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ABSTRACT
Background: Postoperative sepsis is one of the main causes of mortality after liver transplant-
ation (LT). Our study aimed to develop and validate a predictive model for postoperative sepsis
within 7 d in LT recipients using machine learning (ML) technology.
Methods: Data of 786 patients received LT from January 2015 to January 2020 was retrospect-
ively extracted from the big data platform of Third Affiliated Hospital of Sun Yat-sen University.
Seven ML models were developed to predict postoperative sepsis. The area under the receiver-
operating curve (AUC), sensitivity, specificity, accuracy, and f1-score were evaluated as the
model performances. The model with the best performance was validated in an independent
dataset involving 118 adult LT cases from February 2020 to April 2021. The postoperative sep-
sis-associated outcomes were also explored in the study.
Results: After excluding 109 patients according to the exclusion criteria, 677 patients underwent
LT were finally included in the analysis. Among them, 216 (31.9%) were diagnosed with sepsis
after LT, which were related to more perioperative complications, increased postoperative hos-
pital stay and mortality after LT (all p< .05). Our results revealed that a larger volume of red
blood cell infusion, ascitic removal, blood loss and gastric drainage, less volume of crystalloid
infusion and urine, longer anesthesia time, higher level of preoperative TBIL were the top 8
important variables contributing to the prediction of post-LT sepsis. The Random Forest
Classifier (RF) model showed the best overall performance to predict sepsis after LT among the
seven ML models developed in the study, with an AUC of 0.731, an accuracy of 71.6%, the sen-
sitivity of 62.1%, and specificity of 76.1% in the internal validation set, and a comparable AUC of
0.755 in the external validation set.
Conclusions: Our study enrolled eight pre- and intra-operative variables to develop an RF-based
predictive model of post-LT sepsis to assist clinical decision-making procedure.

KEY MESSAGES

� Postoperative sepsis is one of the main causes of mortality after liver transplantation (LT).
� Our results revealed that a larger volume of red blood cell infusion, ascitic removal, blood
loss and gastric drainage, less volume of crystalloid infusion and urine, longer anesthesia
time, higher level of preoperative TBIL were the top 8 important variables contributing to the
prediction of post-LT sepsis.

� The Random Forest Classifier (RF) model showed the best overall performance to predict sep-
sis after LT in our study, which could assist in the clinical decision-making procedure.
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Introduction

Liver transplantation (LT) is currently recognized as
the only effective treatment of end-stage liver disease.
Although the survival rate and long-term prognosis
after LT have been significantly improved in recent
years due to the progress of surgical techniques,

anesthetic management, immunosuppressive technol-

ogy and intensive care unit (ICU) management, the LT

recipients still suffered from various postoperative

complications, among which postoperative sepsis was

one of the most severe complications and often led to

septic shock, multiple organ dysfunction syndrome
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(MODS) and increased postoperative mortality [1,2]. It
was reported that the incidence of postoperative sep-
sis after LT was as high as 50–80%, and sepsis-related
deaths ranged from 50% to 90% of all postoperative
mortalities [3–5]. Moreover, it was reported that each
1 h delay in the treatment of sepsis would increase
mortality by 7.6% [6]. Thus, a reliable model for the
prediction of postoperative sepsis is critically needed
to tailor preventive interventions and treatments for
LT recipients.

Consequently, several predictive systems have been
developed to date, including the model for end-stage
liver disease (MELD), the acute physiology and chronic
health evaluation (Apache-II), and the sequential organ
failure assessment (SOFA) [7,8]. However, it has been
noted that the accuracy and specificity of these scor-
ing systems are unsatisfactory, especially their inability
to early predict sepsis [9,10]. A meta-analysis of 42,623
patients from seven studies for predicting hospital-
acquired sepsis has found that the machine learning
(ML) approach had a better performance than the
existing scoring systems for predicting sepsis [11].

In recent years, ML technology has been widely
used in the field of intelligent medicine, which is of
great practical and social significance in clinical deci-
sion-making, clinical diagnosis, and accurate medical
treatment [12,13]. ML-based models have been shown
to be highly accurate for predicting medical outcomes
and identifying high-risk patients by taking advantage
of the vast array of variables already available in the
electronic patient record (EPR) [14,15]. We recently
used ML to develop novel predicting models for post-
LT complications, including acute kidney injury and
pneumonia [16,17]. Meanwhile, ML has also been
applied to establish a model to predict postoperative
sepsis [18] and the outcome of death within 30 d after
the operation [19]. Rishikesan Kamaleswaran recently
used ML to identify ‘physiomarkers’ in continuous
minute-by-minute physiologic data streams to predict
the onset of sepsis after LT in postoperative ICU [20].
However, there has been no ML-based predictive
model for post-LT sepsis, which might be helpful for
perioperative decision-making in LT patients.

In our study, we retrospectively analyzed the peri-
operative data of patients receiving LT during a 6-year
period from 2015 to 2021 in our hospital, aiming at
establishing a ML model to predict sepsis within 7
postoperative days after LT. The findings through ML
modeling may help anesthesiologists and clinicians to
identify the patients at higher risk of post-LT sepsis,
and apply the early intervention to reduce postopera-
tive mortality.

Methods

Study subjects

The study protocol was approved by the Ethics
Committee of the Third Affiliated Hospital of Sun Yat-
sen University on 14 May 2021 (No. [2019]02-609-02).
The requirements for informed consent and clinical trial
registration were waived by the ethics committee. This
study adhered to the applicable TRIPOD guidelines.

We retrospectively reviewed the LT records on the
big data platform of the Third Affiliated Hospital of
Sun Yat-sen University (Guangzhou, Guangdong,
China) as we earlier reported [17], and the data of
patients who received allogeneic LT during a 6-year
period from January 2015 to April 2021 were eval-
uated for their eligibility during patient recruitment.
All the LT recipients were registered in the China
Organ Transplant Response Systems (www.cot.org.cn).
The inclusion criteria were used: (1) age � 18 years
old; (2) allograft liver transplantation. The patients
with the following conditions were excluded from this
study: (1) combined liver and kidney transplantation;
(2) other operations were performed at the same time;
(3) incomplete medical records; (4) combined with
preoperative sepsis. A total of 677 patients were
enrolled, and randomly split into a training set with
70% samples (n¼ 473) and an internal validation set
with the remaining 30% samples (n¼ 204), with each
categorized into the following two subgroups: pres-
ence or absence of postoperative sepsis. Patients from
February 2020 to April 2021 (n¼ 118) were enrolled as
the external validation set.

Primary outcome

The primary outcome of our study was defined as a
machine learning model for predicting sepsis within
7 d after LT. Postoperative sepsis was diagnosed
according to the diagnostic criteria of sepsis 3.0 pub-
lished in the Journal of the American Medical
Association in 2016 [21]. Specifically, the daily SOFA
score of each patient was collected and checked
manually through the electronic medical record (EMR)
system. SOFA score on the day of operation was set
as the baseline SOFA score. The organ dysfunction
could be identified as an acute change in total SOFA
score � 2 points consequent to the infection.

Variable selection

Combined with the summary of previous literature
and the actual situation of our hospital, a total of 59
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features were collected through the perioperative spe-
cialist database system of the electronic medical
record of our hospital: demographics, preoperative
data including comorbidities, etiology, complications
and laboratory values, intraoperative data including
incidents, medication, fluid and transfusion (Table S1).
The diagnostic criteria of the postoperative complica-
tions were shown in Table S2.

As both the multicollinear variables and confound-
ing variables would affect the model fitting perform-
ance, we implemented the least absolute shrinkage
and selection operator (LASSO) regression approach to
select the features with non-zero coefficients after
LASSO regression [22], so as to prevent over-fitting of
the model and enhance its clinical applicability.
Meanwhile, the bootstrap method was used with the
LASSO method to sample 1000 different test sets and
deal with the instability and sensitivity of LASSO
regression to sampling variability.

Development and validation of the ML model

We compared seven predictive modeling approaches:
Logistic Regression (LR), Support Vector Machine
(SVM), Random Forest Classifier (RF), Gradient Boosting
Machine (GBM), Adaptive Boosting Classifier (ADA),
Gaussian Naive Bayes (GNB), and Multi-layer
Perceptron (MLP). All the above models were estab-
lished via the Scikit-learn package (https://github.com/
scikit-learn/scikit-learn). The completed data was sepa-
rated into a 70% training set and a 30% validation set.
The Bootstrap method was then applied to get a 95%
confidence interval (CI) of evaluation metrics for each
model. We used the area under the receiver operating
characteristic curve (AUC), sensitivity, specificity and
F1-score to evaluate the model performance. The
SHapley Additive exPlanations (SHAP) method was
applied to evaluate feature importance and explain
the predictions made by ML algorithms. Meanwhile, as
the SOFA score has been used to predict the occur-
rence of sepsis in the ICU, we also compared the per-
formance of our ML model to the SOFA score in the
study.

Statistical analysis

Analyses were implemented under an anaconda base
environment (https://www.anaconda.com) with python
3.7. The dependent package included: scikit-learn 0.22,
numpy 1.17.0, pandas 1.2.3. We used independent
sample t-test to compare normally distributed data, as
for non-normal distribution data, we used Mann–

Whitney U-test in univariate analyses. Categorical vari-
ables were tested by Chi-square test or Fisher’s exact
test when cell counts less than five. Kaplan–Meier
methods were applied to estimate the long-term sur-
vival rates.

Only categorical variables had missing values and
the missing proportion was less than 10%. Mode
imputation was for the categorical variables.
Continuous variables in both the training and valid-
ation set were normalized base on the mean and
standard deviation of the training set, while categor-
ical variables were dummy coded. All models would
be developed in the same 70% training set and vali-
dated in 30% validation set. For further application,
we built an online risk calculator to help clinical deci-
sion-making of postoperative sepsis.

Results

786 patients underwent LT in our hospital were
assessed in our study. We excluded one patient for re-
transplantation for graft failure, 3 patients for simul-
taneous liver and kidney transplantation and 105
patients for sepsis before the operation. 677 patients
were finally enrolled in our study. The incidence of
postoperative sepsis was 31.9% in our study. The flow
chart of patient enrollment was showed in Figure 1.

Preoperative characteristics of patients with or
without sepsis

The preoperative characteristics of the patients with or
without sepsis after LT were presented in Table 1. The
patients with postoperative sepsis showed significant
lower levels of hematocrit (HCT), platelets (PLT), hemo-
globin (HGB) and albumin (ALB), as well as higher lev-
els of white blood cell count (WBC), aspartate amino
transferase (AST), total bilirubin (TBIL), indirect bilirubin
(IBIL), direct bilirubin (DBILI), blood urea nitrogen
(BUN), prothrombin time (PT), activated partial
thromboplastin time (APTT) and international normal-
ized ratio (INR) (all p< .05) than those without sepsis.
Moreover, the patients with postoperative sepsis had
higher MELD score and Child-Pugh score (both
p< .001), and preoperative ICU stay and incidence of
preoperative tracheal intubation were found to have
significant differences between patients with or with-
out postoperative sepsis (both p< .001). While gender,
age, height, weight, BMI and ASA classification were
found to have no significant difference between
patients with or without sepsis.
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Intraoperative characteristics of patients with or
without sepsis

The intraoperative factors were compared between
the patients without or with postoperative sepsis
(Table 2). The patients with postoperative sepsis had
longer anesthesia time, more red blood cell (RBC),
cryoprecipitate and sodium bicarbonate transfusion,
and less crystalloid transfusion and urine output (all
p< .05). Meanwhile, the volume of blood loss, ascites
removal and gastric drainage were significantly higher
in the sepsis group than the non-sepsis group
(Table 2).

Effect of sepsis on patient outcomes and
prognosis

Compared with the patients without postoperative
sepsis, the patients with postoperative sepsis were
combined with more perioperative complications,
including higher incidence of abdominal infection
(4.6% vs. 0%, p< .001), bile tract infection (5.1% vs.
2.2%, p¼ .040; Table 3), pneumonia (56.9% vs. 43.3%,
p¼ .001; Table 3), kidney failure (7.4% vs. 0.6%,
p< .001) and hepatorenal syndrome (6.5% vs.1.1%,
p< .001; Table 3). Moreover, patients with postopera-
tive sepsis also had longer postoperative ICU stay [3
(2–4) vs. 5(4–8) d, p< .001; Table 3], longer postopera-
tive hospital stay [20 (16–26) vs. 29 (21–39) d, p< .001;
Table 3], and more hospitalization cost [0.27 (0.23–
0.32) vs. 0.38 (0.31–0.51) million-yuan, p< .001;
Table 3].

Furthermore, as shown in Table 3, we found that
the patients with postoperative sepsis had significant
lower survival rate at 30 d (90.2% vs. 98.9%, p< .001)
and 90 d (81.9% vs. 98.0%, p< .001).

Feature selection using LASSO regression

Finally, 59 features were reduced to 8 potential predic-
tors on the basis of 677 patients in the primary cohort,
and these eight features, chosen to build machine
learning models in the model building part, included
RBC transfusion, anesthesia time, preoperative TBIL,
blood loss, urine output, crystalloid infusion, gastric
drainage, ascites removal (Figure 2). Further, feature
importance plot was created to rank the levels of
importance. As a result, RBC transfusion, anesthesia
time and preoperative TBIL were ranked first, second,
and third, respectively (Figure 2).

Performance assessment of the ML models to
predict sepsis after LT

Among the seven predictive modeling approaches in
the study, RF model achieved the greatest AUC (0.731,
CI 0.649–0.802), the highest F1-score (0.581, CI 0.476–
0.676), and relatively balanced sensitivity (0.621, CI
0.493–0.725) and specificity (0.761, CI 0.69–0.832)
(Figure 3). Thus, we eventually chose RF model for fur-
ther analysis and application (Figure 3(A)).

Since the SOFA score has been reported to predict
postoperative sepsis in ICU patients, we validated and
compared the performance of this score and our RF-

Figure 1. Flow chart of patient enrollment. LR: logistic regression; SVM: Support Vector Machine; RF: Random Forest; GBM:
Gradient Boosting Machine; ADA: Adaptive Boosting Classifier, KNN: K Nearest Neighbors Classifier; DT: Decision Tree Classifier.
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based models in the validation set (Figure 3(B)). It
turned out that the SOFA score presented in our valid-
ation set had a lower AUC (0.637, CI 0.551–0.692) than
the RF model (0.745, CI 0.645–0.824) in the valid-
ation set.

Temporal external validation

The external validation set also consisted of a majority
of male (90.68%) with a mean age of 47.3 years old
(Table S3). On one hand, the anesthesia time and vol-
ume of urine output were significantly lower in the

Table 1. Preoperative characteristics of the patients.
Variables Patients without sepsis (n¼ 461) Patients with sepsis (n¼ 216) p-Value

Gender .403
Male 401.00 (86.99%) 182.00 (84.26%)
Female 60 .00 (13.01%) 34.00 (15.74%)

Age (y) 48.80 ± 10.40 49.60 ± 10.50 .541
Height (cm) 167.70 ± 6.50 167.0 0 ± 6.50 .320
Weight (kg) 64.60 ± 10.60 65.00 ± 11.50 .834
Body mass index 23.00 ± 3.40 22.80 ± 3.10 .675
ASA classification .536
2 52.00 (11.28%) 21.00 (9.73%)
3 409.00 (88.72%) 195.00 (90.27%)

Comorbidities
Heart failure (n) 6.00 (1.30%) 4.00 (1.90%) .832
Myocardial infarction (n) 16.00 (3.47%) 22.00 (10.19%) .001
Diabetes mellitus (n) 54.00 (0.16) 30.00 (0.12) .194
Hepatic encephalopathy (n) 133.00 (28.9%) 76.00 (35.19%) .116
Acute liver failure (n) 135.00 (29.28%) 104.00 (48.15%) <.001
Subacute liver failure (n) 220.00 (47.72%) 151.00 (69.91%) <.001
Hypokalemia (n) 97.00 (21.04%) 49.00 (22.69%) .701
Etiology for liver transplantation
Hepatitis B (n) 372.00 (80.5%) 165.00 (76.4%) .217
Hepatitis C (n) 14.00 (3.00%) 6.00 (2.80%) .856
Hepatic malignancy (n) 233.00 (50.40%) 73.00 (33.80%) <.001
Biliary cirrhosis (n) 13.00 (2.80%) 6.00 (2.80%) .979
Alcoholic cirrhosis (n) 38.00 (8.20%) 15.00 (7.00%) .563
Laboratory results
HCT 0.31 (0.07) 0.29 (0.07) <.001
Platelets (109/L) 100.56 (72.09) 86.55 (61.73) .004
WBC (109/L) 6.06 (4.58) 7.77 (5.12) <.001
Lymphocyte (109/L) 1.03 (0.57) 1.05 (0.6) .821
HGB (g/L) 105.86 (24.66) 97.46 (23.2) <.001
ABO .866
A 124.00 (26.90%) 59.00 (27.32%)
B 116.00 (25.16%) 60.00 (27.78%)
O 187.00 (40.56%) 83.00 (38.43%)
AB 34.00 (7.38%) 14.00 (6.48%)

ALT (U/L) 83.85 (171.68) 106.25 (225.95) .228
AST (U/L) 111.23 (268.73) 113.89 (144.16) .002
GGT (g/L) 110.75 (165.48) 85.85 (120.00) <.001
TBIL (lmol/L) 195.68 (214.05) 311.42 (248.00) <.001
IBIL (lmol/L) 68.28 (75.38) 116.96 (102.47) <.001
DBILI (lmol/L) 127.54 (149.05) 194.47 (165.96) <.001
ALB (g/L) 35.97 (4.93) 34.97 (4.11) .028
CHOL (mmol/L) 3.33 (1.37) 3.03 (1.57) .001
Last SCr (lmol/L) 79.58 (37.31) 95.92 (72.61) .090
BUN (mmol/L) 5.67 (3.61) 7.75 (7.37) .004
PT (s) 22.84 (10.75) 27.12 (13.5) <.001
APTT (s) 51.21 (15.03) 57.68 (22.14) <.001
INR 2.04 (1.18) 2.53 (1.44) <.001
Serum potassium (mmol/L) 3.81 (0.45) 3.86 (0.49) .030
Serum sodium (mmol/L) 138.68 (4.57) 138.48 (5.21) .261
Serum calcium (mmol/L) 2.30 (0.17) 2.33 (0.23) .529
Complications and treatments
MELD score 18.20 ± 10.80 24.70 ± 11.50 <.001
Child-Pugh score 8.90 (2.40) 9.70 (2.10) <.001
Preoperative ICU stay (n) 205.00 (44.47%) 143.00 (66.20%) <.001
Renal replacement therapy 51.00 (15%) 32 .00 (13%) .468
Preoperative tracheal intubation 182.00 (39.48%) 114.00 (52.78%) .002

Note: Data were expressed as frequency (proportion) or mean (SD). Bold data indicates significance at p< .05. WBC: white blood cell;
ALT: alanine transaminase; AST: aspartate amino transferase; TBIL: total bilirubin; IBIL: indirect bilirubin; ALB: albumin; BUN: blood urea
nitrogen; PT: prothrombin time; APTT: activated partial thromboplastin time; INR: international normalized ratio; Hypokalemia was
defined as the serum concentration of potassium level is below 3.5mmol/L.
Bold data indicates significance at p < .05.
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external validation set compared to that of the devel-
opment set (both p< .05). On the other hand, the vol-
ume of crystalloid infusion and ascites removal were
higher in the external validation set. In this temporal
validation set, the incidence of sepsis was 28.81%, and
the RF model achieved a comparable AUC (0.755, CI
0.652–0.839) to that of the internal validation set
(Figure 3(C)).

Predictive online risk calculator

As the eight variables enrolled in our model could be
easily obtained in clinical practice to calculate the risk
of sepsis after LT conveniently, we also developed an
online risk calculator to make the RF model accessible
to anesthesiologists and peers around the world. As
shown in Figure 4, ‘1’ represents a positive result, and
‘0’ represents a negative result. The value in parenthe-
ses is the occurrence probability of post-LT sepsis. For
instance, the prediction output of patient No. 10 was
‘0’ with a probability of 76%, that is, the probability of
this patient developing post-LT sepsis was only 24%.
The online risk calculator to calculate the risk of sepsis
of LT can be accessed at http://wb.aidcloud.cn/zssy/
sepsis_web.html.

Discussion

In this study, we evaluated the ability of seven
machine learning algorithms to predict postoperative
sepsis in LT patients and generated the following
major practical findings: (1) The incidence of

Table 2. Comparison of intraoperative factors between two groups.
Variables Patients without sepsis (n¼ 461) Patients with sepsis (n¼ 216) p-Value

Cold ischemic time (h) 6.03 (1.19) 6.14 (1.19) .091
Anesthesia time (min) 508.79 (113.34) 536.52 (170.99) <.001
Intraoperative fluid management and transfusion
Crystalloid (mL) 2680.13 (1763.62) 2230.26 (2208.56) .001
Colloid (mL) 109.38 (306.45) 117.42 (550.95) .379
RBC transfusion (mL) 1097.13 (884.96) 1818.6 (1363.29) <.001
Plasma transfusion (mL) 1780.05 (1260.09) 1846.3 (1860.96) .714
Cryoprecipitate transfusion (U) 37.59 (70.41) 46.14 (89.63) <.001
Sodium bicarbonate transfusion (mL) 96.18 (165.32) 182.52 (701.74) .011
Albumin (mL) 282.73 (413.77) 321.88 (607.9) .665
Total volume of infusion (mL) 5308.54 (3823.7) 5259.84 (5692.81) .533
Blood loss (mL) 1510.9 (1342.5) 2285.71 (2197.76) <.001
Urine output (mL) 1718.74 (979.52) 1538.69 (1055.11) .010
Ascites removal (mL) 732.66 (1776.81) 1097.73 (1958.25) .023
Gastric drainage (mL) 37.19 (97.7) 80.10 (297.54) .005
Total volume of output (mL) 3211.39 (2703.44) 3029.81 (3314.36) .074

Note: Continuous variables were presented with mean along with standard deviation (SD), or median (interquartile range). IV: intravenous
injection.
data indicates significance at p < .05.

Table 3. Comparison of complications and prognosis between two groups.
Variables Patients without sepsis (n¼ 461) Patients with sepsis (n¼ 216) p-Value

Cardiac-related complications 21 (4.5%) 12 (5.6%) .569
Abdominal infection 0 (0%) 10 (4.6%) <.001
Bile tract infection 10 (2.2%) 11 (5.1%) .040
Pneumonia 200 (43.3%) 123 (56.9%) .001
Kidney failure 3 (0.7%) 16 (7.4%) <.001
Hepatorenal syndrome 5 (1.1%) 14 (6.5%) <.001
Postoperative ICU stay (d) 3 (2–4) 5 (4–8) <.001
Postoperative length of stay (d) 20 (16–26) 29 (21–39) <.001
Hospitalization cost (million) 0.27 (0.23–0.32) 0.38 (0.31–0.51) <.001
Survival rate at 30 d after LT 456 (98.9%) 194 (90.2%) <.001
Survival rate at 90 d after LT 452 (98.0%) 176 (81.9%) <.001
Note: Data were expressed as frequency (proportion) or median (interquartile range). LT: liver transplantation.
Bold data indicates significance at p< .05.

Figure 2. Feature importance ranking of the selected 8
features.
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Figure 3. ROC curve for prediction of postoperative sepsis. (A) Performance of all predicting models in the internal validation set.
(B) ROC curve of the RF model and SOFA score in the validation set. (C) Performance of RF model in the internal validation set
and on the external validation set.

Figure 4. Online calculator of risk for sepsis after LT. A demo prediction of patient No.10 by online ML-based predictor of post-LT
Sepsis. ‘1’ represents a positive result, and ‘0’ represents a negative result. The value in parentheses is the occurrence probability
of post-LT sepsis. For instance, the prediction output for patient No. 10 was ‘0’ with a probability of 76%, that is, the probability
of this patient developing post-LT sepsis was only 24%. The browse-based tool can be visited at http://wb.aidcloud.cn/zssy/sep-
sis_web.html.
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postoperative sepsis was up to 31.9% in patients after
LT, and the occurrence of sepsis was significantly asso-
ciated with more perioperative complications, pro-
longed postoperative ICU stay and hospital stay, more
hospitalization cost and increased mortality at 30 d
and 90 d after LT; (2) A total of 8 factors were identi-
fied to be significantly correlated with postoperative
sepsis after LT, including RBC transfusion, anesthesia
time, preoperative TBIL, blood loss, urine output, crys-
talloid infusion, gastric drainage, ascites removal; (3)
The random forest classifier model exhibited the best
overall performance to predict sepsis after LT among
the seven developed ML models, with an AUC of
0.731, an accuracy of 71.6%, a sensitivity of 62.1%, and
a specificity of 76.1%.

Sepsis is a common and major health crisis in hos-
pitals globally [23]. We reported the high incidence of
sepsis and related adverse prognosis after LT, which
verified the significance of early prevention and treat-
ment of sepsis after LT in increasing individual survival
time, improving quality of life and reducing the bur-
den of the health care system. Consistently, it was
strongly recommended to perform sepsis screening
and accurate prediction for acutely ill, high-risk
patients [24], including LT patients who are at ele-
vated risk of developing sepsis [25].

To date, an ML-based predictive model for postop-
erative sepsis after LT has been developed to assist
clinicians in postoperative decision-making and pre-
vention in clinical practice [20]. However, the model
was established only using continuous minute-by-
minute physiologic data streams in postoperative ICU
to predict the onset of sepsis after LT and was unable
to assist intraoperative decision-making in LT patients.
As we known, risk factors of LT-related sepsis were
reported to exist in the whole perioperative period
including pre-, intra- and post-operation [26–28].
Considering that the clinical application of postopera-
tive factors in predicting diseases had certain limita-
tions due to its time lag, we collected 59 variables
from preoperative and intraoperative data in this
study with the aim to predict LT-related sepsis at an
earlier stage and enable the anesthesiologists to apply
early intervention during operations. During the oper-
ation, all variables involved in the RF model could be
collected in real-time, it, therefore, allowed us to per-
form the prediction model during the LT surgery in
real-time with the updated data. Actually, we hope to
calculate the estimated incidence of sepsis using the
model during the whole procedure, and if the predic-
tion showed a positive result of postoperative sepsis,
the anesthesiologists could combine their clinical

experience and pay more attention to the hemo-
dynamic stability and appropriately start fluid resusci-
tation. After surgery, it would be an early warning
sign of sepsis and close attention would be given by
the ICU physicians to these patients. For instance,
blood cultures were recommended to be drawn and
diagnosis could be made early to choose appropriate
treatment strategies.

The LASSO method, suitable for the regression of
high-dimensional data, was used to select the most
useful predictive features from the primary data set
[22]. On one hand, it could reduce variables and pre-
vent overfitting of the model; on the other hand, it
was also more convenient to obtain data and reduce
the cost of obtaining data in practical application.
With it, eight variables that widely used and routinely
recorded were enrolled in our ML models, including
preoperative TBIL, intraoperative RBC transfusion,
anesthesia time, blood loss, urine output, crystalloid
infusion, gastric drainage and ascites removal. Notably,
all these variables can be explained by pathophysi-
ology and clinical knowledge, which holds promise for
clinical application in predicting sepsis for patients
after LT in the future.

In our study, the RF model had the best overall per-
formance in predicting postoperative sepsis, with the
greatest AUC of 0.731, the highest F1-score of 0.581,
and relatively balanced specificity and sensitivity of
76.1% and 62.1%. Consistent with an earlier study
[9,10], we found the RF model had a higher perform-
ance than that of the postoperative SOFA score. The
RF model refers to a classifier that uses multiple trees
to train and predict samples and it has the advantage
of speed for the training of large samples, with small
model variance, and strong generalization ability.
Although the RF model had sufficient specificity, its
sensitivity in predicting postoperative sepsis in LT
patients was a little weak (only 62.1%), and this may
be due to the fact that the risk factors of sepsis after
LT were relatively complex and the weight of the
same factor to different patients with sepsis was differ-
ent. In addition, the random forest algorithm is also
easy to over-fit in such noisy sample sets.
Nevertheless, as an ensemble ML model, RF improves
its classification by using the bagging method to
aggregate multiple (usually hundreds) decision trees.
More specifically, since its bagging nature are more
resistant to noisy samples and observations, RF is
more stable than other models in predicting postoper-
ative sepsis [29,30].

Several limitations in our study should be noticed.
First, due to the retrospective design, possible

ANNALS OF MEDICINE 631



collection bias, entry bias, and residual confounding
may occur, and we did not include the patients with
preoperative sepsis, which might be the major pre-
dictor of postoperative sepsis. Second, a low platelet
count, a high level of bilirubin, the need for vasopres-
sors and acute kidney injury lead to an increase in the
SOFA score. But with the same clinical picture, postop-
erative graft dysfunction can look very similar, includ-
ing thrombocytopenia, high bilirubin, kidney failure
and the need for vasopressors. Though there are sev-
eral similar indicators with SOFA score, sepsis is an
infection-initiated dysregulated host response involv-
ing multiple organs. Infection symptoms and other
organ dysfunction might help clinicians to differenti-
ate. Third, based on the accuracy of the model and
the percent of septic patients in the external valid-
ation data set, it missed 8% of septic patients, which
made it to be used only as a decision-making aid to
the clinicians, instead of being a diagnostic tool.
Fourth, our study is a single center study due to the
lack of data from other transplantation centers. we
validated our model in a temporally independent
dataset, which is considered to be a kind of controver-
sial but acceptable external validation in the TRIPOD
statement (Type2b), an intermediary between internal
and external validation [31]. Furthermore, we also
developed an online risk calculator to make the RF
model accessible to anesthesiologists and peers
around the world for external validation.

Conclusions

The current study has established a RF-based ML
model that enrolled preoperative and intraoperative
variables to predict sepsis after LT, which holds prom-
ise for future clinical application to predict postopera-
tive sepsis in LT recipients.
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