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It is estimated that short association fibers running immediately beneath the cortex may
make up as much as 60 % of the total white matter volume. However, these have been
understudied relative to the long-range association, projection, and commissural fibers
of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which
is the primary methodology used to non-invasively study the white matter connections.
Inspired by recent anatomical considerations and methodological improvements in super-
ficial white matter (SWM) tractography, we aim to characterize changes in these fiber sys-
tems in cognitively normal aging, which provide insight into the biological foundation of
age-related cognitive changes, and a better understanding of how age-related pathology
differs from healthy aging. To do this, we used three large, longitudinal and cross-
sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features
and length/volume features of several SWM systems. We find that axial, radial, and mean
diffusivities show positive associations with age, while fractional anisotropy has negative
associations with age in SWM throughout the entire brain. These associations were most
pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures
of SWM volume and length decrease with age in a heterogenous manner across the brain,
with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than
well-studied long-range white matter pathways. These features, and their variations with
age, provide the background for characterizing normal aging, and, in combination with lar-
ger association pathways and gray matter microstructural features, may provide insight
into fundamental mechanisms associated with aging and cognition.
� 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction

Superficial white matter (SWM) is the layer of white
matter immediately below the cerebral cortex, and is com-
posed of short association fibers that may connect adjacent
cortical areas (inter-gyri SWM) or run along the ridge of
one gyrus (intra-gyri SWM) [1]. As summarized in [2],
short association fibers represent a majority of the connec-
tions of the human brain [3,4], occupy as much as 60 % of
the total white matter volume [3], are among the last parts
of the brain to myelinate [5,6], and contain a comparatively
high density of interstitial white matter neurons relative to
other white matter [7,8]. The SWM serves a critical role in
brain function, plasticity, development, and aging, and is
especially affected in disease and disorders [9–20].

Despite its prevalence and significance, SWM has been
understudied relative to the long-range association, pro-
jection, and commissural fibers of the brain. This is largely
because of the limitations of diffusion MRI fiber tractogra-
phy [21–23], which is the primary methodology used to
non-invasively study the white matter connections [24].
The study of SWM using tractography faces anatomical
and methodological challenges including partial volume
effects, complex local anatomy, and a lack of consensus
on definition and taxonomy [23], which complicate devel-
opment and validation of algorithms dedicated to studying
these fiber systems. However, recent innovation in diffu-
sion MRI imaging, processing, and tractography method-
ologies [20,21,23,25,26] have made it possible to reliably
study SWM in health and disease [13–16,27,28].

One promising avenue of exploration is to study SWM
during aging. Studies of the aging brain may provide
insight into the biological foundation of age-related cogni-
tive changes, and a better understanding of how abnormal
aging (e.g., age-related neurodegenerative disorders) dif-
fers from healthy aging [29]. A large body of magnetic res-
onance imaging (MRI) research has shown that the
structure of the human brain is constantly changing with
age. In the gray matter, structural MRI studies have shown
heterogenous patterns of normal age-related changes in
cortical volume and thickness [30–37], with detectable dif-
ferences in abnormal aging and disease [37–42]. In the
white matter, diffusion tensor imaging (DTI) analysis has
shown that fractional anisotropy (FA) is negatively associ-
ated with age and mean diffusivity (MD) is positively asso-
ciated with age across several white matter pathways [43–
46], and tractography analysis has shown that the volume
and surface areas of many pathways decreases with age
Table 1
This study used 3 longitudinal and cross-sectional datasets, with a total of 1293 par
and number of sessions, are shown for each individual dataset.

Dataset Number of Subje

Baltimore Longitudinal Study of Aging 741
328 M

Cambridge Centre for Ageing Neuroscience 365
186 M

Vanderbilt Memory & Aging Project 187
113 M
1293
627 M
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[47]. These findings have been attributed to myelin loss
and/or decreased axonal densities and volumes. However,
with few exceptions [12,48–50], studies of white matter
brain aging have focused on the deep white matter and lar-
ger long-range pathways of the brain.

Inspired by recent anatomical considerations and
methodological improvements in SWM tractography [23],
and lack of studies of SWM during aging, we sought to
characterize changes in these fiber systems during normal
aging. To do this, we leveraged three well-established
cohorts of aging, including two longitudinal cohorts [Balti-
more Longitudinal Study of Aging (BLSA) [51], Vanderbilt
Memory & Aging Project (VMAP) [52]], and one cross-
sectional cohort [Cambridge Centre for Ageing and Neuro-
science (Cam-CAN) [53]]. Within these cohorts, we per-
formed automatic tractography segmentation in 132
SWM bundles, characterizing both microstructural fea-
tures and macrostructural features of these SWM systems,
to describe associations between these features and age.

Methods

Data

This study used data from three datasets, summarized
in Table 1, and contained a total of 1293 participants
(2711 sessions) aged 50–98 years. All datasets were fil-
tered to exclude participants with diagnoses of mild cogni-
tive impairment, Alzheimer’s disease, or dementia at
baseline, or if they developed these conditions during the
follow-up interval. Finally, in order to focus on the aging
process, datasets were filtered to include participants aged
50+, due to limited samples sizes below 50 years old in
each dataset.

First, was the Baltimore Longitudinal Study of Aging
(BLSA) dataset, with 741 participants scanned multiple
times ranging from 1 to 8 sessions, and time between scans
ranging from 1 to 10 years, yielding a total of 1788 diffu-
sion sessions. DiffusionMRI data was acquired on a 3 T Phi-
lips Achieva scanner (32 gradient directions, b-value =
700 s/mm2, TR/TE = 7454/75 ms, reconstructed voxel
size = 0.81 � 0.81 � 2.2 mm, reconstruction matrix = 320
� 320, acquisition matrix = 115 � 115, field of view =
260 � 260 mm). Second, was data from the Vanderbilt
Memory & Aging Project (VMAP), with 187 participants,
scanned between 1 and 4 sessions, with a total of 558
diffusion datasets. Diffusion MRI data was acquired on a
3 T Philips Achieva scanner (32 gradient directions, b-val
ticipants (2711 sessions), aged 50–98 years. Distributions of age at baseline,

cts Number of Sessions Age

1788
Range [1 8]

[50 98]
74.1 +/- 9.9

365
Range [1]

[50 88]
68.0 +/- 10.3

558
Range [1 4]

[60 95]
74.2 +/- 7.0

2711
Range [1 8]

[50 98]
73.5 +/- 9.3
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ue = 1000 s/mm2, reconstructed voxel size = 2x2x2mm).
Third, was data from the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN) data repository [53] with
356 participants, each scanned once using a 3 T Siemens
TIM Trio scanner with a 32-channel head coil (30 direc-
tions at b-value = 1000 s/mm2, 30 directions at b-value =
2000 s/mm2, reconstructed voxel size = 2x2x2mm). All
datasets were preprocessed using the PreQual diffusion
MRI pipeline [54], which includes motion correction, eddy
current correction, and susceptibility distortion correction
(using the Synb0-DISCO [55] algorithm for distortion cor-
rection for Cam-CAN and BLSA where no reverse phase
encoding scans are available). Thorough manual quality
control was performed, and sessions with significant arti-
facts (excessive motion, slice dropout, striping artifact,
inadequate alignment with structural image) were
removed from analysis, which included four Cam-CAN,
two VMAP, and thirty-two BLSA sessions. All human data-
sets from Vanderbilt University were acquired after
informed consent under supervision of the appropriate
Institutional Review Board. This study accessed only de-
identified patient information.

Tractography and SWM bundle dissection

For every subject and every session, sets of SWM path-
ways were virtually dissected using methodology similar
to [23] (referred to as ‘voxel-based’ method in [23]).
Fig. 1 visualizes the methodological pipeline.

This pipeline utilized MRtrix [56]. Preprocessed diffu-
sion data were resampled to 1 � 1 � 1 mm3 voxels [57]
and fiber orientation distributions were derived using the
3-tissue response function estimation [58] single/multi-
shell multi-tissue CSD (dependent upon the dataset)
[58,59].Alignment of diffusion and structural data was per-
formed using a boundary based rigid registration (epi_reg)
from the FSL toolbox [60] and subsequently quality
checked for accurate alignment. Next, FreeSurfer was per-
formed on the structural T1-weighted images [61] and
FreeSurfer’s ‘‘aseg” volume was transformed to diffusioin
space to act as input to MRtrix’s five tissue type (5TT)
image segmentation algorithm [62]. The 5TT image was
then manipulated so that cerebellar cortex, amygdala, hip-
pocampus, and deep nuclei were set as gray matter vol-
umes. Thus, upon creation of the white/gray matter
boundary for streamline seeding all streamlines are forced
to start and end at the neocortex. Tractography was per-
formed using anatomically constrained tractography [62]
Fig. 1. Methodological pipeline. Fiber tractography is constrained based on ana
matrix. Only bundles reproducible across the studied population (N = 132) are
each bundle and each subject, microstructural and macrostructural features are

3

and the second-order integration probabilistic algorithm
[63] (max angle 45 degrees, step size = 0.5 mm, fODF
power = 0.25) to generate 2 million streamlines with a
maximum length of 40 mm to be consistent with the ‘short
association fiber’ definition of [3] and previously validated
tractography methods [23]. This pipeline has been shown
to result in dense systems of fibers immediately adjacent
to the cortical sheet [23].

Freesurfer [61] parcellation schemes were then trans-
formed to diffusion MRI space. For this work, we chose to
use the Desikan Killiany atlas [64] parcellation, utilizing
only the neocortex labels, to assign all streamlines to edges
in a connection matrix, resulting in a potential 84x84
potential SWM bundles. These bundles were filtered using
scilpy tools (https://github.com/scilus/scilpy) to remove
outlier streamlines using Quickbundles hierarchical clus-
tering (alpha parameter = 0.6) [65]. An empirical decision
was made to select only those bundles that are repro-
ducible across 95 % of the studied population (containing
a minimum of 500 streamlines), resulting in 132 SWM
bundles studied.

While there is no consensus on taxonomy and classifi-
cation of SWM [21] (just as for long range tracts [66]),
we chose to visualize results of inter-gyral (connections
between two different gyri, resulting in the traditionally
described U-shaped fibers, or U-fibers) and intra-gyral
(connections within the same gyrus, i.e. along the diagonal
of the connection matrix) SWM separately. We also note
that we do not necessarily constrain fibers to be immedi-
ately superficial.

A list of the 132 bundles, using nomenclature derived
from the Desikan Killiany atlas, is given in the appendix.

Feature extraction

From the final 132 bundles for each subject, 6 features
were extracted including four DTI microstructural mea-
sures of fractional anisotropy (FA), and mean, radial, and
axial diffusivities (MD, RD, AD) and two macrostructural
measures of length and volume, following the procedures
in [67], which are based on the average streamline length
and volume occupied by a discretized mask of each bundle.

Analytical plan

To investigate the relationship between age and each
WM feature, linear mixed effects modeling was performed,
with each (z-normalized) feature, Y, modeled as a linear
tomy and length, and streamlines are assigned to edges in a connection
kept for analysis. Bundles are then filtered to remove outliers. Finally, for
extracted for analysis.

https://github.com/scilus/scilpy
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function of age, y ¼ b0 þ b1Ageþ b2Sexþ b3TICVþ
b3 1þ AGEð jDATASETÞ þ b4ðSUBÞ, where subjects (SUB)
were entered as a random effect (i.e., subject-specific ran-
dom intercept), and subject sex (Sex) and total intracranial
volume (TICV) as a fixed effects. Additionally, we modelled
the association between age and outcome variable as data-
set (DATASET) specific due to expected differences in MR
protocols [68–72], and included a dataset specific random
slope and intercept. We note that the TICV utilized was cal-
culated from the T1-weighted image from the baseline
scan.

Due to multiple comparisons, all statistical tests were
controlled by the false discovery rate [73] (132 path-
ways � 6 features = 792 hypothesis tested) at 0.05 to
determine significance. Results are presented as the beta
coefficient of estimate ‘b 1

0, or in other words ‘‘the associa-
tion of the feature ‘y’ with Age”, which (due to normaliza-
tion) represents the standard deviation change in feature
per year. These measures are derived for each pathway
and each feature. Additionally, results may be shown as a
percent change per year, derived from the slope normal-
ized by the average value across the aging population
(from 50 to 98), and multiplied by 100, which represents
the percent change in feature per year. These measures
are derived for each pathway and each feature.

Comparison with long-range white matter

For comparison with the more thoroughly studied long
range white matter pathways, we perform tractography
and bundle segmentation using TractSeg [74] automatic
segmentation resulting in 72 association, projection, and
commissural bundles. Microstructure features (FA, MD,
AD, RD) and macrostructure (volume, length) were
Fig. 2. SWM systems show expected shape and locations, and cover a large port
across a population are shown in a single subject, with distinct colors for each b
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extracted as done for SWM, the analyzed using the same
linear mixed effects models. The purpose of this dataset
is only as a benchmark for associations with age, and an
in-depth exploration of the microstructural and
macrostructural features of these pathways is detailed in
[47] (note based on the same three datasets, although
the current study has and increased number of subjects/
sessions due to the longitudinal nature of the datasets).
Results

SWM systems

Example SWM systems that were consistently identi-
fied across the population are shown in Fig. 2 for a single
example subject. In the coronal and axial slices, these
fibers run immediately below and adjacent to the cortex
in locations and geometries expected traditionally
assigned to SWM. In the 3D visualization, SWM is repre-
sented along a large portion of the gray matter surface. In
agreement with recent literature on tractography [23]
and dissection [1], both inter-gyri and intra-gyri SWM sys-
tems exist throughout the entirety of the cortex.
What changes and where?

Fig. 3 shows associations with age of all measures for 8
selected pathways (4 intra-gyri and 4 inter-gyri systems).
In line with previous literature in both long association
pathways and SWM, FA frequently shows negative associ-
ations with age, while the diffusivities show positive asso-
ciations with age. In general, the averaged detected
streamline length and volume tend to decrease with
ion of the surface of the brain. 132 SWM bundles determined to be robust
undle, and separated by inter-gyri and intra-gyri systems.



Fig. 3. Microstructural and macrostructural features change with age in many pathways. Shown are all studied features for 8 selected pathways (4 intra-
gyri, 4 inter-gyri), where all data points are shown (with lines connecting longitudinal datasets). A line of best fit is shown if there are statistically significant
associations with age, where color indicates the cohort. Visualization of the SWM pathways for a single subject are shown overlaid on a transparent brain.

Fig. 4. What and where changes occur in SWM during aging. The beta coefficient from linear mixed effects modeling is shown as a matrix for all features
across all pathways (inter-gyri top; intra-gyri bottom). Note that the beta coefficient describes ‘‘the association of the feature ‘y’ with Age”, which (due to
normalization) represents the standard deviation change in feature per year. Non-significant effects are shown as diagonal line.

K.G. Schilling, D. Archer, F.-C. Yeh et al. Aging Brain 3 (2023) 100067
increasing age, even when accounting for TICV, although
the effects are not statistically significant for all pathways.
As expected, different datasets, with different acquisitions,
result in different calculated DTI indices, with much smal-
ler differences in bundle length and volume.
5

To summarize association with age for all features and
all pathways, we show the beta coefficient associations
with age for all features in a matrix in Fig. 4, along with
boxplots summarizing the beta coefficients and percent
change with age across all studied pathways in Fig. 5. DTI



Fig. 5. Changes in superficial white matter. The percent change per year (top) and beta coefficient (bottom) from linear mixed effects modeling across all
studied SWM pathways is shown in boxplot form, for inter and intra gyri SWM, separated by hemisphere, with long-range systems described in [47] for
reference. In general, diffusivities show positive associations with age, while FA, and length show negative associations with age. Association of SWM
volume and age varies based on the intra/inter gyral systems.
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measures show large, robust associations with age for
many pathways. FA in SWM shows negative associations
with age, while all diffusivities (AD, MD, RD) show strong
positive associations with age, with similar results across
intra/inter-gyri SWM and left/right hemispheres. Measures
of length generally show negative associations with age,
although the age effect is reduced compared to microstruc-
ture. Finally, SWM shows mixed associations with age,
where inter-gyri SWM volumes have both positive and
negative associations with age, with median association
positive. However, intra-gyri volume consistently shows
larger decreased associations with age.

Fig. 5 additionally facilitates comparisons with 72 long
range white matter pathways. The relative change per year
Fig. 6. Percent change per year from the population mean shown as color-coded
significant trends with age are observed.

6

in microstructural indices of SWM white matter is similar
to that of long range pathways, with decreases of �0.1 to
�0.5 % change per year in FA, and increases in diffusivities
of also + 0.1 to + 0.5 % per year. While the percent change is
similar, the Beta coefficients (regression coefficient) is
actually larger for features of diffusivity in the SWM.
Finally, SWM changes in length and volume are much less
than those of the long range connections.

Visualizing change across superficial white matter

To visualize where changes in SWM occur during aging,
all pathways are visualized, colored coded according to
percent change per year, and shown in Fig. 6. Again,
streamlines on an example subject. Bundles are only shown if statistically



Fig. 7. Percent change per year from the population mean for short superficial SWM connecting individual regions of interest. Regions of an example
subject are color-coded based on the population-averaged percent change per year of all fibers connecting that label.
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SWM pathways throughout the entire cortex show
statistically significant increases in diffusivities with age,
of � 0.1–0.45 % change per year, while FA shows decreases
of similar magnitude per year. Notably, microstructural
features show greatest changes in frontal and parietal
lobes, with less changes in pre- and post-central gyri.
Changes in length and volume are more sparse, with
decreases in length with age observed throughout the
entire brain, while decreases in volume with age are more
heterogenous, with greater negative associations in frontal
and temporal lobes.

An alternative visualization is shown in Fig. 7, where
each cortical region is color-coded based on the percent-
change per year of all SWM fibers connecting that label
(note that a single cortical region can be associated with
multiple SWM systems). Again, clear patterns are observed
in SWM associated with frontal and temporal lobes,
including larger decreases in FA and increases in all diffu-
sivities. Here, observed changes in volume are averaged
out, with few noticeable patterns, for example averaged
increase in middle and inferior frontal lobes driven by
inter-gyri SWM, and decrease in inferior temporal gyrus
due to intra-gyral connections.
Discussion

Here, we have used multiple large, longitudinal and
cross-sectional datasets, and innovations in tractography
generation and filtering, to characterize SWM systems in
3 aging cohorts, describing microstructural features and
for the first time, macrostructural features. Our main find-
ings are that (1) diffusivities show positive associations
with age, while anisotropy has negative associations with
age, in SWM throughout the entire brain, (2) larger
microstructural changes were observed in the frontal, tem-
poral, and temporoparietal regions, (3) measures of SWM
length decrease with age, (4) changes in volume were
more heterogenous, with larger decreases in volume
observed for intra-gyral SWM, and (5) microstructural of
SWM have the same age associations as long-range path-
7

ways, while the volume (as derived from tractography) is
less associated with age than long range-pathways.

Superficial white matter in aging

Compared to the long-range association, projection, and
commissural pathways, SWM of the brain has been under-
explored in the literature, in both healthy and abnormal
aging. Recently, due to advances in software and tools to
study SWM, studies of these systems have started to
increase. For a thorough review on SWM tractography
analysis and applications, see work by Guevara et al.
[21]. Of note, there have been few studies of SWM in aging
using diffusion MRI. In a study of 141 healthy individuals
(18–86 years old), Nazeri et al. [12] found widespread neg-
ative relationships of FA with age, in agreement with our
results. To do this, they generated a population-based
SWM template, and used this to perform a tract-based spa-
tial statistics (TBSS) style analysis. Similarly, in a cohort of
65 individuals (18–74 years old) Phillips et al. [48] found
age-related reductions in FA and increases in RD and AD
across large areas of SWM, with results more pronounced
in the frontal SWM compared to the posterior and ventral
brain regions, and they interpreted this as an increased
vulnerability to the aging process. Rather than tractogra-
phy, this was done using white matter/gray matter
surface-based alignment from structural MRI data and
probing the DTI indices across the population along this
boundary. Finally, using tractography and manually placed
regions of interest on 69 subjects (22–84 years old), and
focusing on prefrontal connections, Malykhin et al. [49]
found significant decreases in FA starting at � 60 years of
age, in both SWM and association/commissural pathways.
The use of tractography also enabled volumetric analysis,
where both long range and short-range fiber systems
showed decreased volumes with age.

Motivated by these works in SWM, the current study
takes advantage of innovations in tractography and SWM
segmentation, and incorporates multiple large cross-
sectional and longitudinal cohorts totaling > 1200 partici-
pants and > 2700 sessions to study SWM throughout the
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entire brain. Specifically, constrained spherical deconvolu-
tion [75], in combination with probabilistic tractography
[63] has become prevalent in state-of-the art studies of
the human connectome and individual fiber bundles.
Combining this with anatomical constraints [62] and sub-
sequent filtering [65] enables robust delineation of white
matter systems underneath most of the cortex (Fig. 1), in
alignment with current knowledge of SWM. Similar
methodology has been shown to result in reproducible
streamlines [23], making studies of clinical cohorts plausi-
ble. Further, we include several large datasets on aging,
making this the largest cohort to date to study these fibers
in any clinical study.
What changes and where

The observed associations with age include decreased
FA, volume, length, and increased axial, radial, and mean
diffusivities. The biological mechanism for these age-
related changes is not entirely clear, due to the high sen-
sitivity (and low specificity) of these DTI measures to var-
ious features of tissue microstructure. In general, these
observations in white matter (in both health and disease)
have been attributed to various biological mechanisms.
Increases in radial and axial diffusivities are often associ-
ated with decreased axonal packing [76,77], allowing for
increased diffusivity in all orientations, as well as myelin
thinning which may be observed as increased radial diffu-
sivity [78,79]. The low specificity of DTI can potentially be
overcome with multi-compartment modeling, which may
allow disentangling neurite densities, compartmental
changes, and geometrical configurations. For example, a
SWM study of individuals with young onset Alzheimer’s
disease (using the white matter and gray matter bound-
ary to define regions, as in [48]) found that these individ-
uals exhibited decreased FA and increased diffusivities
[80]. However, the use of a multi-compartment tissue
model (in this case the neurite orientation dispersion
and density imaging model [81], showed both a decreased
neurite volume fraction and higher dispersion index, sug-
gesting both a loss of myelinated fibers and greater dis-
persion (less coherent organization) of these SWM
systems. While these studies were able to detect differ-
ences in extreme neurodegenerative cases, we found that
these systems are sensitive in aging individuals without
cognitive impairment as well. Future studies should
implement similar modeling, in combination with the
tractography generation and segmentation utilized in this
study, to improve biological specificity of changes in
healthy aging.

Identifying where changes occur during age may facili-
tate studying the underpinnings of cognitive and motor
changes, and aid in identifying networks that are suscepti-
ble to disease and disorder. Here, much like previous stud-
ies [9,48,82–85] in gray matter, white matter pathways,
and axonal diameters, there is a clear anterior-to-
posterior gradient in changes of microstructure across
age. The frontal lobe is comprised of functional networks
recruited for a diverse range of cognitive problems, and
disruption is associated with age-related declines in
8

cognitive processes [86]. Our study confirms that in addi-
tion to gray matter, and the larger white matter pathways,
the SWM of the frontal lobe also indicate strong age-
related trends. future work should investigate relation-
ships between these neuroimaging features and age-
related declines in cognition.

Another unique pattern in SWM is the difference in vol-
ume associations with age between inter and intra-gyral
bundles, and differences between all SWM and long range
decreases. Intra-gyral bundles have been described as run-
ning tangential to a gyrus and traversing throughout the
blade [1] (see Discussion on nomenclature below). The
intra-gyral SWM show a greater negative association with
age than inter-gyral SWM. There are possibly many inter-
esting interpretations of these results. First, this could be
a true biological phenomenon, representing relative
preservation of SWM relative to long range pathways,
and further preservation of inter relative to intra-gyri
SWM. The greater decreases in intra-gyri volume with
age are intuitively related to increases in sulcal width
(i.e. the distance between adjacent gyri) and decreases in
sulcal depth with age [87] physically constraining the vol-
ume that these systems can occupy. However, there are
certainly partial volume effects related to tractography
(see limitations below), and partial volume effects with
the thinning cortex. Nevertheless, there are measurable
changes in microstructure and macrostructure of white
matter nearest the cortex, that shows heterogenous across
the brain.

Towards painting a complete picture of brain aging

Noninvasive MR-imaging has slowly led to a conver-
gence of evidence of structural and functional changes in
aging. The main findings from decades of research are that
the brain shrinks in overall volume and the ventricular sys-
tem expands in volume [29]. The pattern of changes is
heterogenous, as described here and elsewhere [29], with
most analyses suggesting a 0.5 %-1% reduction in volume
per year in most areas of the brain. The changes in volume
are related to neuronal loss, neuronal shrinkage, decreased
length of myelinated axons in white matter and reduction
of synapses in the gray matter. Finally, structural changes
in healthy aging mediate, or explain, domain-specific cog-
nitive decline in individuals both with and without cogni-
tive impairment [36,37]. The results of this study highlight
that SWM cannot be ignored when forming a complete pic-
ture of brain aging. In addition, variation of these systems
across populations may enable subject-specific analysis
and identification of atypical structure, which may be used
to study subject-specific function.

Nomenclature and Taxonomy
Here, we have chosen to identify and analyze groups of

SWM streamlines based on cortical connectivity defined by
a commonly used parcellation scheme [64]. There are a
number of ways that superficial bundles could be virtually
segmented, including automated/semi-automated region
placement, streamline clustering methods or latent space
methods, or hybrid methodologies (see Guevara et al.
[21], for a review). Much like long range connections [66]
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there is no clear consensus on the taxonomy and nomen-
clature of SWM systems, and different analysis methods
and methodologies result in different bundles (see [88]
for a comparison of long range white matter pathways,
and [21] for a comparison of SWM systems). Our method
resulted in 132 unique bundles that are reproducible
across a population, in line with existing atlases or parcel-
lation/clustering schemes with 100 SWM bundles [20], 93
SWM bundles [89], and 198 SWM bundles [90].

Recent observations using Klingler’s dissection show
that in addition to the commonly observed U-fibers con-
necting adjacent gyri which form the thin white matter
sheet of the sulcal floor, there are indeed intra-gyral
SWM systems that run along the edge of gyral crowns
[1]. Utilizing a simple gyral-based parcellation scheme
easily allows us to classify our bundles as inter or intra-
gyri. Our is the first tractography study to distinguish
and analyze these systems, finding differences in their
microstructural and macrostructural changes with age.
Optimistically, our 132 bundles is well in line with that
observed with dissections, with a range of 73–142 (mean
of 97) unique superficial systems in 7 dissected
hemispheres.

Limitations and future direction

Because of the lack of studies on SWM, there are a num-
ber of research directions that can benefit from these
methodologies. Understanding not only the relationship
between SWM and the cortex, but also the SWM and
long-range pathways would further our understanding of
the complex interactions of the aging brain. Additionally,
tractometry [91–93] or high dimensional analysis of the
brain, which has been shown to enable single-subject
inference [91], may benefit from the additional set of fea-
tures provided by SWM. Understanding which features of
the brain change first is paramount to understanding dif-
ferences in disease. SWM has found relevant application
in cohorts with autism, schizophrenia, and Alzheimer’s dis-
ease, [21] and may further benefit from a comprehensive
examination of the structural changes of the brain includ-
ing both white and gray matter geometric analysis and
microstructure analysis. Similarly, inclusion of cognitive
and motor variables will facilitate linking function to struc-
ture. Next, studies of SWMmay help identify challenges for
traditional fiber tractography of the long-range fibers –
characterizing where these systems occur may facilitate
challenges associated with gyral biases [22,94,95] and bot-
tlenecks in streamline propagation that lead to creation of
false positive pathways [96–99]. Lastly, future studies
characterizing changes in SWM together with the long
range white and gray matter across the lifespan should
provide quantification of variation and a benchmark of
normative trajectories across a population [100].

Several limitations should be acknowledged. First,
while the use of multiple longitudinal and cross sectional
large datasets is particular strength of this study, the use
of different datasets with different acquisitions is known
to result in very different quantitative indices of
microstructure and macrostructure [68–72]. Here, we
included dataset as a variable in our mixed effects models,
9

and consider this an advantage to the current study which
shows these effects generalize across datasets. Uniquely,
microstructural features showed the greatest effect sizes
of dataset (both slope and intercept), although macrostruc-
tural features of length and volume for CAM-CAM did fre-
quently show significant effects of estimated intercepts of
the volume (negative effect, i.e., decreased volume), likely
due to the use of a multi-shell acquisition enabling higher
angular resolution and decrease partial volume effect.
Alternatively, harmonization of the diffusion signal, or
quantitative indices, may be used and is an active area of
interest [72,101,102]. Second, the data used is neither high
angular resolution nor high spatial resolution. The initial
validation of the SWM tractography used here showed
[23,103] reliable results at comparable resolutions,
although with a larger number of directions and b-
values, however constrained spherical deconvolution has
proven remarkably robust at estimating fiber orientation
and crossing fibers even at low b-value and minimal direc-
tions [75]. Future studies should utilize higher resolution
datasets (e.g., the Human Connectome Project [104]),
which may reduce variability in quantification, and enable
studies across the entire lifetime. Third, we chose simple
linear mixed effects modelling, whereas changes across a
lifespan have been shown to be nonlinear – therefore we
chose to focus our analysis on age 50+. Fourth, there are
several methods to segment and study SWM, both with
and without tractography [20,21,90,105], and we could
have chosen different streamline generation and clustering
algorithms. We expect that results will be similar, but not
exactly the same, with the use of different methodologies
for virtual dissection [88]. Next, while SWM atlases do
exist [20,25,89,105,106], we choose to include all ‘‘U-
shaped” fiber systems that exist within a certain percent
of the studied population. This does not guarantee the exis-
tence of true anatomical connections, but has been used in
the literature as an indicator of reliability of results.

A limitation of these techniques, and tractography in
general, is related to partial volume effects. The process
of tractography can be influenced by partial volume effects
with gray matter and with other white matter systems [98]
that traverse the same imaging voxel. Microstructure mea-
sures will certainly be sensitive to gray matter changes
(which is known to change with age [107–109] as well as
those of nearby white matter systems. Similarly,
macrostructure measures of length will be highly depen-
dent upon user-defined length thresholds [23], while vol-
ume is based on discretization of streamlines into voxels,
which may be more variable for smaller SWM bundles.
Because of this, measures of the intra-gyral volume may
simply be a proxy for total white matter volume within a
gyrus, rather than truly specific to only superficial systems.
However, these changes are nonetheless interesting, and
strongly associated with age. Because of these reasons,
superficial white matter reproducibility is expected to be
lower for superficial white matter than long-range path-
ways [110], particularly for low resolution and low angular
resolution datasets [23]. However the streamline propaga-
tion and anatomical constraints utilized have been shown
to have moderate reproducibility, with results dependent
on scanner, acquisition, sampling schemes, and choices in
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the streamline generation process (constraints, maximum
lengths, seeding, etc.) [23], a challenge that exists still in
long range tractography [71]. Finally, SWM is susceptible
to specificity/sensitivity tradeoffs just as long-range
pathway investigations [97,111], and anatomical valida-
tion is required in the form of tracers or cadaveric dissec-
tion, to not only verify the existence and trajectories of
these pathways, but features of length and volume as well.
Reassuringly, both intra- and inter-gyral SWM is visible in
cadaveric samples throughout the entire cerebral hemi-
sphere [1], just as in our results (Fig. 2).
Conclusion

Here, we have used a large, longitudinal dataset, and
innovations in tractography generation and filtering, to
characterize SWM systems in an aging cohort, describing
microstructural features and for the first time, macrostruc-
tural features. We find robust associations with age for all
features, across many fiber systems. These features, and
their normal variations with age, may be useful for charac-
terizing abnormal aging, and, in combination with larger
association pathways and gray matter microstructural fea-
tures, lead to insight into fundamental mechanisms associ-
ated with aging and cognition.
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Appendix

Inter-gyri SWM Intra-gyri SWM

Abbreviation Freesurfer-based nomenclature Abbreviation Freesurfer-based nomenclature

L.ITG---L.FG ctx-lh-inferiortemporal---ctx-lh-fusiform L.LG---L.LG ctx-lh-lingual---ctx-lh-lingual
L.LOG---L.FG ctx-lh-lateraloccipital---ctx-lh-fusiform L.BSTS---L.BSTS ctx-lh-bankssts---ctx-lh-bankssts
L.LOG---L.IPG ctx-lh-lateraloccipital---ctx-lh-inferiorparietal L.CMFG---L.CMFG ctx-lh-caudalmiddlefrontal---ctx-lh-caudalmiddlefrontal
L.LG---L.LOG ctx-lh-lingual---ctx-lh-lateraloccipital L.CU---L.CU ctx-lh-cuneus---ctx-lh-cuneus
L.MOFG---L.LOFG ctx-lh-medialorbitofrontal---ctx-lh-lateralorbitofrontal L.FG---L.FG ctx-lh-fusiform---ctx-lh-fusiform
L.MTG---L.IPG ctx-lh-middletemporal---ctx-lh-inferiorparietal L.IPG---L.IPG ctx-lh-inferiorparietal---ctx-lh-inferiorparietal
L.MTG---L.ITG ctx-lh-middletemporal---ctx-lh-inferiortemporal L.ITG---L.ITG ctx-lh-inferiortemporal---ctx-lh-inferiortemporal
L.POR---L.LOFG ctx-lh-parsorbitalis---ctx-lh-lateralorbitofrontal L.ICG---L.ICG ctx-lh-isthmuscingulate---ctx-lh-isthmuscingulate
L.PTR---L.POP ctx-lh-parstriangularis---ctx-lh-parsopercularis L.LOG---L.LOG ctx-lh-lateraloccipital---ctx-lh-lateraloccipital
L.PTR---L.POR ctx-lh-parstriangularis---ctx-lh-parsorbitalis L.LOFG---L.LOFG ctx-lh-lateralorbitofrontal---ctx-lh-lateralorbitofrontal
L.PCAL---L.CU ctx-lh-pericalcarine---ctx-lh-cuneus L.MOFG---L.MOFG ctx-lh-medialorbitofrontal---ctx-lh-medialorbitofrontal
L.PCAL---L.LOG ctx-lh-pericalcarine---ctx-lh-lateraloccipital L.MTG---L.MTG ctx-lh-middletemporal---ctx-lh-middletemporal
L.PCAL---L.LG ctx-lh-pericalcarine---ctx-lh-lingual L.PaCG---L.PaCG ctx-lh-paracentral---ctx-lh-paracentral
L.PrCG---L.CMFG ctx-lh-precentral---ctx-lh-caudalmiddlefrontal L.POP---L.POP ctx-lh-parsopercularis---ctx-lh-parsopercularis
L.PrCG---L.PaCG ctx-lh-precentral---ctx-lh-paracentral L.PTR---L.PTR ctx-lh-parstriangularis---ctx-lh-parstriangularis
L.PrCG---L.POP ctx-lh-precentral---ctx-lh-parsopercularis L.PoCG---L.PoCG ctx-lh-postcentral---ctx-lh-postcentral
L.PrCG---L.PoCG ctx-lh-precentral---ctx-lh-postcentral L.PCG---L.PCG ctx-lh-posteriorcingulate---ctx-lh-posteriorcingulate
L.PCU---L.ICG ctx-lh-precuneus---ctx-lh-isthmuscingulate L.PrCG---L.PrCG ctx-lh-precentral---ctx-lh-precentral
L.RACG---L.MOFG ctx-lh-rostralanteriorcingulate---ctx-lh-medialorbitofrontal L.PCU---L.PCU ctx-lh-precuneus---ctx-lh-precuneus
L.RMFG---L.CMFG ctx-lh-rostralmiddlefrontal---ctx-lh-caudalmiddlefrontal L.RMFG---L.RMFG ctx-lh-rostralmiddlefrontal---ctx-lh-rostralmiddlefrontal
L.RMFG---L.LOFG ctx-lh-rostralmiddlefrontal---ctx-lh-lateralorbitofrontal L.SFG---L.SFG ctx-lh-superiorfrontal---ctx-lh-superiorfrontal
L.RMFG---L.POR ctx-lh-rostralmiddlefrontal---ctx-lh-parsorbitalis L.SPG---L.SPG ctx-lh-superiorparietal---ctx-lh-superiorparietal
L.RMFG---L.PTR ctx-lh-rostralmiddlefrontal---ctx-lh-parstriangularis L.STG---L.STG ctx-lh-superiortemporal---ctx-lh-superiortemporal
L.SFG---L.CMFG ctx-lh-superiorfrontal---ctx-lh-caudalmiddlefrontal L.SMG---L.SMG ctx-lh-supramarginal---ctx-lh-supramarginal
L.SFG---L.PaCG ctx-lh-superiorfrontal---ctx-lh-paracentral L.IN---L.IN ctx-lh-insula---ctx-lh-insula
L.SFG---L.PrCG ctx-lh-superiorfrontal---ctx-lh-precentral R.BSTS---R.BSTS ctx-rh-bankssts---ctx-rh-bankssts
L.SFG---L.RMFG ctx-lh-superiorfrontal---ctx-lh-rostralmiddlefrontal R.CMFG---R.CMFG ctx-rh-caudalmiddlefrontal---ctx-rh-caudalmiddlefrontal
L.SPG---L.CU ctx-lh-superiorparietal---ctx-lh-cuneus R.CU---R.CU ctx-rh-cuneus---ctx-rh-cuneus
L.SPG---L.IPG ctx-lh-superiorparietal---ctx-lh-inferiorparietal R.FG---R.FG ctx-rh-fusiform---ctx-rh-fusiform
L.SPG---L.LOG ctx-lh-superiorparietal---ctx-lh-lateraloccipital R.IPG---R.IPG ctx-rh-inferiorparietal---ctx-rh-inferiorparietal
L.SPG---L.PoCG ctx-lh-superiorparietal---ctx-lh-postcentral R.ITG---R.ITG ctx-rh-inferiortemporal---ctx-rh-inferiortemporal
L.SPG---L.PCU ctx-lh-superiorparietal---ctx-lh-precuneus R.ICG---R.ICG ctx-rh-isthmuscingulate---ctx-rh-isthmuscingulate
L.STG---L.MTG ctx-lh-superiortemporal---ctx-lh-middletemporal R.LOG---R.LOG ctx-rh-lateraloccipital---ctx-rh-lateraloccipital
L.SMG---L.IPG ctx-lh-supramarginal---ctx-lh-inferiorparietal R.LOFG---R.LOFG ctx-rh-lateralorbitofrontal---ctx-rh-lateralorbitofrontal
L.SMG---L.PoCG ctx-lh-supramarginal---ctx-lh-postcentral R.LG---R.LG ctx-rh-lingual---ctx-rh-lingual
L.SMG---L.SPG ctx-lh-supramarginal---ctx-lh-superiorparietal R.MOFG---R.MOFG ctx-rh-medialorbitofrontal---ctx-rh-medialorbitofrontal

(continued on next page)
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Appendix (continued)

Inter-gyri SWM Intra-gyri SWM

Abbreviation Freesurfer-based nomenclature Abbreviation Freesurfer-based nomenclature

L.SMG---L.STG ctx-lh-supramarginal---ctx-lh-superiortemporal R.MTG---R.MTG ctx-rh-middletemporal---ctx-rh-middletemporal
L.TTG---L.STG ctx-lh-transversetemporal---ctx-lh-superiortemporal R.PaCG---R.PaCG ctx-rh-paracentral---ctx-rh-paracentral
L.IN---L.LOFG ctx-lh-insula---ctx-lh-lateralorbitofrontal R.POP---R.POP ctx-rh-parsopercularis---ctx-rh-parsopercularis
L.IN---L.STG ctx-lh-insula---ctx-lh-superiortemporal R.PTR---R.PTR ctx-rh-parstriangularis---ctx-rh-parstriangularis
R.ITG---R.FG ctx-rh-inferiortemporal---ctx-rh-fusiform R.PoCG---R.PoCG ctx-rh-postcentral---ctx-rh-postcentral
R.LOG---R.CU ctx-rh-lateraloccipital---ctx-rh-cuneus R.PCG---R.PCG ctx-rh-posteriorcingulate---ctx-rh-posteriorcingulate
R.LOG---R.FG ctx-rh-lateraloccipital---ctx-rh-fusiform R.PrCG---R.PrCG ctx-rh-precentral---ctx-rh-precentral
R.LOG---R.IPG ctx-rh-lateraloccipital---ctx-rh-inferiorparietal R.PCU---R.PCU ctx-rh-precuneus---ctx-rh-precuneus
R.LG---R.LOG ctx-rh-lingual---ctx-rh-lateraloccipital R.RMFG---R.RMFG ctx-rh-rostralmiddlefrontal---ctx-rh-rostralmiddlefrontal
R.MOFG---R.LOFG ctx-rh-medialorbitofrontal---ctx-rh-lateralorbitofrontal R.SFG---R.SFG ctx-rh-superiorfrontal---ctx-rh-superiorfrontal
R.MTG---R.BSTS ctx-rh-middletemporal---ctx-rh-bankssts R.SPG---R.SPG ctx-rh-superiorparietal---ctx-rh-superiorparietal
R.MTG---R.IPG ctx-rh-middletemporal---ctx-rh-inferiorparietal R.STG---R.STG ctx-rh-superiortemporal---ctx-rh-superiortemporal
R.MTG---R.ITG ctx-rh-middletemporal---ctx-rh-inferiortemporal R.SMG---R.SMG ctx-rh-supramarginal---ctx-rh-supramarginal
R.POR---R.LOFG ctx-rh-parsorbitalis---ctx-rh-lateralorbitofrontal R.IN---R.IN ctx-rh-insula---ctx-rh-insula
R.PTR---R.POP ctx-rh-parstriangularis---ctx-rh-parsopercularis
R.PTR---R.POR ctx-rh-parstriangularis---ctx-rh-parsorbitalis
R.PCAL---R.CU ctx-rh-pericalcarine---ctx-rh-cuneus
R.PCAL---R.LOG ctx-rh-pericalcarine---ctx-rh-lateraloccipital
R.PCAL---R.LG ctx-rh-pericalcarine---ctx-rh-lingual
R.PrCG---R.CMFG ctx-rh-precentral---ctx-rh-caudalmiddlefrontal
R.PrCG---R.PaCG ctx-rh-precentral---ctx-rh-paracentral
R.PrCG---R.POP ctx-rh-precentral---ctx-rh-parsopercularis
R.PrCG---R.PoCG ctx-rh-precentral---ctx-rh-postcentral
R.PCU---R.ICG ctx-rh-precuneus---ctx-rh-isthmuscingulate
R.RMFG---R.CMFG ctx-rh-rostralmiddlefrontal---ctx-rh-caudalmiddlefrontal
R.RMFG---R.LOFG ctx-rh-rostralmiddlefrontal---ctx-rh-lateralorbitofrontal
R.RMFG---R.POR ctx-rh-rostralmiddlefrontal---ctx-rh-parsorbitalis
R.RMFG---R.PTR ctx-rh-rostralmiddlefrontal---ctx-rh-parstriangularis
R.SFG---R.CMFG ctx-rh-superiorfrontal---ctx-rh-caudalmiddlefrontal
R.SFG---R.MOFG ctx-rh-superiorfrontal---ctx-rh-medialorbitofrontal
R.SFG---R.PrCG ctx-rh-superiorfrontal---ctx-rh-precentral
R.SFG---R.RMFG ctx-rh-superiorfrontal---ctx-rh-rostralmiddlefrontal
R.SPG---R.CU ctx-rh-superiorparietal---ctx-rh-cuneus
R.SPG---R.IPG ctx-rh-superiorparietal---ctx-rh-inferiorparietal
R.SPG---R.LOG ctx-rh-superiorparietal---ctx-rh-lateraloccipital
R.SPG---R.PoCG ctx-rh-superiorparietal---ctx-rh-postcentral
R.SPG---R.PCU ctx-rh-superiorparietal---ctx-rh-precuneus
R.STG---R.BSTS ctx-rh-superiortemporal---ctx-rh-bankssts
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