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Abstract 

Microarray technology has been used to measure genome-wide DNA methylation in 
thousands of individuals. These studies typically test the associations between individ-
ual DNA methylation sites (“probes”) and complex traits or diseases. The results can be 
used to generate methylation profile scores (MPS) to predict outcomes in independent 
data sets. Although there are many parallels between MPS and polygenic (risk) scores 
(PGS), there are key differences. Here, we review motivations, methods, and applica-
tions of DNA methylation-based trait prediction, with a focus on common diseases. We 
contrast MPS with PGS, highlighting where assumptions made in genetic modeling 
may not hold in epigenetic data.

Introduction
The most characterized epigenetic marker is DNA methylation (DNAm). DNAm is a 
reversible modification to DNA involving the covalent addition of methyl groups (CH3) 
to the fifth carbon position of cytosine by DNA methyltransferases. In mammals, DNAm 
predominantly occurs at cytosine-guanine dinucleotides (CpGs). In some instances, 
DNAm can block the binding of transcription factors to DNA and is therefore associated 
with reduced gene expression [1]. DNAm is primarily detected through the conversion 
of unmethylated cytosines with sodium bisulphite to uracil, allowing methylated and 
unmethylated cytosines to be distinguished using array-based or sequencing-based tech-
nologies. On each individual DNA molecule, cytosines are either methylated or not, and 
so measurements of DNAm in bulk tissue (such as DNA extracted from whole blood) are 
averages across DNA molecules from many cells. Hence, reported measures of DNAm 
are proportion-related values. DNAm arrays capture a small proportion (~ 2%) of pos-
sible DNAm sites (including some non-CpG sites) in the genome, with each site targeted 
by a “probe.” However, in current commercial arrays, these probes have been selected 
to be informative, being annotated to 96% of coding genes, as well as targeting known 
enhancer and promoter elements. The measurement of DNAm by array technology is 
cheaper and more high-throughput than by sequencing [2] and so relatively large human 
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data sets have been generated from array technology [3] to identify probes which show 
differential DNAm at CpG sites associated with traits. These methylation-wide associa-
tion study (MWAS) data sets are many-fold smaller than genome-wide association study 
(GWAS) data sets that rely predominantly on SNP array data. Consortia are being estab-
lished to bring together data sets for meta-analysis (e.g., [4, 5]).

While the DNA sequence is stable across cell types throughout lifetime (other than 
somatic mutations), DNAm varies between cell types (within an individual) and between 
people (within a cell type) for several reasons (Fig. 1). First, there are cell type-specific 
DNAm patterns which provide “fingerprints” of cell-type lineages [6, 7]; hence, DNAm 
at relevant sites can be used to determine the cell type of origin in mixed cell-type sam-
ples [8]. Second, at some genomic locations, DNA polymorphisms are associated with 
DNAm [9–12]. These polymorphisms are termed methylation quantitative trait loci 
(mQTLs). While most SNPs only confer a small effect on DNAm variation [4], some 
associations are strong (up to 2 standard deviation units/allele [4]) and likely imply a 

Fig. 1  Methylation profile scores (MPS). a Sources of variability in DNAm measurements that inform 
the signal captured by scoring approaches. b Types of discovery cohort samples and their uses for the 
development of MPS. c Disease timeline: utility of DNAm scores depends on when blood is sampled. Created 
with BioRender.com. MPS, methylation profile score; PGS, polygenic score; mQTLs, methylation quantitative 
trait loci
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direct causal relationship between DNA variation and DNAm in cis (where cis implies 
a close proximity on the chromosome between the DNA polymorphism and the site of 
methylation). Measures of DNAm at mQTLs are correlated between relatives, i.e., they 
are heritable quantitative traits [13]. Third, at some CpG sites, the DNA methylation lev-
els are strongly associated with age [14], whereas other sites undergo changes in DNAm 
in response to environmental exposures. The effect of smoking on DNAm is most well-
characterized [15–18]. While DNAm is, in general, considered to be a reversible modi-
fication, analyses of longitudinal DNAm have shown that DNAm at some sites can be 
variable between people but have high within-person consistency over time, including 
at sites not known to be influenced by a mQTL [13]. If DNAm inter-individual variation 
in the blood is associated with disease, or with non-measured risk factors for disease, it 
could be a biomarker for disease or disease progression.

It is notable that the use of DNAm technology in the context of a cancer diagnosis 
from blood samples is already well-advanced [19]. The cell-free DNA isolated from the 
blood carries tissue-specific signatures that track the cancer-associated cell death. The 
Epi proColon® (for the detection of colorectal cancer) already has FDA approval, and the 
Galleri® multi-cancer test is in clinical trials. Detection of DNAm signatures in cell-free 
DNA from other cell death-associated diseases, such as neurodegenerative disease, is an 
active area of research [8].

In this review, we focus on DNAm measured by array technology. We consider how 
MWAS data sets can be used to calculate trait-associated methylation profiles scores 
(MPS) in independent data sets that have DNAm measured. MPS are also referred to as 
episcores [20] or simply epigenetic or DNAm predictors [15]. While there many parallels 
between MPS and polygenic (risk) scores (PGS) (calculated for trait prediction from the 
results of GWAS), there are key differences. Our target audiences are those familiar with 
the construction and interpretation of PGS. Here, we review the motivations, methods, 
and applications of MPS. We contrast MPS with PGS, highlighting where assumptions 
made in genetic modeling may not hold in epigenetic data [21–24]. For another recent 
review on the use of MPS in health applications, see Yousefi et al. [25]. We start by intro-
ducing the concept of MPS, then step through technical considerations that contribute 
to differences in MPS and PGS.

Methylation profile scores (MPS)
Evaluation of trait prediction using DNAm data requires at least two independent 
data sets with measures of both genome-wide DNAm and the trait of interest (Fig. 2). 
The MWAS “discovery” sample is used to identify DNAm probes associated with the 
trait, resulting in a list of probes and weights. These can be used to construct a MPS 
for each individual in the independent “target” sample. The utility of the trait predic-
tion is evaluated by the association of the MPS with the directly measured trait in this 
target sample. For MPS, as for PGS, there is no requirement that the scores repre-
sent functional or causal mechanisms, but simply that an association is found in inde-
pendent data. If a trait association is demonstrated, then MPS can be calculated in 
individuals who have DNAm data but for whom the trait value is unknown and hence 
used as a trait biomarker. For both PGS and MPS, the accuracy of prediction may 
be limited, but the signals carried by the scores could still have utility. Accuracy of 
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prediction can be maximized by combining PGS, MPS, and other known risk factors. 
Even such a combined predictor is likely to have high prediction error for a specific 
individual and so the utility is likely to be at the level of stratification, in which a high-
risk group will be enriched for those who go on to have disease. Sometimes, a “tun-
ing” sample is needed in the derivation of MPS; an MWAS data set independent of 
the discovery and target samples is used to optimize probe selection. Since such data 
sets are not usually available, a subset of the discovery sample can be removed for use 
as a tuning sample (also known as cross-validation). We also use the term “applica-
tion” sample to refer to the population in which an MPS could be used as a biomarker.

We use the word trait “prediction” for MPS with hesitation since it is important to 
emphasize a key difference between MPS and PGS. In principle, PGS can be calcu-
lated at birth and will not change over lifetime (unless the SNPs and their weights 
used to construct the PGS are updated). PGS can therefore be considered as predic-
tors of future, not-yet observed events. Since measured DNAm levels can fluctuate, 
any trait-specific MPS for an individual can change throughout an individual’s life-
time. Hence, much more thought is needed, compared to PGS applications, about 
the time point at which biological samples (e.g., blood) are taken in the discovery, 
target, and final application samples as to whether the MPS developed can be con-
sidered as a predictor of a future event. While some MPS scenarios will fit the cri-
teria of prediction, we emphasize that this is not always the case. Consider the goal 

Fig. 2  MPS data sets. a Data set definitions. b Curated statistics on number of methylome-wide association 
studies (MWAS) publications (y-axis) per-year and c per-trait (excluding cancer) taken from EWAS Atlas 
database, on 10 January 2023 (https://​ngdc.​cncb.​ac.​cn/​ewas/​downl​oads). a Created with BioRender.com

https://ngdc.cncb.ac.cn/ewas/downloads
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of using DNAm as a blood biomarker to aid in early risk stratification of subsequent 
(incident) disease onset. To have clinical utility as a diagnostic biomarker, the MPS 
needs to be valid in blood samples taken at or before the time diagnosis is achieved 
under current practice (i.e., prospective samples) (Fig. 1), whereas most MWAS dis-
ease cohorts have been collected after diagnosis and MPS derived from these may 
be confounded with consequences of later disease processes (including treatment). 
Such prospective DNAm data sets are not yet common. One of the largest cohorts 
to date is Generation Scotland (an adult community cohort) which has 18,413 indi-
viduals and electronic health linkage spanning 15 years after blood sampling and has 
been used to investigate MPS associations with the incidence of 11 major morbidi-
ties, including type 2 diabetes [3, 20]. The CHARGE consortium has reported MPS 
in relation to incident coronary heart disease in a follow-up of 11.2 years, on average, 
following sample collection using data from 9 cohorts comprising 11,461 individuals 
[26]. Another example of prospectively measured DNAm is from the use of Guthrie 
card blood spots, stored in some countries for all babies born. These provide an unbi-
ased resource allowing study designs that contrast DNAm at birth in those that go on 
to get diagnoses in later childhood compared to matched controls. For example, the 
MINERVA study measured DNAm at birth in 1,293 individuals, 50% of whom were 
later diagnosed with autism spectrum disorders [27] (although in this example, no 
differences in DNAm at birth associated with the autism diagnosis were found). Cur-
rently, most MWAS of disease use biological samples collected post-diagnosis, and 
so, the MWAS-identified disease-associated DNAm probes may reflect an advanced 
stage of the disease trajectory or even a consequence of diagnosis (including treat-
ment). Hence, MPS derived and evaluated in post-diagnosis samples may not be use-
ful for disease prediction in currently healthy individuals or people presenting with 
the first symptoms of the disease. Careful evaluation is required using blood samples 
taken at a time relevant to diagnosis in real-life settings. DNAm taken at the time of 
diagnosis could be useful in predicting disease severity, disease progression, or ther-
apeutic response post-diagnosis if longitudinal clinical data are available to develop 
predictors.

Tissue sample considerations
For GWAS and PGS, the tissue (or cell type) from which DNA is derived is rarely consid-
ered since germline-inherited DNA polymorphisms are the same in all tissues (somatic 
mutations require non-standard analysis to detect from array data). While tissue source 
(e.g., blood vs saliva) can be identified in the principal component analysis of SNP array 
data pre-quality control (QC), differences are handled through routine QC steps and do 
not impact upon genotype calls. In contrast, cell type-specific DNAm is a major contrib-
utor to DNAm variation, and tissues from which DNA is usually isolated for genomic 
analysis comprise a heterogeneous mix of different cell types. In a later section, we con-
sider issues associated with cell-type proportions from the whole blood in the context of 
MPS.

The majority of large MWAS studies, to date, have quantified DNAm in the whole 
blood, which is an easily accessible tissue relevant to biomarker development. Notably, 
DNAm can be measured accurately from dried blood spots with good concordance with 
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measures from matched blood samples [28]. To achieve large cohorts for MWAS and 
MPS in the future, less-invasive sampling alternatives may need to be adopted. Nasal, 
buccal, and saliva samples from adults can be collected in a decentralized way through 
postal kits. These tissue types are also well-suited to DNAm studies of preterm infants, 
babies, and children, and distinct DNAm signatures have been identified in buccal and 
saliva samples for gestational age and preterm status [29, 30]. Leukocytes and squamous 
epithelial cells are typically found in the oral cavity [31], and several methods exist to 
adjust for this cellular heterogeneity [32, 33]. However, the transferability of MPS derived 
from the blood to DNAm derived from less-invasive tissues requires specific investiga-
tion. A comparison of DNAm from whole blood, buccal epithelial, and nasal epithelial 
(sampled at the same time from the same individuals) showed good concordance at 
mQTL but not at other DNAm variable sites used in MPS [34]. Notably, the commonly 
used Horvath DNAmAge Epigenetic Clock (which was derived from DNAm measure-
ments in 51 tissue types) exhibited variability across these 3 tissues and epigenetic age 
MPS from the blood were the closest to actual age [34]. In summary, MPS developed 
in one tissue type is not necessarily transferable to another tissue type without careful 
evaluation.

Parallels and differences in array‑based measures of DNAm and SNPs
To date, Illumina is the only commercial provider of DNAm arrays, and their most 
recent “EPIC” array is designed to measure DNAm at over 850K genomic locations [35, 
36]. Array-based measures of DNAm are considered to have some advantages compared 
to current whole-genome bisulphite sequencing technologies. First, if the study goal is 
MWAS, then cost is a big factor; the Illumina list price per sample for DNAm array is 
USD330 compared to the list price of USD5000 for whole-genome bisulphite sequenc-
ing (of course dependent on read depth). Other advantages include their fixed content 
(designed to have probes for CpG islands in the gene-regulatory regions of the major-
ity of genes), considerably smaller data files which are cheaper to store and analyze, 
and standardized quantification measured by M-values and beta values. M-values are 
the log2 ratio of the intensities of the methylated versus unmethylated probes at a given 
CpG site, across all cells sampled, with positive values indicating a site is more methyl-
ated than unmethylated [37]. Beta values represent the proportion of methylated probes 
across all cells in the sample and therefore range from 0 to 100%. Conversions between 
these two DNAm measurement types can be performed with ease [37]. Beta values are 
considered more interpretable owing to their scale [37].

The Illumina iScan System is designed to read both SNP and DNAm arrays, although 
the probe design is more complex for DNAm analysis [38]. While between-batch tech-
nical differences now have minimal impact on SNP-genotype calling, DNAm batch 
effects are much more apparent. Careful pre-processing of DNAm data is required prior 
to downstream analyses, and we refer readers to key papers [38–41], but where possi-
ble, it is best to employ consistent laboratory protocols. Briefly, DNAm is assayed on 
plates (e.g., comprising 4 Illumina chips, 8 samples per chip), with multiple sets of plates 
that are run at the same time forming a batch. In turn, when many samples are available 
from a study, multiple batch runs are required which combine to form DNAm sets. If all 
samples in a given cohort are not run at the same time, the effects of processing batch 
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may be a major confounder in the analyses [42]. Hence, the DNAm at each probe are 
pre-processed and normalized prior to downstream analyses, but since substantial batch 
effects can still remain [43] set and batch are often also fitted as covariates in MWAS. 
Successful evaluation of MPS from discovery to target to application samples is more 
likely if similar technical protocols are used. Systematic evaluation of 41 MPS across 101 
different DNAm pre-processing and normalization strategies has highlighted the impact 
of technical variation on MPS [44].

It is notable that DNAm arrays have traditionally been priced several-fold higher 
than SNP arrays, which has been a contributing factor to the smaller sample sizes for 
MWAS compared to GWAS. As a likely consequence of the smaller market, there has 
been less activity in the development of DNAm array content compared to SNP arrays. 
We understand that Thermo Fisher has a product in development which may provide 
competition in array content and price, which may drive DNAm measurement in larger 
cohorts. Although the EPIC array includes 850K probes, 120K are reported as non-var-
iable between individuals in the blood [40], and further QC steps that retain only vari-
able sites useful for use in MPS have reduced the number of probes used in practice to ~ 
370K [45]. Currently, many studies use a combination of Illumina EPIC and 450K arrays 
and so use the intersection of probes (~ 450K) and of these ~ 200K probes are retained 
as being sufficiently variable for use in blood-based MWAS and MPS [45, 46].

Parallels and differences of MWAS and GWAS
The probes and their weights used in MPS are generated from the discovery MWAS 
data; hence, guidelines for the optimal design of MWAS [23] are critical when the goal 
is trait prediction. We do not consider the design of MWAS but refer readers to a set of 
key reviews [19, 20, 47–49]. These are essential reading, since quoting Mill and Heijmans 
[19] “It would be naive to assume that we can simply undertake MWAS analyses on sam-
ples that have been previously used in GWAS.” GWAS designs have relatively few con-
straints since DNA polymorphisms (mostly) do not change over the lifetime, and indeed 
control samples can be deliberately selected to include people who are older and hence 
past the age of onset for the disease studied. In contrast, optimal MWAS designs need 
to follow the sort of practices implemented for observational studies including appropri-
ate ascertainment matching of cases and controls. For example, the selection of older 
controls is not suitable for an MWAS study given many sites change methylation lev-
els with age. For many diseases and disorders, case status may be associated with body 
mass index or smoking (e.g., [50]). As discussed above (and Figs. 1 and 2), the discov-
ery sample MWAS used to develop MPS ideally has the properties relevant to the target 
and final application samples where the MPS are validated and properties relevant to the 
situations where the MPS are applied.

In GWAS, the phenotype is always the dependent variable (y~SNP), but in MWAS, 
sometimes DNAm is analyzed as the dependent variable (DNAm~y), reflecting the two 
possible directions of dependency. For the purposes of trait prediction, we assume the 
y~DNAm model for analysis. For example, while DNAm changes associated with smok-
ing most likely reflect smoking being causal for the changes, supporting the logic of the 
DNAm~y model, when the goal is to develop an MPS in independent data for those with 
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unknown smoking status the analysis model must be y~DNAm. While DNAm measures 
are continuous they may not be normally distributed [40].

In GWAS, the genomic inflation factor (λ, ratio of the observed median test statistic 
to the expected median test) is used to demonstrate that the quality control pipeline has 
retained no residual population stratification associated with the trait that could gener-
ate the identification of false positives [51]. Under no residual stratification, λ is expected 
to be 1, since it is reasonable to assume that fewer than half of the sites are truly associ-
ated. MWAS data must be afforded more consideration in this regard. The simulations 
conducted by Zhang et al. [52] illustrate the issues. They used real MWAS data from a 
healthy cohort of volunteers from the Lothian (Scotland) birth cohorts, so ancestrally 
homogeneous. They simulated causal associations for a simulated trait onto measures 
of DNAm made at probes located only on even chromosomes. They then conducted 
MWAS analysis examining evidence for association only on odd chromosomes, finding 
strong evidence for the association for their simulation scenario (λ = 7.67). This obser-
vation reflects, in part, cell type proportion differences between individuals with cell 
type-specific methylation patterns correlated across chromosomes. However, including 
cell-type proportion values (directly measured, not MPS predicted) as covariates only 
reduced the λ to 4.95, implying other factors (technical or biological) generate a cor-
relation of DNAm across chromosomes. Many MWAS methods have been introduced 
with the goal to control for unmeasured cell-type proportions and other unmeasured 
potential confounders, e.g., [53, 54]. In the Zhang et al. simulation, if the first 5 princi-
pal components from a correlation matrix of DNAm across individuals were included as 
covariates, still the λ only reduced to 1.67. They introduced linear mixed model methods 
to estimate the effect of each probe while controlling for the background genome-wide 
DNAm, which reduced λ to the expected value of 1. These simulations were conducted 
for a quantitative trait. In real data, while technical confounding with a quantitative trait 
is not expected, for binary disease traits, this can be problematic. For example, in case-
control cohorts, the DNA collection and processing of cases and controls are frequently 
achieved by different protocols which can lead to technical confounding in DNAm levels 
(more so than for DNA polymorphisms that use the same array technology [55]). Statis-
tical methods can be employed to account for confounding and to avoid the detection of 
false-positive associations, but for binary traits, the confounding can be too complete, 
so careful experimental design is a more effective approach to avoid the potential conse-
quences of confounding [42].

Parallels and differences of MPS and PGS
PGS are calculated as a weighted sum of trait-associated alleles [56], so for the ith indi-
vidual, the PGS is PGSi =

∑mPGS
j β̂ j × SNPij , where β j is the estimated effect size for 

SNP j which has values of SNPij = 0, 1 or 2 alleles in individual i. Similarly, MPS are cal-
culated as MPSi =

∑mMPS
j b̂j × CpGij where b̂j is the estimated effect size for probe j 

and CpGij is the methylation value of probe j in the ith individual. CpGij is a continuous 
measure (proportion of cells that are methylated). From the same GWAS data, different 
statistical (or machine learning) methods can be used to generate PGS with the meth-
ods making different choices about how many SNPs to include, which SNPs to include, 
and what weights to allocate to the risk alleles (e.g., see [57] for a comparison of PGS 
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methods). Similarly, from the same MWAS data, different statistical methods can be 
used to generate MPS with the methods differing on how many probes, which probes, 
and what weights to allocate to DNAm values (Table 1, Additional file 1). Neither PGS 
nor MPS are restricted to SNPs/probes that are associated at the level of genome-wide 
significance, and SNP/probes selected may not be biologically meaningful. For both 
PGS and MPS, many combinations of SNP/probes can give very similar out-of-sample 

Table 1  Methods used in publication derivation of DNA methylation profile scores (MPS)

C+PT- clumping + P-value thresholding of MWAS summary statistics, BLUP-Best linear unbiased prediction
a MPS derived from postmortem brain cortex
b These methods account for correlations in DNAm between people resulting from family relationships

Method: software Brief summary (see Additional file 1 
for a more detailed summary)

Literature examples of the application 
of MPS

CP+T after linear regression Marginal effects of DNAm sites derived 
from linear regression. Selected probes 
have MWAS association p-value less 
than a defined threshold. In a greedy 
algorithm, the most associated probe is 
selected first. Other probes are selected 
if correlation (r) with any genomically 
local probe already selected is less 
than a defined threshold. The results 
are often reported from the p-value 
threshold that generates the highest 
out-of-sample prediction, but to avoid 
a winner’s curse effect, a single p-value 
threshold should be applied in the 
target cohort identified from MPS 
results applied in an independent tun-
ing cohort.

BMI, height [58]
schizophrenia [59]
C-reactive protein levels [60]
Interleukin-6 [61]

Penalized linear regression:
glmnet [62, 63]

In ridge regression/lasso/elastic, net 
probe effect sizes are estimated jointly. 
In ridge regression, linear regression 
estimates are shrunk (dependent 
on penalty parameter λ1). In lasso, a 
proportion of probes have an effect 
size set to 0 (dependent on penalty 
parameter λ2). Elastic net regression 
requires the estimation of two penalty 
parameters (λ1, λ2), such that ridge 
regression and lasso are special cases of 
elastic net regression (when λ2 = 0 or λ1 
= 0, respectively).

Major depressive disorder [64]
Smoking [65]
Alzheimer’s diseasea [66]
Incident diabetes [46]
Alcohol consumption, body fat percent, 
body mass index, lipoprotein cholesterol, 
waist-to-hip ratio [15, 67]
109 proteins [20]
Electronic health records [68]

Linear mixed model BLUPb:
OSCA [52]

All probes have a predicted effect size 
with effect sizes assumed to be drawn 
from a normal distribution with the 
total variance attributed to DNAm 
estimated from a restricted maximum 
likelihood (REML) analysis of the data.

ALS [69]

Linear mixed modelb:
OSCA [52]
lme4 [70]

Effect size of each probe estimated 
while fitting the joint effect of probes 
genome-wide in one (or several) ran-
dom effects to control for unidentified 
background confounders.

ALS [69]
Parkinson’s disease [71]
Alzheimer’s and Parkinson’s disease, ALS, 
schizophrenia, rheumatoid arthritis [45]

Bayesian inference modelb:
BayesRR [72]

A linear mixed model, but with Bayes-
ian framework to model any epigenetic 
genetic architecture. Probe effects are 
assumed drawn from one of multiple 
normal distributions (including null). 
Genetic effects can be modeled simul-
taneously.

BMI, smoking [72]
Cognitive ability [73]
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prediction results, and methods that minimize the number of features selected are likely 
to be the most useful in biomarker tests.

For PGS, individual-level GWAS data are often not available to researchers due to logis-
tical and privacy concerns. Thus, the choice of SNPs and their weights are usually derived 
from meta-analyses of GWAS summary statistics (i.e., SNP identification number, risk 
allele, risk allele frequency, risk allele effect size and its standard error, p-value of associa-
tion). The correlation structure between SNPs is integrated through knowledge of linkage 
disequilibrium (LD) among genetic variants, derived from a reference panel with individ-
ual-level genotypic data. The simplest PGS method selects independent SNPs associated 
with a p-value less than a specified threshold to select the mPGS SNPs and uses the GWAS 
association effect size estimates as the β̂j (the so-called clumping and p-value threshold-
ing method, denoted here C+PT). Other PGS methods, in essence, use the genome-wide 
set of GWAS summary statistics to learn the trait-specific genetic architecture that can 
lead to choices of mPGS and updated values of the β̂j that give higher out-of-sample pre-
diction than C+PT (e.g., [57, 74]). Some PGS methods also use functional (or other) SNP 
annotations as prior information to increase the chances that SNPs selected are causal 
variants. This is particularly important if the goal is to increase the transferability of PGS 
across ancestry groups, as sets of SNPs that are highly correlated in one ancestry (hence 
which of the SNPs is selected has little impact on the efficacy of the predictor) may not be 
so highly correlated in other ancestries. Hence increasing the probability of selecting the 
causal SNP, which is likely to be causal in all ancestries [75] is important.

There are many-fold fewer MWAS data sets compared to GWAS data sets. However, 
MWAS data have traditionally been less hampered by data privacy issues [76], and so, a 
high proportion is shared in databases which allow direct download (from repositories 
such as Gene Expression Omnibus (GEO) [77] or ArrayExpress [78]) of individual-level 
data from the discovery MWAS. This means that cross-validation (splitting a tuning sam-
ple (Fig. 2) out of the discovery MWAS) can be applied to determine the optimum selec-
tion of probes into the MPS. Basic MPS approaches have adopted the C+PT method 
used in PGS. MPS methods are summarized in Table  1 and Additional file  1. Briefly, 
linear mixed model approaches such as OSCA MOA and MOMENT [52] estimate 
the effect of each probe in turn while fitting the joint effects of genome-wide DNAm 
and the correlation structure in DNAm between people, which is effective at account-
ing for unknown batch/confounder effects, and parallels mixed linear models used in 
GWAS (such as GCTA -mlma [79], fastGWA [80], BOLT-LMM [81]). Penalized regres-
sion methods utilize cross-validation to directly select probes and derive probe weights 
for MPS. These methods are little used for PGS generation, owing to the large number 
of genetic features that would need to be accommodated by the models. Penalized and 
Bayesian regression methods may mitigate against the winner’s curse effect, a problem 
in one probe at a time analyses, by considering all methylation sites jointly and applying 
shrinkage factors. MethylDetectR provides scripts and/or an online tool for the calcu-
lation of MPS for many traits, housing weights generated by several MPS studies [67]. 
MethylPipeR is a tool that facilitates the automated application of penalized regression 
models for MPS generation, in addition to tree-based statistical learning methods [46]. 
The primary issue facing those using these tree-based neural net methods is that the 
number of features is too large to build networks and current research is investigating if 
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the list of probes considered can be reduced. BayesRR is a Bayesian approach that jointly 
models all probe and SNP effects that has also been shown to implicitly adjust for the 
presence of unknown confounders such as batch and cell-type effects [72] (see below).

With increasing numbers of MWAS publications [82] (Fig. 2) and data sets—accom-
panied by increasing privacy concerns [83]—studies using MPS derived from meta-
analyzed MWAS summary statistics are starting to be published. The development of 
new MPS methods based on MWAS summary statistics is likely to be an area of active 
research. Derivation of GWAS summary statistics-based approximations of meth-
ods that use individual-level data is possible because the correlation (LD) structure 
between SNPs reflects population history (such as genetic drift, migration, mutation, 
population bottlenecks), and this can be assumed to be trait independent. Hence, the 
correlation structure between SNPs can be inferred from ancestry-matched LD refer-
ence samples. However, the repeatability of the correlation structure between DNAm 
probes across samples drawn from the same population is likely more complex [84] and 
likely to vary between cell types. Moreover, there is an additional correlation structure 
between probes at a considerable genomic distance (more than 300 kb in some cases) 
with intermediary blocks uncorrelated [84]. While some of the correlation was found to 
be genetically controlled, the authors hypothesized that the dispersed correlation could 
reflect a structural basis in nuclear organization. Moreover, the odd/even chromosome 
simulations of Zhang et  al. [52] (described above) exposed extensive cross-chromo-
some correlation. The lack of reference data sets to phase DNAm by haplotype and the 
influence of environmental exposures on the correlation structure [84] mean that more 
data are needed to establish if a trait-independent correlation structure can be assumed 
for application with MWAS summary statistics. The LD correlation of SNPs means 
that some PGS methods (e.g., SBayesR [85], PRS-CS-auto [86]) have been optimized 
without the need for tuning samples (samples independent of both discovery and target 
samples used to obtain parameter estimates needed in the choice of the SNPs and their 
weights). However, future optimization of MPS methods will likely need to use tuning 
samples which must be ascertained to have properties similar to the target and applica-
tion samples.

Applications of MPS for trait prediction

We identify four key applications for use of MPS for the prediction of an unmeasured/
unknown phenotype (Fig. 3). First, in the context of research where some key pheno-
types have not been, or were inaccurately, recorded. For example, smoking is a key risk 
factor relevant to epidemiological analyses. When smoking status is not recorded, smok-
ing can be predicted accurately from DNAm data, AUC statistic = 0.98 (where AUC can 
be interpreted as the probability that a smoker ranks higher than a non-smoker on the 
MPS) [15, 17, 72, 87, 88]. Moreover, the MPS smoking measure may be a more accurate 
quantification of smoking exposure (both direct and passive) than self-report data. Pre-
diction of unrecorded phenotypes is important in association studies, where fitting con-
founder variables can help reduce the false-positive rate [52].

A second application of MPS is the potential use of DNAm as a direct outcome 
measure in the clinic [83], for example, to measure the effectiveness of smoking 
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cessation therapy both qualitatively (e.g., current vs never-smokers) [17, 65] and 
quantitatively (e.g., assessing the reversibility of smoking-induced methylation 
changes) [89]. Body weight loss has also been associated with differences in DNAm 
[90]. DNAm data could then be used to show patients objective quantified results, 
which may improve the chances of successful behavior change due to positive rein-
forcement. MPS may also facilitate clinical ascertainment of treatment failure, if 
DNAm data are measured pre- and post-therapeutic intervention. Though these 
multi-time point, longitudinal data sets are rarely available, recent studies have dem-
onstrated differential DNAm signatures associated with therapeutic intervention 
4–12 weeks after initiation [91, 92].

Fig. 3  Applications of DNA methylation-based trait prediction. Prediction of non-recorded phenotypes A 
in research data; B in objective quantification of participant compliance through longitudinal prediction 
of traits; C in forensics, where trait prediction could contribute to investigative rather than formal 
evidence-based procedures; and D as biomarkers to aid disease diagnosis and in future (if suitable discovery 
samples become available) for choice of therapeutics. Created with BioRender.com
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A third application for phenotype prediction could be in forensics: when a biological 
sample is available, but the person associated with the sample is unidentified. In con-
trast to DNA profiling, which is used as evidence, MPS can be used in the investigative 
process adding to suspect profiling (since once a person is identified, DNA profiling is 
sufficient). In criminal investigations, demographic traits can be crucial to help identify 
offenders. Whereas highly heritable traits such as height can be predicted from genetic 
data, less heritable traits such as weight, or body mass index (BMI) could be better pre-
dicted by MPS or a combination of MPS and PGS [58, 93]. A promising example is a pre-
diction of age from DNAm data, where prediction is highly accurate even with current 
DNAm array platforms [93, 94]. Indeed, variance in age was found to be fully explained 
by MPS in the Generation Scotland cohort (i.e., ρ2 = 1, SE = 0.0036) [93].

Finally, DNAm data could prove useful in clinical settings as biomarkers of disease 
risk (Fig. 1). DNAm differences associated with incident diseases such as type 2 diabetes 
are detectable many years prior to formal diagnoses [46]. These signatures may repre-
sent the consequences of risk exposures; DNAm at smoking-associated genes have been 
linked to lung cancer development [95]. In such instances, DNAm may lie on causal 
pathways to disease. Equally, DNAm signatures may represent a record of exposures to 
factors such as smoking, without being directly causal for a disease. MPS generally do 
not need to delineate between the reasons why DNAm differences are associated with 
the outcome, as their purpose is risk stratification. However, future research questions 
are likely to investigate if MPS predicting relevant exposure traits could be part of an 
overall risk algorithm. MPS derived from blood samples taken at first diagnosis could be 
useful in predicting disease progression, but this is only achievable with the generation 
of discovery data sets with longitudinal clinical information. More translational research 
is needed to evaluate the utility of MPS in health settings.

Cell type proportions in MPS
When DNAm is measured in bulk tissue such as whole blood, trait associations could 
reflect a mixture of intrinsic and extrinsic signals (Fig. 4). The “intrinsic” signal of DNAm 
represents a change in DNAm that is directly associated with the trait (which could affect 
one or more cell types) [96, 97]. The “extrinsic” [98] signal can represent the differences 
in cell-type proportions, given that some DNAm is cell type-specific. In MWAS analy-
ses, cell-type proportion differences are generally considered to be confounders whose 
contribution to trait variation should be adjusted. A close interplay between circulating 
immune cells and DNAm exists [99]. As such, adjustments for DNAm-derived immune 
cell proportions are critical in blood-based MWAS analyses [6]. These adjustments are 
imperfect, as they do not include every immune cell and rare subpopulations therefore 
likely exist that are unaccounted for. For example, two MWAS of blood protein levels 
reported associations between pappasylin (PAPPA) and various DNAm sites; however, 
after adjustment for eosinophil proportions, these signals were attenuated [100, 101]. An 
expanded cell-type deconvolution panel for 56 immune cell profiles has recently become 
available and may aid in the separation of extrinsic and intrinsic signals [102].

Careful consideration of study aims is needed when deciding the relevance of trait-
associated cell-type proportions. If the goal is a biological interpretation of DNAm 
differences, then correction for  cell-type proportions is appropriate. However, when 
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DNAm in the blood is simply considered as a biomarker, and when the goal is trait pre-
diction, any signal that can be derived from the DNAm that maximizes out-of-sample 
prediction accuracy should be included. For example, in our MWAS of amyotrophic 
lateral sclerosis [69], we found that predicted cell-type proportion differences between 
cases and controls replicated between cohorts (higher proportion of neutrophil granulo-
cytes, N case/control of 612/782 and 1159/637 in discovery and target cohorts, respec-
tively). Moreover, we found that MPS based on weights applied to DNAm-derived 
cell-type proportions generated an AUC of 0.67, higher than our MPS approach and 
close to the maximum AUC achieved from combining the predicted cell-type propor-
tions with the MPS (AUC = 0.69). However, a higher proportion of neutrophil granulo-
cytes estimated from DNAm in cases compared to controls was found for many diseases 
(Alzheimer’s disease, Parkinson’s disease, schizophrenia, and rheumatoid arthritis), 
demonstrating non-specificity [45]. We tested a published MPS for major depressive dis-
order (derived from non-smokers in both cases and controls) [64] on these same diseases 

Fig. 4  Cellular heterogeneity and its effects on DNAm measurements in bulk tissue. All scenarios show the 
same difference in DNAm between healthy and diseased samples. The DNAm differences between healthy 
and disease samples can reflect increased DNAm associated with disease (A, C, and lymphocytes in D) or 
cell-type proportion differences associated with disease status (B, D). Recreated with BioRender.com and 
inspired by Holbrook et al. [96]
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and also found non-specificity, with higher AUC for Parkinson’s disease (AUC = 0.58) 
and schizophrenia (SCZ1) in (AUC = 0.57) cohorts than had been reported for depres-
sion (AUC = 0.53) [64]. Although we hypothesize this non-specificity may be driven by 
different cell-type proportions shared between major depressive disorder and the other 
traits, there may be other factors contributing to the observed result. Statistical MWAS 
methods (such as TCA [103] and CellDMC [104]) have been developed to identify trait 
associations specific to cell types. These methods could be used to improve trait predic-
tion, but further development and critical evaluation are needed.

Evaluation metrics for MPS
First, we consider the evaluation metrics for PGS when calculated in target samples 
(those where the MPS trait has been measured) and then draw parallels for MPS. For 
quantitative traits (which are typically normally distributed or can be transformed to be 
so), the accuracy of prediction of a PGS is evaluated as R2—the proportion of pheno-
typic variance (σ2

𝑃) in the trait explained by the PGS. The R2 is on the same scale as and 
can be contrasted to heritability (h2) which is the proportion of σ 2

P that is explained by 
genetic variation ( σ 2

G ), i.e., σ 2
G/σ

2
P (and where the phenotypic variance is the variance of 

the trait y after removing variation attributed to fixed effects, such as sex and age). 
Whereas h2 reflects all factors contributing to genetic variation, the PGS can only cap-
ture the genetic variation associated with the SNPs measured in the GWAS, so the upper 
bound on the R2 from PGS (under assumptions of the same trait drawn from the same 
population) is the SNP-based heritability ( h2M , where the M refers to the number of inde-
pendent SNPs represented by the genome-wide SNP array). Given that effect sizes of 
individual SNPs are estimated with error the R2 that is expected from a PGS can be 
approximated as R2

M ≈
h2M

1+M/(Nh2M)
 [105], where N is the sample size (of the discovery 

sample). In theory, as sample sizes increase, the variance explained by PGS will also 
increase and tend to the SNP-based heritability [105, 106].

For binary traits, a logistic regression pseudo-R2 statistic, Nagelkerke’s R2 ( R2
NK  ), is 

often reported to evaluate PGS. While this can be useful for comparing the efficacy of 
different PGS methods applied to the same target data set, the values cannot be fairly 
compared across target data sets as the statistic depends on the proportion of cases in 
the sample. Instead, an R2

CC estimate can be made under a linear regression model of the 
binary (CC: case-control) data, which is then converted to the liability scale ( R2

l  ) 
accounting for the proportion of cases in the sample (P) and the lifetime risk of disease 
(K), R2

l = R2
CC

[K (1−K )]2

z2P(1−P)
 , where z is the height of the normal curve when thresholded by 

proportion K [107]. Another evaluation metric for binary disease traits is the AUC which 
has the advantage of not being dependent on the proportion of cases in the sample, but 
its scale is less intuitive to understand (it is related to the square root of R2 [108] so 
increases in AUC associated with increased discovery sample size are smaller for AUC 
than for R2 statistics [57]).

In the context of MPS, R2 for quantitative traits, and R2
NK ,R

2
CC and AUC for binary 

traits are typically used to assess the accuracy of trait prediction [58, 59, 69, 71]. The 
proportion of phenotypic variance explained by all DNAm markers analyzed in an 
MWAS ( ρ2 ) is now sometimes reported [45, 52, 69] and is an upper bound on the vari-
ance explained by MPS in an independent sample (with the same proportion of cases, 
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and hence the same phenotypic variance). Although whether such a maximum can be 
achieved even with increasing sample sizes depends on what extent discovery sample 
confounding factors contribute to the ρ2 estimate. It is important to recognize that esti-
mates of R2

CC cannot be converted to R2
l , because the underlying genetic theory [107, 

109] that generates the conversion equation does not apply. Therefore, for disease traits 
the AUC and AUC-related statistics may be the best metric for the comparison of MPS 
applied across different target samples.

Combining MPS with PGS
An early study [58] evaluated both MPS and PGS for BMI and height in Lothian Birth 
Cohort participants (n = 1,366). The PGS and MPS explained 8% and 7%, respectively, 
of the variance in BMI and 14% when fitted jointly demonstrating that PGS and MPS 
contributions were mostly independent and additive. Most notably, the discovery sam-
ple was ~ 350K for the PGS but only 750 for MPS. The same study reported that height 
MPS explained no variation in height. The difference in the success of MPS for BMI and 
height likely reflects that the current diet impacts blood DNAm which is associated with 
concurrent BMI. In contrast, variation in height between older people is likely not cap-
tured in their blood (but may be in childhood [110]). It is likely that much more varia-
tion in BMI could be explained with larger discovery samples. Results from studies with 
larger sample sizes have reported the combination of PGS+MPS to be less than additive 
[15, 73], likely reflecting that some SNPs associated with traits could be mQTL (i.e., both 
are capturing the same underlying genetic risk).

The BayesRR [72] method uses a linear mixed model in a Bayesian framework to 
model any epigenetic genetic architecture and genetic architecture simultaneously (by 
assuming probe effects and SNP effects are drawn from one of the multiple normal dis-
tributions with different variances and different mixing proportions estimated from the 
data) in discovery samples that have both GWAS and MWAS data. BayesRR was applied 
to BMI and smoking behavior (pack-years) measured in 9,488 individuals in Generation 
Scotland to give  estimates of genetic and epigenetic architecture from the same traits 
[72]. Their statistics were all provided with 95% confidence intervals, here, for simplicity, 
we report the rounded point estimates (N.B. these statistics are ρ2 (see above) not out-
of-sample R2). For smoking behavior defined as the number of pack-years, they reported 
that 46% of the phenotypic variance was captured by methylation probes and 6% by 
genome-wide SNPs (i.e., SNP-based heritability, h2SNP ). For BMI, the estimates were ρ2 
= 76% and h2SNP = 16%. For BMI, the number of contributing probes was higher, and 
the effect size attributed to each was smaller. For example, the 17 probes of the largest 
effect explained about 10% of the variance of BMI, whereas 15 probes were estimated to 
explain 27% of the phenotypic variance of smoking behavior. Using the BayesRR derived 
DNAm score, out-of-sample trait prediction was associated with 18% of the variance 
in BMI and 38% of the variance in smoking (ARIES cohort adult males). The variance 
explained in BMI in ARIES cohort children at birth, 7 years, and 15 years were 3%, 2%, 
and 10%, respectively (important given the caveats of Fig. 1). The out-of-sample results 
are impressive given the discovery sample. The BayesRR authors calculated that with a 
discovery sample of 100,000, out-of-sample R2 from DNAm alone could be 60%, which 
could increase to 80% when MPS are added to PGS. Although BayesRR presented an 
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integrated model for DNAm and SNP array data, in reality, larger discovery samples will 
be available (and needed) for GWAS compared to MWAS and so PGS and MPS will 
be generated independently. Tuning samples will be needed to determine how to weigh 
PGS and MPS when combined into a single predictor.

Ancestry
It is well-recognized that most GWAS discovery samples are from participants of Euro-
pean ancestry [111]. The cost-effective paradigm of GWAS utilizes the LD correlation 
structure enabling a very high proportion of genomic variation associated with the 3 bil-
lion base pairs (× 2 chromosomes) of a genome to be captured by ~ 500K SNPs. Inevi-
tably, associations point to genomic regions rather than individual causal SNPs (at least 
until GWAS samples are very large and incorporate sufficient recombination events to 
pinpoint causal associations). PGS out-of-sample prediction is robust to whether the 
SNPs included are the causal variants or variants very highly correlated with them. How-
ever, the different population histories of people of different ancestries mean that the 
correlation structure between SNPs differs between ancestries, and so causal SNPs (or 
those held in tight LD with them across ancestries) need to be prioritized in the PGS 
calculations. One driving component of LD differences between ancestries is allele fre-
quency differences. Even when trait-associated alleles have large frequency differences 
between ancestries, the effect size estimates can be similar (see Figs. 1 and 2 in Liu et al. 
[112] for nice visualizations in application to inflammatory bowel disease). If the effect 
size estimates are different across ancestries, interaction with genetic or non-genetic 
risk factors is implied. Consistency of trait definition is an important consideration, 
both between and within ancestry samples, and so applications of cross-ancestry PGS 
should always be benchmarked against within-ancestry results. Increasing GWAS data 
sets from different ancestry groups is currently a key priority for many funding agencies.

There are few data sets that compare DNAm across ancestries. DNAm age predictors 
were originally derived from multi-ancestry samples [113, 114], and this may be why 
these MPS are accurate across ancestries [93, 98]. However, ancestry-specific differences 
in epigenetic aging (difference between chronological and DNAm predicated age) have 
been reported [98]. High replication of effect sizes has been reported between Chinese 
and European for blood mQTL [115] and between Europeans and African-Americans 
for probes associated with C-reactive protein [116]. More DNAm data sets from diverse 
ancestries are needed to be able to draw informed conclusions about the transferability of 
MPS across ancestries and because environmental and cultural differences may directly 
impact DNAm. Moreover, the lack of diversity in GWAS is raising concerns about exacer-
bating health inequality now that the clinical translation of PGS is being evaluated [111]. 
Prospective studies are now starting to show that MPS biomarkers could have clinical 
utility [46], so more efforts are needed to diversify MWAS data sets [117].

Conclusions
MPS are increasingly being developed to stratify risk associated with diseases and 
traits associated with diseases. The methodology used to calculate these scores paral-
lels that used to define PGS for common complex diseases, which are derived from 
common single nucleotide variants. PGS can be considered trait or disease predictors, 
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since in principle they can be calculated at any time over the lifespan. In contrast, 
DNAm can be dynamic across the lifespan and therefore must be developed using 
data relevant to a specific application context, or at least evaluated in the application 
context before the real-life utility can be confirmed. MPS likely capture signatures 
that are a consequence of the trait, in addition to potential trait-associated causal 
pathways and MPS development must recognize this nuance. For MPS where DNAm 
is largely a direct outcome of the trait, e.g., smoking and BMI, MPS capture a large 
proportion of variation in out-of-sample evaluation, much more than PGS, despite 
much smaller sample sizes. In the context of disease prediction, less variance is often 
explained by MPS, but there is sufficient evidence to date to support further evalua-
tion of DNAm as a biomarker of disease onset or disease progression. This requires 
careful ascertainment of cases and controls and efforts in all stages of experimental 
design to minimize batch effects and to understand contributions arising from cell-
type effects. MPS can also be trained to predict disease-associated traits, which (at 
least in preliminary evaluation) could be more cost-effective or simply more feasi-
ble than direct measurement of the trait. For example, MPS for 109 plasma proteins 
trained in independent cohorts (N ≥ 725) and projected into the Generation Scotland 
cohort (N = 9,537) were associated with the incidence of 11 major age-related mor-
bidities, with 137 MPS disease associations reported for 11 common diseases over 14 
years of electronic health linkage [20]. Investment in the generation of DNAm data 
in large prospective cohorts with linkage to health records such as the UK Biobank 
(or, added in proof, UCLA Health Biobank [68]) would allow further characteriza-
tion of MPS as early biomarkers of incident diseases. This may be cost-effective rel-
ative to grant funding that is spent on biomarker research by international funding 
agencies in other settings. However, as data sets available for measurement of DNAm 
increase in size, samples will likely be processed over extended periods of time gener-
ating technical variability. This can impact the detection of small DNAm effect sizes 
which is a growing concern calling for the development of improved technology for 
the array-based measurement of DNAm. Nonetheless, the generation of DNAm data 
in cohorts such as the UK Biobank that are already genetically informative would 
drive the development of new technologies as well as the development of new meth-
ods focussed on joint MPS and PGS modeling.
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