acquiring mass spectrometry data for both data sets.

Additional file 2: Table S1. O/C and H/C ratios used to assign puta‑
tive molecular classes to the detected metabolites. Table S2. Equations 
used to calculate thermodynamic and molecular indexes based on the 
assigned molecular of the detected mass spectrometry peaks based 
on their m/z values. Table S3. Normalization methods available in 
MetaboDirect.

Additional file 3: Fig. S1. Compute times of MetaboDirect for data 
sets with different numbers of samples and different numbers of peaks 
assigned a molecular formula for any given data set. Fig. S2. SPANS 
score calculated by the “test_normalization” companion script for A) the 
bacterium-phage data set and B) the Sphagnum fallax data set. The x-axis 
shows the available normalization methods within MetaboDirect, while 
the y-axis shows multiple combinations of the subset methods with dif‑
ferent subset parameters. The SPANS score is shown as a color scale with 
yellow as the highest score. For more information consult the User’s Guide 
(https://metabodirect.readthedocs.io). Fig. S3. Number of detected peaks 
that were assigned a molecular formula in the bacterium-phage data 
set. The sample P_rich_HS2_T30_R4 has few peaks that were assigned a 
molecular formula and can be a potential outlier during the study. Fig. S4. 
A) Changes in the molecular class composition of the bacterium-phage 
exometabolome during the incubation. A reduction in the percentage of 
lignin-like compounds is observed at 30 minutes after inoculation only 
for the HS2 phage. B) Violin plot of the changes in the aromatic index 
reflects the changes in molecular composition, cells infected with the 
HS2 phage have lower AImod at 30 minutes after inoculation (Tukey HSD 
test, p-value < 0.05). C) Violin plot showing that double bond equivalence 
(DBE) of HS2 is reduced after 30 minutes and remains low until the end 
of the experiment (Tukey HSD test, p-value < 0.05). For B), C) and D) * 
(p-value < 0.05), ** (p-value < 0.01), *** (p-value < 0.001), **** (p-value < 
0.0001). Fig. S5. A) Upset plot showing the number of metabolites that 
are shared and unique between control and inoculated treatments of the 
S. fallax leachate. B) Van Krevelen diagram showing metabolites that are 
shared and unique between control and inoculated treatments of the S. 
fallax leachate. C) Molecular composition of the unique metabolites show‑
ing that there are unique protein-like, carbohydrate-like, lignin-like and 
lipid-like metabolites. Fig. S6. Results of the chemodiversity analysis of the 
FT-ICR MS data. A) and B) Abundance-based diversity metrics including 
the Chao1 richness estimator, Gini-Simpson, and Shannon indexes. C) and 
D) Functional-based diversity using Rao’s quadratic entropy using different 
traits: Elemental composition is based on the number of elements in each 
molecular formula. Insaturation and aromaticity uses DBE and AImod 
as traits. Reactivity uses Gibbs’ free energy as a trait. Fig. S7. Multivariate 
statistical analysis performed by MetaboDirect. A) NMDS plot showed a 
small clustering of samples based on the content of phosphorus rather 
than the type of infection, as denoted by the clusters of colored dots B) 
PCA plots by compound molecular class. Like the NMDS plot, there was 
no clustering of the sample neither by phage nor time. C) PERMANOVA 
result, the last column shows the p-value of the analysis. There was not a 
significant effect of the phage or the time.
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