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Abstract

One approach to studying the recognition of scenes and objects relies on the comparison of

eye movement patterns during encoding and recognition. Past studies typically analyzed

the perception of flat stimuli of limited extent presented on a computer monitor that did not

require head movements. In contrast, participants in the present study saw omnidirectional

panoramic scenes through an immersive 3D virtual reality viewer, and they could move their

head freely to inspect different parts of the visual scenes. This allowed us to examine how

unconstrained observers use their head and eyes to encode and recognize visual scenes.

By studying head and eye movement within a fully immersive environment, and applying

cross-recurrence analysis, we found that eye movements are strongly influenced by the

content of the visual environment, as are head movements—though to a much lesser

degree. Moreover, we found that the head and eyes are linked, with the head supporting,

and by and large mirroring the movements of the eyes, consistent with the notion that the

head operates to support the acquisition of visual information by the eyes.

Introduction

People experience the visual world with their eyes, so it is only natural that visual researchers

have been concerned with the role that the eyes play in human vision [1–5]. What has received

relatively little attention, however, is the role that the head plays in delivering visual informa-

tion to the eyes (although there are notable exceptions [6–10]. This omission is noteworthy

because in everyday life it seems that we routinely move our head as well as our eyes to look at

things in our environment [11–14]. For example, when people walk about their environment

they normally turn their head to look at things that interest them, the result being that their

eyes tend to remain relatively central with respect to the head [15]. Indeed, a recent paper by

Foulsham and Kingstone [16] discovered that when modelling where people are looking, the

best predictor is where the centre of the head is directed.

This combined movement of the head and eyes can be contrasted with how vision research-

ers routinely study human vision. In the lab the head is normally immobilized—either through

instruction or by physically restraining the head—so that the only way an observer can view

different regions of a visual scene is by moving their eyes. Historically this has been an under-

standable approach given past limitations of research software and equipment, which made
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eye tracking in a head free environmemt extremely challenging. Similarly, if one is focused on

basic visual processes where head movements would be outside of the focus of investigation,

then ensuring that they do not emerge is most reasonable. Nevertheless, given the natural ten-

dency to move the head as well as the eyes outside of the lab, the exclusion of head movements

in the lab risks overlooking the role that the head plays in vision and overstating the relative

importance of the eyes.

There are cognitive consequences too. For instance, when observers are free to rotate their

head in line with rotated text, they do so, to offset the cognitive load of mentally rotating the

text [17]. Additionally there is a close link between head movements and human cognition,

including memory [18–20]. For example, Solman and Kingstone [21] demonstrated that mem-

ory improves for items that are looked at when eye movements are accompanied by a head

movement, presumably because it takes more energy to move the head and the eyes than the

eyes alone (i.e., having worked harder to look at something people encode it more deeply into

memory [22]).

A follow-up investigation by Solman et al. [23] examined if the principles of information

acquisition were the same for the eyes and the head. This was done by yoking a horizontally-

or vertically-oriented rectangular window to an observer’s eye or head movements. Eye move-

ments were found to move in the direction of the visible information—horizontally when the

window was oriented horizontally, and vertically when the window was vertical. Critically,

head movements showed precisely the opposite and complementary pattern, moving vertically

with a horizontal window, and horizontally with a vertical slot. Solman et al. concluded that

these results are consistent with a nested system of effectors whereby the head favours explora-

tion of unknown regions of visual space which are in turn exploited by the eyes.

Although these findings elucidate the relation of head and eyes in the exploration of scenes,

there are still many basic unknowns: How do the head and eyes move when there is no gaze-

or head-contingent window? Is memory performance predicted by both head movements and

eye movements? And what role does the visual world itself, or an individual’s idiosyncratic

movement tendencies [24], play in the way the head and eyes are moved to encode and recog-

nize visual scenes? The aim of the present study was to address these fundamental questions.

We did so by immersing participants in a 3D virtual reality (VR) environment through which

they could view 360˚ panoramic scenes by moving their head and eyes freely to encode and

recognize different aspects of these visual scenes. Such a design allows us to investigate how

participants actively select different parts of the environment to explore and inspect using both

their eyes and head during scene encoding and recognition [25–30]. We then assess the cogni-

tive effect of head and eye movements on recognition performance, and the relative contribu-

tion of the participant versus the visual world on eye and head movement behavior using scan-

and head-path comparisons.

Materials and methods

Participants

Twenty-one (6 male, 15 female; age range 18–22) undergraduate students from the University

of British Columbia participated for course credit. All reported normal or corrected-to-normal

vision. Participants provided informed consent prior to participation, and the study was

approved by the ethics board of the University of British Columbia (H10-00527).

Apparatus

The experiment was controlled by a desktop computer running an HTC Vive Virtual Reality

device equipped with an SMI eye tracker. The HTC Vive headset has a resolution of 1080 x
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1200 pixels, with a 110˚ by 113˚ field of view and a refresh rate of 90 Hz. The virtual experi-

mental set-up was built using the Unity platform (Unity Technologies, 2017) [31]. The SMI

eye tracker has a sampling rate of 250 Hz and was controlled using the SMI-designed Unity

plugin. Tracking accuracy was maintained by performing a calibration every 20 trials. Calibra-

tion consisted of following a moving white circle with a red dot in the middle to 5 different

regions. The SMI Unity plugin reports only success or failure of calibration, not accuracy, so

calibration was repeated upon failure. Head movements (movements of the HTC Vive head-

set) were tracked using inertial measurement units inside the headsets that were calibrated via

two infrared base stations (60 Hz) located on opposite corners of the room [32].

Stimuli

The virtual space for both the encoding and recognition phases consisted of a sphere around

the participant, onto which different omni-directional panoramic scenes were projected, effec-

tively immersing the participant in the scenes. These scenes consisted of a mix of indoor and

outdoor environments taken from the SUN360 Panorama Database [33], with a resolution of

4096 x 2048 pixels (Fig 1). The panoramas were chosen by selecting the first five in each of the

categories of the database.

The panoramas were projected on the inside of the virtual sphere, with the participants’

head positioned in the middle. Binocular and motion depth cues were absent. The panoramas

were defined in world coordinates, with longitudes in the range of −180˚ to 180˚ (from west to

east) and latitudes in the range of −90˚ to 90˚ (from the south pole to the north pole). Further

details are given below in the section ’General Spatial Analysis’.

Procedure

Participants were instructed that there would be two phases to the study, an image encoding

phase and an image recognition phase. In the encoding phase, participants were familiarized

with the VR equipment and given the instructions to remember each of the scenes they were

about to see for a later memory test. Each trial began with a uniform gray sphere with a fixation

cross (at coordinates [0˚, 0˚] of the panoramas) that allowed us to monitor the tracker accu-

racy. After fixating on the cross, the participants pressed the ‘Spacebar’ key on a keyboard that

they were holding to indicate that they were ready for the trial to begin. Each scene was pre-

sented for 10 seconds. There were 80 trials in the encoding phase (40 indoor and 40 outdoor

scenes). This part of the experiment took approximately 20 minutes, after which participants

were instructed to remove the headset and take a 5-minute break.

Fig 1. Examples of panoramic scenes. Examples of the panoramic scenes are shown that were used in the present experiment. Indoor scenes are shown in the

top row, outdoor scenes in the bottom row.

https://doi.org/10.1371/journal.pone.0282030.g001
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In the recognition phase, each trial began with a uniform gray sphere with a fixation cross.

After fixating on the cross, participants pressed the ‘Spacebar’ key to indicate that they were

ready for the trial to begin. Forty randomly chosen ‘old’ scenes from the initial set, and 40

‘new’ scenes were presented for 10 seconds each. After each image was presented, instructions

on a gray background indicated to participants to press the far left ‘Ctrl’ key if they had seen

the scene before, and the right keypad ‘Enter’ key if they had not.

The participants were seated and held a keyboard that was connected by a long (3 m) cable.

The starting position of the exploration was non-randomized, and to ensure that participants

returned to the same position on each trial, they were asked to fixate the fixation cross before

the next trial was presented.

Data analysis

There is substantial confusion in the eye movement field regarding the definition of fixations

and saccades, in particular when eye movements are combined with free head movements

[34]. In our study, participants were situated in the centre of a virtual sphere and looked at the

panoramic scenes with free head movements. We chose to define the measures below primar-

ily with respect to the stimulus sphere, to allow expressing eye and head measures, and their

comparison, with respect to a common coordinate frame. In this context, we now define terms

related to the eyes and head. For a more detailed explanation of how to extract and use these

and other VR eye and head measures see [35].

The eye direction vector was recorded using the binocluar direction vector at 250 Hz while

the position of the headset and its orientation were recorded at a rate of approximately 70 Hz

rate, with the exact timing being dependent on the Unity system [31]. The position and orien-

tation of the headset were linearly interpolated to 250 Hz using spherical linear interpolation

[36] of the headset quaternion.

The main eye analyses refer to the eye vector in a world coordinate frame, which is often

referred to as gaze in the literature. It was computed by combining head direction with the eye

direction (in head-defined coordinates). More precisely, the eye direction in world coordinates

was computed by adding the eye direction vector to the headset quaternion [36]. An eye hit

point, what we call an “eye point” for short, is defined as the intersection of the eye vector (in

world coordinates) with the virtual sphere on which the panoramas are projected and is

described by the sphere coordinates (longitude and latitude). In additional analyses, we also

analyze the characteristics of the eye direction vector in head-defined coordinates.

With respect to the head, we define the head hit point, or “head point,” as the intersection

of the vector pointing forward from the face with the virtual sphere, also defined by longitude

and latitude of the panorama. Head movements with the VR viewer are usually very smooth

and do not permit identifying stable points from the raw data. For this reason, we define a

head fixation as the average head point during a fixation. Head shifts are defined as the angular

differences between successive head fixations.

Fixations are defined as stable eye points on the sphere and are extracted from the unfiltered eye

data using the Identification by Dispersion–Threshold algorithm adapted for use with spherical sti-

muli (IDT; [37, 38]), applying a minimum duration of 80 ms and a maximum dispersion threshold

of 3˚ angular distance. Saccades are defined as angular differences between successive fixations.

In the spatial analyses, we also determined exploration tendencies. The exploration ten-

dency of the eyes (in degrees visual angle) was calculated by taking the average of the great cir-

cle distance between each fixation position and the initial fixation position. Similarly, the

exploration tendency of the head (in degrees visual angle) was calculated by taking the average

of the great circle distance between each head fixation and the initial head fixation.
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In the following sections, the data analyses focus on two aspects of the results, a purely spa-

tial analysis and a spatio-temporal analysis. In the spatial analysis, the spatial distributions of

eyes and head points are examined and compared directly, whereas the spatio-temporal analy-

sis focuses on the cross-recurrence analysis of eye and head patterns.

Results

General spatial analysis

The panoramas were projected on the inside of the virtual sphere, with the participants’ head

positioned in the middle. For the spatial analyses, panorama images and data were projected on

a flat surface, an equirectangular (or equidistant) projection. This projection maps meridians

into vertical straight lines of constant spacing, introducing strong distortions near the poles

compared with the equator (the horizon area), with the panorama image stretched proportional

to 1/cos(latitude). For this reason, data in the polar regions have to be interpreted carefully.

Eyes: Spatial analysis of encoding and recognition

Generally, fixations are concentrated along the horizon (see Fig 2), a bias that has been previ-

ously found [27, 30]. Table 1 shows the fixation spreads, i.e., the median standard deviations of

longitudes and latitudes for the encoding and recognition phases. The fixation spreads for lon-

gitudes are larger for the encoding phase than for the recognition phase, exact U-test, n1 = n2 =

42, p< 0.001. Similarly, the fixation spreads for latitudes are larger for the encoding phase

than for the recognition phase, exact U-test, n1 = n2 = 42, p< 0.001. The fixation spreads dur-

ing the encoding phase are larger for longitudes than for latitudes, exact U-test, n1 = n2 = 42,

p< 0.001, and the fixation spreads during the recognition phase are also larger for longitudes

than for latitudes, exact U-test, n1 = n2 = 42, p< 0.001.

These results indicate that the spread of fixations was larger in the horizontal direction than

in the vertical direction, consistent with previous work [27, 30, 39]. Furthermore, the spread of

fixations was larger for the encoding phase than for the recognition phase. This suggests that

during encoding participants focus on the exploration of the stimuli, whereas during recogni-

tion, they focus on a subset of the scene to check whether it has been seen before. To what

extent, if any, having the same starting rotation contributes to this result is a question worthy

of future investigation.

A more detailed spatial comparison of encoding and recognition can be obtained by analyz-

ing the fixation heatmaps. Fig 3 shows heatmaps for the encoding and recognition of two dif-

ferent images, with encoding heatmaps shown in the middle panels and recognition heatmaps

(for the same scenes) shown in the bottom panels. The heatmaps were obtained from the fixa-

tion maps using a Gaussian filter with σ = 4˚ angular distance. Similarity between the encoding

and recognition heatmaps should yield average correlations of the same scenes (e.g., between

the encoding heatmap of scene 1 and the recognition heatmap of scene 1; see Fig 3) being

higher than the average correlations between encoding and recognition heatmaps of different

scenes (e.g., between the encoding heatmap of scene 1 and the recognition heatmap of scene

14; see Fig 3). A statistical analysis showed that average correlations between the encoding and

recognition heatmaps for the same scenes (rsame
ER ¼ 0:814) were significantly higher than the

average correlations between encoding and recognition heatmaps for different scenes

(rdifferentER ¼ 0:391), t(39) = 19.98, p< 0.001. These correlations used latitude-dependent weights,

as detailed in S1 Appendix.

The original images are shown in the top panels, the heatmaps of the encoding fixations in

the middle panels, and the heatmaps of the recognition fixations in the bottom panels. The
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heatmaps are color-coded, with red indicating the strongest values and blue indicating the

weakest values.

To further explore the characteristics of spatial eye movements, they were analyzed in head-

centered coordinates rather than world coordinates. The heatmap of the eye positions in head-

centered coordinates are shown in Fig 3, and the average standard deviations of longitudes

and latitudes for the encoding and recognition phases are given in Table 2. The spreads for

longitudes are similar for the encoding phase and the recognition phase, exact U-test, n1 = n2

= 42, p = 0.060; and spreads for latitudes are also similar for the encoding phase and the recog-

nition phase, exact U-test, n1 = n2 = 42, p = 0.051. The spreads are larger for longitudes than

Fig 2. Encoding and recognition heatmaps. Encoding heatmaps are presented in the panels on the left side and recognition heatmaps in

the panels on the right side. The top row shows the heatmaps of the eyes in world coordinates, the middle row the eyes in head-centered

coordinates, and the bottom row the head positions in world coordinates. The coordinates of the heatmaps are all shown with longitudes

in the range of −180˚ to 180˚ (from west to east) and latitudes in the range of −90˚ to 90˚ (from the south pole to the north pole). Note

that for ease of comparison, the eyes in head-centered coordinates are shown with the same coordinates even though eyes in head

coordinates are restricted to longitudes of about −70˚ to 70˚ (from west to east) and latitudes of about −60˚ to 60˚ (from south to north).

https://doi.org/10.1371/journal.pone.0282030.g002

Table 1. Spreads (median standard deviations) of eye positions.

Longitude (deg) Latitude (deg)

Encoding 67.33 21.41

Recognition 50.25 17.66

https://doi.org/10.1371/journal.pone.0282030.t001
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for latitudes during the encoding phase, exact U-test, n1 = n2 = 42, p< 0.001, and during the

recognition phase, exact U-test, n1 = n2 = 42, p< 0.001.

The spatial analysis of eye movements in world-coordinates yielded several results. First,

the analysis showed a strong horizontal bias. Second, the spread of eye movements was larger

in the encoding phase than in the recognition phase. This is consistent with the interpretation

that in the encoding phase participants explored the scenes, and in the recognition phase they

focused on one or more regions that matched their stored representations. Third, the correla-

tional analysis of the encoding and recognition heatmaps indicates that people looked at the

same regions of interest in the scenes during encoding and recognition.

Fig 3. Fixation heatmaps for the encoding and recognition of two sample scenes.

https://doi.org/10.1371/journal.pone.0282030.g003

Table 2. Spreads (median standard deviations) of eye positions in head-centered coordinates.

Longitude (deg) Latitude (deg)

Encoding 16.22 10.59

Recognition 15.28 9.63

https://doi.org/10.1371/journal.pone.0282030.t002
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Head: Spatial analysis of encoding and recognition

An analysis of the head point patterns showed that they are also concentrated along the hori-

zon of the scenes. Table 3 shows the average standard deviations of longitudes and latitudes for

the encoding and recognition phases. The head spreads for longitudes are larger for the encod-

ing phase than for the recognition phase, exact U-test, n1 = n2 = 42, p< 0.001. Similarly, the

head spreads for latitudes are larger for the encoding phase than for the recognition phase,

exact U-test, n1 = n2 = 42, p< 0.01. The head spreads during the encoding phase are larger for

longitudes than for latitudes, exact U-test, n1 = n2 = 42, p< 0.001, and the head spreads during

the recognition phase are also larger for longitudes than for latitudes, exact U-test, n1 = n2 =

42, p< 0.001.

A comparison of Tables 1 and 3 shows that head spread follows the same pattern as the eyes

spread, but at a smaller absolute level. The statistical analysis shows that for both encoding and

recognition, and for both longitudes and latitudes, the head spreads are smaller than the eye

movement spreads, all exact U-tests, n1 = n2 = 42, p< 0.001.

A more detailed spatial comparison of encoding and recognition can be obtained by analyz-

ing the head position heatmaps. Fig 4 shows head position heatmaps for the encoding and rec-

ognition of an indoor image on the left and the encoding and recognition of an outdoor image

on the right. Encoding heatmaps are shown in the middle panel and recognition heatmaps (of

the same scenes) in the bottom panels. The scenes are identical to those in Fig 3. The heatmaps

were obtained from the head point (the location on the sphere were the head is pointing) maps

using a gaussian filter with σ = 4˚ angular distance. Similarity between the encoding and recog-

nition heatmaps should yield average correlations of the same scenes (e.g., between the encod-

ing heatmap of scene 1 and the recognition heatmap of scene 1; see Fig 3) being higher than

the average correlations between encoding and recognition heatmaps of different scenes (e.g.

between the encoding heatmap of scene 1 and the recognition heatmap of scene 1; see Fig 4)

should be higher than the average correlations between encoding and recognition heatmaps of

different scenes (e.g. between the encoding heatmap of scene 1 and the recognition heatmap of

scene 14; see Fig 4). A statistical analysis shows that the correlations between encoding and

recognition heatmaps for same scenes (rsame
ER ¼ 0:934) were significantly higher than the aver-

age correlations between heatmaps of different scenes (rdifferentER ¼ 0:722), t(39) = 8.65,

p< 0.001 (using latitude-dependent weights; see S1 Appendix).

To further explore the relation between eyes and head, the eye and head heatmaps of same

scenes (e.g., eye heatmap of scene 1 and head heatmap of scene 1) were compared to the eye

and head heatmaps of different scenes (e.g., eye heatmap of scene 1 and head heatmap of scene

3). The average heatmap correlations between eye and head for same scenes (rsame
GH ¼ 0:625)

were significantly higher than the average correlations of different scenes (rdifferentGH ¼ 0:446), t

(39) = 8.29, p< 0.001. Similarly, in the recognition phase, the average heatmap correlations

between eye and head for same scenes (rsame
GH ¼ 0:684) were also significantly higher than the

average correlations of different scenes (rdifferentGH ¼ 0:575), t(39) = 4.82, p< 0.001.

These results confirm the suggestion that eye and head followed similar movement pat-

terns, both in the encoding phase and the recognition phase. These data converge with other

studies [39, 40] showing that observers keep their eyes oriented within 15–20 degrees of the

Table 3. Spreads (median standard deviations) of head positions.

Longitude (deg) Latitude (deg)

Encoding 57.01 16.20

Recognition 39.90 11.95

https://doi.org/10.1371/journal.pone.0282030.t003
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head-defined viewpoint. Given the robustness of this finding, one promising line for future

studies will be to design investigations that are explicitly aimed at understanding the manner

that the head responds to changes in eye-in-head coordinates, and how that relationship

changes with different tasks and external environments (see also [41]).

Eye and head movements and memory performance

In light of the results indicating that eye and head movements followed similar patterns during

encoding and recognition phases, an important question is whether this overlap is functionally

related to recognizing the scenes. To address this question we examined the extent to which

various eye and head movement measures made during encoding and recognition predicted

memory performance. Note that in general recognition accuracy was very good, with nearly

92% of all the scenes being recognized correctly. There are several potential reasons for the

high recognition rate; first the large variation of scenes making the scenes almost uniquely

identifiable and second, the stability of the starting positions by requring that the participants

fixated the fixation cross at the beginning of each trial. It should be noted, however, that

despite these considerations, we observed substantial head movements in the experiment.

Table 4 and the sections below present general eye movement measures, namely number of

fixations per trial, mean fixation duration, exploration tendency of the eyes, and exploration

tendency of the head. These measures are reported for the encoding phase, the recognition of

Fig 4. Head position heatmaps for two sample scenes. The original images are shown in the top panels, the heatmaps

of the encoding head positions in the middle panels, and the heatmaps of the recognition head positions in the bottom

panels. The heatmaps are color-coded, with red indicating the strongest values and blue indicating the weakest values.

https://doi.org/10.1371/journal.pone.0282030.g004
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‘old’ images (which were presented in the encoding phase), and the recognition of ‘new’

images (which were not presented in the encoding phase). The eye movement measures are

reported separately for correct and incorrect responses, as described in detail below.

For encoding, we report eye and head movement measures for only those images that were

later included in the recognition phase, separately for those images that were later recognized

correctly (Hits) and incorrectly (Misses). Note, however, that there were no differences in any

of the eye and head movement measures between the images that were included in the recog-

nition phase and those that were not (all t’s< 1.88, all p’s > 0.21). One subject was removed

from the analysis of the encoding data for having a perfect memory performance score, while

eight subjects were removed from the analysis of the recognition data for missing at least one

category of responses (e.g., one subject made no False Alarms).

Below, we provide detailed analyses of the number of fixations, the mean fixation durations,

and the exploration tendency of eyes and head. We fitted separate generalized linear mixed-

effects models (GLMM [42]) for each measure to determine whether it predicted performance

(on its own) over and above any variance accounted for by the random effects of image and

participants. The analyses were done separately for encoding and recognition. By including

participants and images as random effects, the GLMM’s take into account a given person’s

ability to remember images, as well as a given image’s memorability. Likelihood ratio tests

were conducted using the ‘mixed’ function from the afex package [43], and approximated p-

values from Wald z-statistics were used for model estimates. For ease of interpretation, log

odds output from the GLMM’s were converted to odds ratios using the sjPlot package [44].

Number of fixations

In the encoding phase, there were a greater number of fixations in images that were correctly

remembered (Hits), compared to those that were not (Misses), χ2(1) = 10.66, p = 0.001, Odds

Ratio = 1.37, CI = [1.14, 1.65], z = 3.36, p< 0.001. Note that due to singularity issues arising

from near-zero variance for the random effect of subject, it was dropped from the model, fol-

lowing [45]. In the recognition phase, there were significantly fewer fixations for old images

that were correctly recognized (Hits) compared to those that were not (Misses), χ2(1) = 49.36,

p< 0.001, Odds Ratio = 0.33, CI = [0.23, 0.47], z = -5.99, p< 0.001. Similarly, for new images,

there were significantly fewer fixations for correct responses (Correct Rejections) compared to

incorrect responses (False Alarms), χ2(1) = 5.22, p = 0.022, Odds Ratio = 0.60, CI = [0.38,

0.95], z = -2.16, p = 0.031.

Table 4. Means and standard deviations of general eye movement measures.

Encoding Old New

Number of fixations per trial

• Correct (Hit/Correct Rejection) 39.27 (3.39) 32.31 (8.91) 36.53 (6.82)

• Incorrect (Miss/False Alarm) 38.14 (5.09) 38.46 (6.65) 39.06 (6.83)

Mean fixation duration (ms)

• Correct (Hit/Correct Rejection) 196.3 (19.3) 216.6 (24.1) 203.7 (18.0)

• Incorrect (Miss/False Alarm) 199.2 (31.7) 192.6 (17.4) 189.9 (19.1)

Exploration tendency of eyes (degrees)

• Correct (Hit/Correct Rejection) 59.82 (10.46) 37.70 (15.9) 45.15 (15.2)

• Incorrect (Miss/False Alarm) 57.14 (12.02) 50.48 (15.6) 54.21(20.3)

Exploration tendency of head (degrees)

• Correct (Hit/Correct Rejection) 49.72 (11.27) 30.40 (7.97) 36.75 (9.47)

• Incorrect (Miss/False Alarm) 47.35 (12.39) 42.35 (11.60) 44.75 (18.10)

https://doi.org/10.1371/journal.pone.0282030.t004
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Fixation durations

In the encoding phase, fixation durations were marginally shorter for correctly remembered

images (Hits) compared to those that were not (Misses), χ2(1) = 3.60, p = 0.058, Odds

Ratio = 0.83, CI = [0.69, 1.00], z = -1.99, p = 0.047. In the recognition phase, fixation durations

were significantly longer for old images that were correctly recognized (Hits) compared to

those that were not (Misses), χ2(1) = 36.83, p< 0.001, Odds Ratio = 3.05, CI = [1.97, 4.71],

z = 5.03, p< 0.001. Similarly, for new images, fixation durations were significantly longer for

correct responses (Correct Rejections) compared to incorrect responses (False Alarms), χ2(1)

= 4.75, p = 0.029, Odds Ratio = 1.81, CI = [1.04, 3.16], z = 2.08, p = 0.037. Note that there is an

inverse relationship between number of fixations and fixation duration, which follows natu-

rally from the fixed, 10-seconds stimulus duration: The more fixations are made, the shorter

the fixation durations must be, and vice-versa. The effects of the encoding and recognition

phases on the duration of fixations support earlier findings showing that fixation duration is a

good indicator of attentional processing [39, 46].

Exploration tendency of eyes

In the encoding phase, the eyes were more exploratory in images that were correctly recog-

nized (Hits) compared to those that were not (Misses), χ2(1) = 7.37, p = 0.007, Odds

Ratio = 1.33, CI = [1.08, 1.63], z = 2.74, p = 0.006. Note that due to singularity issues arising

from near-zero variance for the random effect of subject, it was dropped from the model [45].

In the recognition phase, the eyes were less exploratory for old images that were correctly rec-

ognized (Hits) compared to those that were not (Misses), χ2(1) = 53.60, p< 0.001, Odds

Ratio = 0.38, CI = [0.28, 0.51], z = -6.54, p< 0.001. For new images, fixations were less explor-

atory for correct responses (Correct Rejections) compared to incorrect responses (False

Alarms), χ2(1) = 6.24, p = 0.012, Odds Ratio = 0.97, CI = [0.94, 0.99], z = -2.51, p = 0.012.

Exploration tendency of head

In the encoding phase, head positions were more exploratory in images that were later cor-

rectly recognized (Hits) compared to those that were not (Misses), χ2(1) = 3.98, p = 0.046,

Odds Ratio = 1.04, CI = [1.00, 1.08], z = 2.00, p = 0.046. In the recognition phase, head posi-

tions were less exploratory for old images that were correctly recognized (Hits) compared to

those that were not (Misses), χ2(1) = 341.14, p< 0.001, Odds Ratio = 0.71, CI = [0.69, 0.74], z

= -18.55, p< 0.001. For new images, head positions were less exploratory for correct responses

(Correct Rejections) compared to incorrect responses (False Alarms), χ2(1) = 18.07, p< 0.001,

Odds Ratio = 0.88, CI = [0.83, 0.93], z = -4.26, p< 0.001.

In summary, the extent to which individuals move their eyes and head to explore pan-

oramic scenes is associated with their memory performance. During encoding, more fixations,

and more exploration (with both the eyes and head) were associated with scenes that were

later correctly recognized. During recognition, correctly recognized images were associated

with fewer fixations, but longer fixation durations and less exploration with the eyes and head.

There was a similar pattern for correct rejections compared to false alarms, but the magnitude

of these differences is less pronounced (see Table 3).

Spatio-temporal analysis

The spatio-temporal analysis of eyes and head relies on cross-recurrence analysis (CRA; [47,

48]), which is a generalization of recurrence quantification analysis [49]. This technique per-

mits an analysis of eye and head patterns over space and time. CRA allows for the
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quantification of behavioral similarity among people and images. That is, do certain aspects of

eye and head movement behaviour overlap across images, or across people when encoding

and recognizing a scene? In this section, we begin with a brief description of cross-recurrence

and its most important measures, where each measure quantifies an interesting behavioural

(scan or head path) similarity. Then we present an analysis designed to tease out the eye and

head movement behaviours that are unique to the individual when viewing panoramic scenes,

versus those that are unique to particular scenes.

Consider two fixation sequences E (for encoding) and R (for recognition), which are

adjusted to have the same lengths. Within these two sequences, two fixations ei and rj are

cross-recurrent if their angular distance is below a given threshold (see the complete presenta-

tion and formal definitions given in S2 Appendix). CRA was computed on the fixation

sequences (scan paths) and head position sequences (head paths) for each participant during

encoding and recognition. An example of a cross-recurrence diagram is shown in Fig 5.

Recurrence radius

The relation between encoding and recognition scanpaths were analyzed using cross-recur-

rence analysis. The CRA measures depend on the recurrence radius, i.e., the average cross-

Fig 5. Example of a cross-recurrence diagram. The encoding and recognition fixations are adjusted to 25 fixations,

with dots indicating cross-recurrences. For example, encoding fixation 3 and recognition fixations 2, and 6–7, are

cross-recurrent, i.e., their angular distance is below the defined recurrence threshold.

https://doi.org/10.1371/journal.pone.0282030.g005
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recurrence increases with the radius, which in this case is defined by the angular distance

threshold. This is illustrated in Fig 6. As the radius increases, so does the mean cross-recur-

rence. Given the larger spread of eye points (see Table 1) compared to head points (see

Table 2), the two curves diverge as radius increases. Webber and Zbilut [50] suggest several

guidelines for selecting the proper radius, including the selection of a radius such that percent-

age of recurrences remains low. In the present study eye and head patterns could be well char-

acterized using an average cross-recurrence of 7 percent, which is close to the usual percentage

of 5 percent while at the same time ensuring that there are sufficiently many recurrences. To

obtain an average cross-recurrence of 7 percent for eyes and head (dashed line in Fig 6), we

chose a cross-recurrence radius of 10.1˚ for eye fixations and of 7.6˚ for head positions.

CRA measures

Several measures are used to quantify aspects of scanpath similarity through cross-recurrence.

The CRA measures below are described in terms of fixations, but the same measures can also

be applied to averaged head positions.

• Recurrence (REC) is the percentage of cross-recurrent points (out of the total possible cross-

recurrences) and indicates the amount of spatial overlap between encoding and recognition

fixations. For example, if the spatial overlap between encoding and recognition fixations for

scene 1 is high, the percentage of recurrent points will be high.

• Determinism (DET) is the percentage of these recurrent points that form diagonal lines in

the cross-recurrence diagram. This quantifies the number of fixations that overlap in both

space and time. A high percentage of deterministic fixations means that there are fixation

Fig 6. Mean cross-recurrence of eyes and head as a function of cross-recurrence radius. The cross-recurrences were

computed for all panoramas used in the experiment. As the radius increases, so does the mean cross-recurrence. We

chose a radius of 10.1˚ for fixations and 7.6˚ for average head positions to obtain an average cross-recurrence of 7

percent (dashed line).

https://doi.org/10.1371/journal.pone.0282030.g006
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trajectories that are common to both fixation sequences. For example, sequences of fixations

made during encoding that are then exactly repeated during the recognition of a scene.

• Vertical Laminarity (vLAM) and the related Vertical Trapping Time (vTT) quantify the per-

centage of recurrent points that form vertical lines in the cross-recurrence diagram, with

vTT indicating the average length of these vertical lines. This captures the behaviour where

an individual briefly scans a particular region during encoding and then inspects it in detail

during recognition (see the example in Fig 5 for such an instance).

• Horizontal Laminarity (hLAM) and the related Horizontal Trapping Time (hTT) quantify

the percentage of recurrent points that form horizontal lines in the cross-recurrence dia-

gram, with hTT indicating the average length of these horizontal lines. This captures the

behaviour where an individual scans a region in detail during encoding and then only briefly

inspects it during recognition.

• The Center of Recurrence Mass (CORM) measure quantifies where on the cross recurrence

plot the majority of recurrences are. A large positive value indicates that during recognition,

observers spend more time at locations looked at earlier on during encoding. A large nega-

tive CORM value indicates that during recognition, observers spend more time at locations

looked at later during encoding. This measure essentially quantifies primacy (positive

CORM) and recency (negative CORM) effects.

• The Clusters (CLUST) measure quantifies the percentage of recurrent fixations that form

clusters with at least 8 cross-recurrences in the cross-recurrence diagram. The presence of

clusters in the cross-recurrence diagram expresses the tendency to focus on the same spatio-

temporal subsets of locations during encoding and recognition.

• The Entropy (ENT) is defined as the entropy of the probability distribution of diagonal

lengths. In general, it reflects the complexity of the deterministic structure in a system, in

our case of eye or head patterns. For uncorrelated patterns, the value of ENT is small, indi-

cating its low complexity [51].

Scanpath similarity between encoding and recognition

In the analysis of the CRA data, we were interested in how the two dimensions, Participants

and Images, affected the similarity of the encoding and recognition scanpaths as measured by

the nine different CRA measures introduced earlier. Same-participant similarity suggests that

participant is a factor in the scanpath similarity, and Same-images similarity suggests that the

images themselves affect scanpath similarity. The comparisons were made as follows. During

encoding, 80 images were shown, with 40 images being shown again during recognition

(referred to as the repeated R-set), and 40 images not being shown during Recognition

(referred to as the dropped D-set). During recognition, 80 images were shown, 40 Old images

that were shown during encoding and 40 New images. To separate the effects of Images and

Participant, the following comparisons were made:

• Same-participant Same-images (Sp-Si): For each ‘Old’ recognition trial, the recognition

image was paired with the matching image from the R-set.

• Same-participant Different-images (Sp-Di): For each ‘New’ recognition trial, the recognition

image was paired with a randomly chosen image from the D-set.

• Different-participant Same-images (Dp-Si): For each ‘Old’ recognition trial, the recognition

image was paired with the matching image from the R-set of a randomly chosen other

person.
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• Different-participant Different-images (Dp-Di): For each ‘New’ recognition trial, the recog-

nition image was paired with a randomly chosen image from the D-set of a randomly chosen

other person.

Fig 7 shows the mean scanpath similarities for eyes and head, for nine CRA measures

(REC, DET, hLAM, hTT, vLAM, vTT, CORM, CLUST and ENT), across the four conditions

(Sp-Si, Sp-Di, Dp-Si and Dp-Di).

An analysis of the eyes results in Fig 7 shows that all measures except CORM showed the

same general pattern, namely a strong effect of images and a weak effect of participant. The

CRA measures were highest when the same participants looked at the same images during

encoding and recognition (Sp-Si). This fixation overlap between encoding and recognition

tends to show little or no decline when the encoding and recognition paths of different partici-

pants viewing the same images are compared (Dp-Si). This indicates that the contribution of

the participant to scanpath overlap is weak, and suggests that the information in the image is

driving much of the variance in eye and head movement behaviour. This inference is sup-

ported by our finding that in relation to Sp-Si fixation overlap declines profoundly, and gener-

ally by the same magnitude, when the same or different participants look at different images

(Sp-Di and Dp-Di). Collectively, these data indicate that scanpath overlap is high when the

images are the same, and it is low when the images are different. In light of this strong effect of

image, if any effect of participant is expressed, it tends to be seen when the images are the

same.

These observations are supported by a statistical analysis (see S3 Appendix). We performed

a 2 (Participant; Same-Participant vs. Different-Participant) by 2 (Image; Same-Image vs. Dif-

ferent-Image) repeated measures analysis of variance for each CRA measure of the eyes. A

Fig 7. Scanpath similarities for eyes and head measured using nine CRA measures. Scanpath similarity values for

eyes and head are shown for the four conditions (Sp-Si, Sp-Di, Dp-Si, Dp-Di) and the nine CRA measures (REC, DET,

hLAM, hTT, vLAM, vTT, CORM, CLUST and ENT).

https://doi.org/10.1371/journal.pone.0282030.g007
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significant main effect of Image was return for all measures (F’s > 55.25, p’s < 0.001) except

CORM (F = 0.89, p = 0.36). In contrast there was a main effect of Participant only for DET,

vLAM, and ENT (F’s> 5.64, p’s < 0.05). Reflecting the fact that any effect of Participant tends

to be evident when the images are the same, an Image x Participant interaction was returned

for all measures (F’s> 5.67, p’s < 0.05) save for hLAM, vTT and CORM (F’s < 2.90, p’s>

.10).

For the head, the pattern of results in Fig 7 is different from that of the eyes. Most CRA

measures were again highest when the the head of the same participants are directed at the

same images during encoding and recognition (Sp-Si), but the effect is less consistent for the

other conditions. This is again supported by a statistical analysis (see S3 Appendix). We per-

formed a 2 (Participant; Same-Participant vs. Different-Participant) by 2 (Image; Same-Image

vs. Different-Image) repeated measures analysis of variance for each CRA measure of the

head. A significant main effect of Image was returned for all measures (F’s > 19.75, p’s<

.001), save for hTT and CORM (F< 0.60, p’s > .45), and brushing significance for hLAM

(F = 4.08, p = 0.057). The effect of Participant is present only for vLAM, vTT, and ENT

(F’s> 5.90, p’s < 0.05). Consistent with the generally weaker effects for head, no interactions

were observed (all F’s< 3.65, p’s > 0.05).

Taken together, the results reveal an interesting relationship between eyes and head. A

purely spatial analysis has shown that the eyes stay fairly close to the head-defined center of

field of view, supporting earlier results in the literature (e.g., [39, 40]). In contrast, the spatio-

temporal analysis shows differential influences of Image and Participant on their relation, with

a consistent and strong effect of Image and a weaker effect of Participant on the scanpath simi-

larities of the eyes, but less consistent effects on the scanpath similarities of the head. In other

words, the eyes seem to be strongly driven by the image content, and while this is also true for

head movements, there seems to be room for more variance arising from the person doing the

moving. This agrees with earlier work in VR [27] where there are strong individual differences

in head movement propensity (i.e., ‘movers’ and ‘nonmovers’ [52]), and suggests that the eyes

and head may be under different control mechanisms.

Discussion

The present paper addresses three core questions: How does the movement of the head and

eyes support the acquisition of panoramic visual information when observers are immersed

within VR? How is this movement associated with subsequent scene recognition? And to what

extent are similarities in head and eye movements between scene encoding and recognition

attributable to general patterns of scene exploration versus exploration patterns that are

responsive to the content of the environment itself? To answer these questions, we focused on

the spatial and temporal similarities of eye and head movements during the encoding and the

recognition of panoramic scenes in VR.

Spatial analysis

The spatial analysis of eye movements revealed several results. First, the analysis showed a

strong horizontal bias of eye fixations, suggesting that participants may have focused primarily

on the areas of the panoramic scenes that were most informative [27, 30]. Second, the spread

of eye movements was larger in the encoding phase than in the recognition phase, consistent

with the notion that participants focus on the exploration of the scenes during the encoding

phase, whereas during the recognition phase the emphasis is on the comparison of scene

images with stored representations acquired during encoding. Third, the correlational analysis

of the encoding and recognition heatmaps showed a very close similarity of the eye movement
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patterns in the two phases, providing further evidence that in the recognition phase, eye fixa-

tions were concentrated on those areas of the panoramic scenes that allowed an informed

comparison with those visual representations stored in memory. The analysis of the head data

revealed a similar pattern of results, although smaller in absolute terms. Indeed, we found that

eye and head movements were themselves more correlated when looking at the same rather

than different visual scenes.

Memory performance

Given that eye and head movements are similar, especially when looking at the same scenes,

the question then is whether these similarities are associated with correct memory perfor-

mance? They are, unequivocally. More exploration of visual scenes during encoding is linked

to successful recognition of those scenes later. All our measures converged on this conclusion.

Greater spatial exploration with the eyes and head during encoding as well as more and briefer

fixations are all associated with enhanced scene recognition. And when those scenes are cor-

rectly recognised, observers are more inclined to explore them less with their head and eyes

while making fewer and longer fixations relative to those scenes that are not recognised. In

sum, both head and eye measures serve as reliable indicators of successful encoding and recog-

nition of panoramic scenes.

Spatio-temporal analysis

What we still do not know, however, is whether these similarities above reflect general patterns

of visual exploration (i.e., those associated with an observer’s idiosyncratic tendencies) versus

a sensitivity to the visual environment. To address this issue we conducted a spatio-temporal

analysis of eye and head movements using cross-recurrence analysis. For eye movements a

consistent pattern of results was found for all CRA measures—except center of recurrence

mass (CORM) which measures whether there is a tendency for most recurrences to occur ear-

lier or later in the sequence. Specifically, the analyses revealed that recurrences were higher for

the same participants viewing the same images (Sp-Si) than the same participants viewing dif-

ferent images (Sp-Di) or different participants viewing the same images (Dp-Si; Fig 7). The dif-

ferences between Sp-Si and Sp-Di indicate that changing the image leads to a strong reduction

in scanpath similarity (see also Dp-Si versus Dp-Di), and the differences between Sp-Si and

Dp-Si indicate that changing the participant leads to a weaker reduction in scanpath similarity

(see also Sp-Di versus Dp-Di). Together, these results indicate that the spatio-temporal eye

movement patterns are determined primarily by the content of the panoramic scenes and to a

lesser degree by patterns of movement particular to the participants themselves.

The spatio-temporal analysis of head positions using cross-recurrence analysis showed a

slightly different pattern of effects than for the eyes. Image content was again responsible for

the similarity in head path movements, although this effect was relatively weaker than for the

eyes. Previous correlational analyses and our spatial analyses of eyes and head show strong

similarities, but the spatio-temporal analyses indicate more subtle differences between the two

effectors. We consider this relation in more detail below.

Eyes and head

By immersing individuals in 360˚ virtual scenes and allowing them to be explored freely

enables us to extend the results of the many eye movement laboratory studies that have pre-

sented stimuli on computer monitors and discouraged any movement of the head. Moreover,

and in contrast to naturalistic experiments outside the laboratory [12, 15, 53], the analysis of

our virtual visual environment has the advantage of being unaffected by any number of
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additional variables such as planning of navigating routes through the environment and obsta-

cle avoidance. This leads to a unique opportunity for studying the relation between the move-

ment of the head and eyes while observers explore, encode, and recognize immersive visual

environments.

The head and eyes can work in a similar, coordinated manner without well-defined separate

roles in visual exploration [8]. Along these lines, it has been shown, for example, that visual

information is encoded more fully, and is better remembered, when it is accompanied by a

head movement, presumably because the observer expends more energy when making a head

and eye movement [9, 21]. Furthermore, the head and eyes may complement each other

where, for example, the head can be used to extend the field of view, altering what the eyes ulti-

mately examine [15, 54–56]. When the periphery is masked using head- or eye- contingent

windows, it has been shown that the head is more likely to move into unseen space than the

eyes [23], and when tested in VR, it has been shown that head movements are impacted much

less by peripheral or central vision loss than eye movements [29]. In this context, head move-

ments are controlled in a top-down, task-oriented manner, enabling a changing field of view;

whereas eye movements are controlled in both a top-down and a bottom-up manner to change

the focus of attention within the field of view [25, 27, 41, 57]. In the present study we find that

the head and eyes are linked, though the effect of image content—which is primarily responsi-

ble for an overlap in head- and eye-path movements—is most pronounced for the eyes. This is

consistent with the eyes ultimately being responsible for taking in visual information, with

head movements supporting that visual acquisition by the eyes.

Conclusions

The present study harnessed to the power of virtual reality to examine how unconstrained

observers use their head and eyes to encode and recognise panoramic visual scenes. By study-

ing head and eye movement within a fully immersive environment, and applying cross-recur-

rence analysis, we have found that eye movements are strongly influenced by the content of

the visual environment, as are head movements—though to a much lesser degree. Moreover,

we find that the head and eyes are linked, with the head supporting, and by and large mirror-

ing the movements of the eyes, consistent with the notion that the head operates to support the

acquisition of visual information by the eyes.

One of the many strengths of using VR to measure head and eye movements is the sheer

wealth of data that one collects [35]. The analyses in the present study were applied to address

our research questions but we hasten to add that there are very many questions and analyses

that remain to be considered in the future. For instance, we currently do not know what factors

are critical for whether a head movement accompanies an eye movement. The distance and

the direction that the eyes move is an obvious consideration [25, 38], but as suggested by the

present study, the role of the individual may also be a key consideration [52]. Future research

questions such as these will also demand other analyses and measures, such as the position of

the eyes within the head, their movement direction, the temporal relationship between eye

ampliude and the initiation of a head movement, and of course, their relationship to individual

difference measures. We are excited by the many new discoveries that remain to be made.
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