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Genetic architecture of the white matter connectome of
the human brain
Zhiqiang Sha1, Dick Schijven1, Simon E. Fisher1,2, Clyde Francks1,2,3*

White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography
to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and
851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325
genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses impli-
cated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural
projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astro-
cytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between
core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and be-
havioral traits also showed significant multivariate associations with structural connectivity, each implicating
distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed
common genetic contributions to variation in the structural connectome of the human brain.
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INTRODUCTION
Cognitive functions and behaviors are supported by dynamic inter-
actions of neural signals within large-scale brain networks (1).
Neural signals propagate along white matter connections that link
cortical, subcortical, and cerebellar regions to form the structural
connectome (2). White matter connections also modulate neural
signals and distribute trophic factors between brain regions (3),
helping to establish and maintain functional specialization of sub-
networks. Various heritable psychiatric and neurological disorders
can involve altered white matter structural connectivity, relating, for
example, to cognitive deficits, clinical presentation, or recovery (4,
5). It is therefore of great interest to understand which DNA vari-
ants, genes, and pathways affect white matter connections in the
human brain, as they are likely to influence cognitive and behavioral
variability in the population, as well as predisposition to brain
disorders.
Diffusion tensor imaging (DTI) enables in vivo noninvasive

study of white matter in the brain (6). This technique characterizes
the diffusion of water molecules, which occurs preferentially in par-
allel to nerve fibers due to constraints imposed by axonal mem-
branes and myelin sheaths (7). Metrics commonly derived from
DTI, such as fractional anisotropy or mean diffusivity, reflect
white matter microstructure and can index its integrity (7, 8). In
contrast, tractography involves defining white matter connections
at the macroanatomical scale, which permits the measurement of
connectivity strengths by counting the streamlines that link each
pair of regions. Streamlines are constructed to pass through multi-
ple adjacent voxels in DTI data, when the principal diffusion tensor
per voxel aligns well with some of its direct neighbors (9). Tractog-
raphy therefore produces subject-specific measures of regional in-
terconnectivity that are ideally suited for brain network-level
analysis.

Recently, genome-wide association studies (GWAS) have report-
ed that a substantial proportion of interindividual variability in
white matter microstructural measures can be explained by
common genetic variants, with single-nucleotide polymorphism
(SNP)–based heritabilities ranging from 22 to 66% (10, 11). These
studies also identified specific genomic loci associated with white
matter microstructural measures (10, 11). However, microstructural
measures do not necessarily capture topological properties of mac-
roscale brain networks, such as the total amount of structural con-
nectivity between distant pairs of brain regions. In principal,
interindividual variability in topological features of the white
matter connectome may be influenced by genetic variants that are
partly distinct from those that influence white matter microstruc-
ture. For example, genetic influences on axon outgrowth and guid-
ance during the development of long-distance connections may be
most detectable in terms of connection strengths as measured
through tractography, without necessarily affecting the microstruc-
tural integrity of those connections. However, to our knowledge,
nerve fiber tractography has not previously been used for large-
scale genome-wide association analysis of brain structural net-
works, likely because of heavy computational requirements for
running tractography in tens of thousands of individuals.
Here, we aimed to characterize the genetic architecture of white

matter structural network connectivity in the human brain, using
fiber tractography. DTI data from 30,810 participants of the U.K.
Biobank adult population dataset were used to construct the
brain-wide structural connectivity network of each individual. In
combination with genome-wide genotype data, we then carried
out a set of genetic analyses of tractography-derived metrics, in
terms of the sum of white matter connectivity linking to each of
90 brain regions as network nodes and 947 connectivity measures
as network edges linking specific pairs of regions. The total connec-
tivity of a node (brain region) likely relates to its global role in in-
formation transfer within multiple subnetworks, whereas
individual connections between specific pairs of regions are more
locally restricted measures. We anticipated that genetic influences
on node-level and edge-level network measures might therefore
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be partly distinct, where some genetic effects are more relevant at
larger scales whereas others could affect relatively specific circuit
components.
Our genetic analyses included SNP-based heritability estima-

tion, multivariate GWAS (mvGWAS), and biological annotation
of associated loci. Then, to illustrate how multivariate gene-brain
associations arose in the data and how the brain-wide mvGWAS
results could be queried in relation to any specific brain network
of interest, we used the results to identify genomic loci that are as-
sociated with structural connections between core language–related
regions of the left hemisphere. Various aspects of language function
—especially related to language production—show strong hemi-
spheric lateralization, with roughly 85% of people having left-hemi-
sphere dominance (12).
Last, we assessed how genetic disposition to brain disorders and

other behavioral traits manifests in terms of white matter connec-
tivity in the general population. To do so, we mapped multivariate
associations of the brain-wide, white matter tractography metrics
with polygenic scores for a variety of heritable brain disorders or
behavioral traits: schizophrenia, bipolar disorder, autism, atten-
tion-deficit hyperactivity disorder, left-handedness, Alzheimer’s
disease, amyotrophic lateral sclerosis, and epilepsy. We annotated
the resulting brain maps with cognitive functions, using large-
scale meta-analyzed functional neuroimaging data, to describe
aspects of brain function that may be affected by polygenic dispo-
sitions to different forms of neurodivergence in the general
population.

RESULTS
White matter connectomes of 30,810 adults
For each of 30,810 adult participants with diffusion magnetic reso-
nance imaging (MRI) and genetic data after quality control, we per-
formed deterministic fiber tractography (9) between each pair of
regions defined in the Automated Anatomical Labeling atlas (13)
(45 regions per hemisphere comprising cerebral cortical and sub-
cortical structures) (Fig. 1 andMaterials andMethods). In the struc-
tural connectivity matrix of each individual, each region was
considered a node, and each connection between a pair of regions
was considered an edge. We excluded edges whenmore than 20% of
individuals had no streamlines connecting a given pair of regions,
resulting in 947 network edges. To quantify a given edge in each
individual, the streamline count for that edge was divided by the
individual-specific gray matter volume of the two regions being
connected (as larger regions tend to havemore streamlines connect-
ing to them). These volume-adjusted network edge measures were
also used to calculate the node-level connectivity of each region, i.e.,
the sum of all volume-weighted edge measures connecting with a
given region, for each participant. The resulting node and edge
measures were adjusted for demographic and technical covariates
and normalized across individuals (see the “Network construction
and analysis” section), before being used for genetic analyses.
Of the 947 network edges, 377 connected pairs of left-hemi-

sphere regions, 355 connected pairs of right-hemisphere regions,
and 215 involved interhemispheric connections. The top 10% of
regions in terms of connectivity included the supplementary
motor cortex, precuneus, medial superior frontal cortex, and sub-
cortical regions bilaterally—caudate and thalamus (fig. S1 and
table S1). The latter observation is consistent with previous

studies showing that subcortical regions connect widely with the ce-
rebral cortex, to generate reciprocal cortical-subcortical interactions
that together support many cognitive functions (14).

Heritabilities of connectivity measures
The GCTA (Genome-wide Complex Trait Analysis) software (15)
was used to estimate the SNP-based heritability (h2) for each
network measure, that is, the extent to which variance in each con-
nectivity measure was explained by common genetic variants across
the autosomes (Materials and Methods). All of the 90 node-level
(region-based) connectivity measures were significantly heritable
(Bonferroni-corrected P < 0.05 after testing 90 measures), ranging
from 7.8 to 29.5% (mean h2 = 18.5%; Fig. 2A, fig. S2, and table S2).
Most homologous nodes of the left and right hemispheres showed
similar heritabilities, but some nodes showed prominent differences
of heritability between hemispheres, such as the inferior parietal
cortex (left: 27.0% versus right: 19.42%), pars triangularis (left:
23.4% versus right: 16.9%), and inferior occipital cortex (left:
8.0% versus right: 15.7%; Fig. 2A and table S2). Eleven node-level
connectivities showed h2 estimates of >25% (table S2), with the su-
perior temporal cortex in the left hemisphere being the highest
(h2 = 29.5%, P < 1 × 10−20).
Eight hundred fifty-one of 947 edge-level connectivities (i.e.,

connections between specific pairs of regions) showed significant
heritability (Bonferroni-corrected P < 0.05 after testing 947 mea-
sures; fig. S2), ranging from 4.6 to 29.5% (mean, 9.6%). Eleven
edges had h2 > 20%, primarily for connections linking frontal
regions (e.g., superior and middle frontal cortex) and supplementa-
ry motor and occipital cortex (e.g., cuneus and lingual). The mean
h2 was 9.9% for 351 edges within the left hemisphere, 10.0% for 333
edges within the right hemisphere, and 8.1% for 167 interhemi-
spheric edges (Fig. 2B and tables S3 to S6). Across the 851 signifi-
cantly heritable edges, heritability was not correlated with mean
fiber length (rho = 0.01; fig. S3), suggesting that short-range and
long-range white matter connections are similarly affected by
genetic variation overall.
Reliability of heritable network measures was assessed using data

from 1005 of the 30,810 individuals who had undergone brain scans
on two separate occasions (Materials and Methods): Intraclass cor-
relation coefficients (ICCs) based on the same processing pipeline
applied to data from the first and second scanning visits had a
median of 0.83 (range, 0.45 to 0.93) for the 90 heritable node-
level measures and a median of 0.66 (range, 0.28 to 0.94) for the
851 heritable edge-level measures (fig. S4 and tables S7 and S8).
Measurement reliability was positively correlated with heritability:
r = 0.67 across 90 node-level connectivities and r = 0.60 across 851
heritable edge-level connectivities (fig. S4). This is consistent with
the fact that measurement error is assigned to the “environmental”
(i.e., nongenetic) component of trait variance in heritability analy-
sis, so that less reliable measures tend to be less heritable. Regard-
less, we reasoned that all significantly heritable network measures
had enough reliably measured variation to contribute to subsequent
mvGWAS analysis. This is because detecting heritability relies on
trait similarity being increased in pairs of individuals with higher
genetic similarity and therefore necessitates at least a small propor-
tion of trait variance being reliably measured across and within in-
dividuals, while single genetic loci are only expected to explain very
small amounts of that heritable variance. The heritability data can
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be visualized interactively in a dynamic Web-based interface (see
“Data and materials availability” statement).

Multivariate genome-wide association analyses of white
matter connectivity
The multivariate omnibus statistical test (MOSTest) software (16)
was used to perform two separate mvGWAS analyses, first for the
90 node-level connectivity measures in a single multivariate
genome-wide screen and then for the 851 edge-level connectivities
in another single multivariate genome-wide screen, both times in
relation to 9,803,735 SNPs spanning the genome. This analysis ex-
amined each SNP separately for its associations with multiple struc-
tural network measures, by simultaneously modeling the
distributed nature of genetic influences across the brain (Materials
and Methods). FUMA (17) was used to clump mvGWAS results on
the basis of linkage disequilibrium (LD) and to identify indepen-
dent lead SNPs at each associated genomic locus (Materials and
Methods). At the P = 2.5 × 10−8 significance level (i.e., the standard
GWAS significance threshold of P = 5 × 10−8 but Bonferroni-cor-
rected for two mvGWAS), we identified 140 lead SNPs in 117 dis-
tinct genomic loci associated with node-level connectivities
(Fig. 2C, fig. S5, and table S9) and 211 lead SNPs in 166 distinct
genomic loci associated with edge-level connectivities (Fig. 2C,
fig. S5, and table S10). Permutation analysis under the null hypoth-
esis of no association indicated that MOSTest correctly controlled
type I error (Materials and Methods and figs. S6 and S7). Except for
chromosome 21, each chromosome had at least one locus associated
with either node-level or edge-level connectivity.
Twenty-six lead SNPs were found in common between the node-

level mvGWAS and edge-level mvGWAS. While a degree of overlap
was to be expected given that the node-level metrics were computed
from the edge-level metrics (i.e., are not independent), the fact that

the large majority of lead SNPs were detected for either node-level
or edge-level connectivity, but not both, supports the importance of
performing genetic association analyses at these different
network levels.
For each lead SNP, MOSTest indicated the contribution of each

brain metric to its multivariate association, by reporting a z score
derived from each metric’s univariate association with that SNP
(Materials and Methods and tables S11 and S12). In the node-
level mvGWAS, regions with the greatest magnitude z scores con-
sidered across all lead SNPs were the bilateral putamen (left mean
|z| = 2.05, right mean |z| = 1.86), left pallidum (mean |z| = 2.02),
bilateral middle frontal cortex (left mean |z| = 1.98, right mean
|z| = 1.89), and middle cingulate cortex (mean |z| = 1.82; fig. S8 and
table S13). For example, the left putamen, which had the highest
overall contribution across lead SNPs (mean |z| = 2.05), was espe-
cially strongly associated with rs12146713 on 12q23.3 (z = −10.48),
rs72748148 on 9q31.3 (z = 7.35), rs798528 on 7p22.3 (z = −6.74),
rs7935166 on 11p11.2 (z = 6.22), and rs3795503 on 1q25.3 (z = 6.01;
table S13).
In the mvGWAS of edge-level connectivity, edges that showed

high magnitude z scores considered across all lead SNPs mainly
connected the precuneus, calcarine, middle temporal, and pre-
and postcentral cortex (table S14 and fig. S9). The edge linking
the left and right precuneus had the greatest contribution across
lead SNPs (mean |z| = 1.60) and was especially associated with
the variants rs946711 on 10p12.31 (z = −5.58) and
3:190646282_TA_T on 3q28 (z = −5.53).

The majority of genomic loci associated with structural
connectivity were previously unidentified
Together, our node-level connectivity mvGWAS and edge-level
connectivity mvGWAS identified 325 lead SNPs, of which only

Fig. 1. Schematic of white matter network construction within an individual brain. Network nodes were defined by mapping the Automated Anatomical Labeling
atlas from commonMNI space to individual space, with 45 regions per hemisphere (including cortical and subcortical structures). The edge between each pair of regions
was defined as the number of streamlines constructed by tractography based on the corresponding diffusion tensor image, adjusted for the combined volume of the two
connected regions. The process yielded a zero-diagonal symmetrical 90 × 90 undirected connectivity matrix for each of 30,810 participants (the top triangles were then
used for subsequent analyses).
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Fig. 2. SNP-based heritability and mvGWAS analyses of node-level connectivity and edge-level connectivity in 30,810 participants. (A) All 90 node-level (i.e.,
regional) connectivities showed significant SNP-based heritability after Bonferroni correction, ranging from 7.8 to 29.5%. (B) Eight hundred fifty-one of 947 edge-level
connectivities showed significant SNP-based heritability after Bonferroni correction, ranging from 4.6 to 29.5%. Right: Brain maps. Left: Nodes grouped by frontal, pre-
frontal, parietal, temporal, and occipital cortical lobes and subcortical structures. Heritabilities can be visualized interactively in a dynamic Web-based interface (see “Data
and materials availability” statement). (C) Miami plot for mvGWAS of 90 node-level connectivities (top) and 851 edge-level connectivities (bottom). The black lines in-
dicate the genome-wide significance threshold P < 2.5 × 10−8 (Materials and Methods).
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101 were previously associated with at least one trait in the NHGRI-
EBI GWAS catalog (tables S9 and S10) (18). This indicates that the
majority (68.92%) of loci implicated here in the structural connec-
tomewere not identified by previous studies. There were 65 SNPs in
common with those reported in previous GWAS of brain measures
(11, 16, 19–21). Specifically, 46 of our lead SNPs were previously
associated with brain regional volumes (19, 22), 29 with regional
cortical thicknesses (16, 21), 33 with regional cortical surface
areas (21, 23), and 20 with white matter microstructure (11, 24).
Apart from brain measures, 11 of our lead SNPs were associated
with mental health traits (e.g., autism, schizophrenia, and anxiety)
(25, 26), 11 of our lead SNPs with cognitive functions (e.g., cognitive
ability and performance) (27, 28), 4 of our lead SNPs with neuro-
logical diseases (e.g., Alzheimer’s disease and epilepsy) (29, 30), and
40 of our lead SNPs with nonbrain physiological and physical var-
iables (e.g., waist-hip ratio, cholesterol levels, and lung function)
(31, 32). In addition, we compared our results with those reported
in a recent GWAS of white matter microstructure integrity for
which the results have not been deposited in the GWAS catalog
(10): Thirty-two of their lead SNPs overlapped with those from
our mvGWAS analyses (table S15).

Functional annotations of genomic loci associated with the
structural connectome
We used FUMA (17) to annotate SNPs to genes at significantly as-
sociated loci by three strategies: physical position, expression quan-
titative trait locus (eQTL) information, and chromatin interactions.
For the node-level connectivity mvGWAS, 879 unique genes were
identified through these three strategies (table S16 and fig. S10).
Ninety-five of 140 lead SNPs had at least one eQTL or chromatin
interaction annotation, indicating that these variants (or other var-
iants in high LD with them) affect gene expression. For example,
rs7935166 on 11p11.2 (multivariate z = 5.71, P = 1.15 × 10−8) is in-
tronic to CD82, which has been reported to promote oligodendro-
cyte differentiation and myelination of white matter (33). This lead
SNP is a brain eQTL (34, 35) of CD82 and also shows evidence for
cross-locus chromatin interaction via the promoter ofCD82 in adult
brain (34). As another example, rs35396874 on 6q21 (multivariate
z = 6.64, P = 3.17 × 10−11) affects the expression of its surrounding
gene FOXO3, a core element of the TLR/AKT/FoxO3 pathway that
is important for repairing white matter injury mediated by oligo-
dendrocyte progenitor cell differentiation (36, 37).
For the edge-level connectivity mvGWAS, functional annotation

identified 1464 unique genes (table S17 and fig. S10). One hundred
thirty-five of 211 lead SNPs had at least one eQTL annotation or
chromatin interaction. For example, rs13084442 on 3q26.31 (mul-
tivariate z = 6.34, P = 2.32 × 10−10) is an eQTL (38) of TNIK, a gene
associated with neurogenesis and intellectual disability (39). Simi-
larly, the SNP rs28413051 on 4q31.23 (multivariate z = 6.28,
P = 3.47 × 10−10) is an eQTL of DCLK2 that is important for
axon growth cone formation and neural migration (40) and is
also within a region interacting with the promoter of DCLK2 in
neural progenitor cells (36). As a further example, allele C of
rs13107325 on 4q24 (multivariate z = 5.77, P = 7.99 × 10−9 in the
node-level connectivity mvGWAS and multivariate z = 8.74,
P = 2.37 × 10−18 in the edge-level connectivity mvGWAS) is a mis-
sense coding variant in the gene SLC39A8 that showed a high com-
bined annotation-dependent depletion score of 23.1, which
indicates that this SNP is deleterious (its frequency was 7.01%).

The same SNP has been associated with white matter microstruc-
ture integrity (20), schizophrenia (41), and children’s behavioral
problems (42).

Gene-based association analysis and gene set enrichment
analysis for the brain’s structural connectome
We used MAGMA (Multi-marker Analysis of GenoMic Annota-
tion) (23) to perform gene-based association analysis, which com-
bines the mvGWAS evidence for association at each SNP within a
given gene while controlling for LD. For node-level connectivities,
we identified 296 significant genes with P < 0.05 (after Bonferroni
correction for testing 20,146 genes and two sets of mvGWAS
results) (table S18 and fig. S11), 237 of which overlapped with
those annotated by at least one of the three strategies used above
(i.e., physical location, eQTL annotation, or chromatin interaction).
The gene-based P values were then used as input to perform
gene-set enrichment analysis, in relation to 15,488 previously
defined functional sets within the MSigDB database (43).
Sixty-one gene sets showed significant enrichment (Bonferroni
adjusted P < 0.05 for testing 15,488 sets; Fig. 3A and table S19),
which mainly implicated neurodevelopmental processes, such as
“go_neurogenesis” (β = 0.18, P = 5.53 × 10−13; the most significant
set), “go_neuron_differentiation” (β = 0.18, P = 1.55 × 10−10), and
“go_cell_morphogenesis_involved_in_neuron_differentiation”
(β = 0.25, P = 3.39 × 10−10).
For edge-level connectivities, we identified 561 genes with

significant gene-based association (Bonferroni-corrected
P < 0.05 for testing 20,146 genes and two sets of mvGWAS
results), 444 of which overlapped with genes mapped through
physical location, eQTL annotation, or chromatin interaction
(table S20 and fig. S11). Seventy-two gene sets were
significant after Bonferroni correction for 15,488 sets (Fig. 3B and
table S21), related especially to neural migration and
the development of neural projections, such as
“go_substrate_dependent_cerebral_cortex_tangential_migration”
(β = 3.98, P = 2.61 × 10−14; the most significant set),
“go_neuron_projection_guidance” (β = 0.41, P = 8.59 × 10−12), and
“go_axon_development” (β = 0.29, P = 3.45 × 10−11).
We tested our genome-wide, gene-based P values with respect to

human brain gene expression data from the BrainSpan database
(44), grouped according to 11 life-span stages or 29 different age
groups. Genes associated with node-level connectivity showed up-
regulation on average across much of the prenatal period, ranging
from early (β = 0.04, P = 5.84 × 10−5) to late (β = 0.08,
P = 1.01 × 10−5) prenatal stages or from 9 (β = 0.002,
P = 4.15 × 10−5) to 26 (β = 0.003, P = 1.18 × 10−3) postconceptional
weeks (Bonferroni-corrected P < 0.05; Fig. 3C and table S22). Sim-
ilarly, genes associated with edge-level connectivities showed up-
regulation on average during early (β = 0.06, P = 2.35 × 10−8) to
late (β = 0.06, P = 1.01 × 10−3) prenatal stages or from 9
(β = 0.003, P = 5.92 × 10−8) to 24 (β = 0.003, P = 2.67 × 10−5) post-
conceptional weeks (Bonferroni-corrected P < 0.05; Fig. 3D and
table S23).
We also examined our genome-wide, gene-based association P

values with respect to two independent single-cell gene expression
datasets derived from human prefrontal cortex samples of different
ages (GSE104276) (45). Combining across age groups, average up-
regulation was observed in astrocytes for genes associated with both
node-level connectivity (β = 0.05, P = 4.34 × 10−5) and edge-level
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connectivity (β = 0.04, P = 1.27 × 10−3) (Bonferroni-corrected P <
0.05; Fig. 3, E and F, and tables S24 and S25). Breaking down by age,
genes associated with node-level connectivity were up-regulated on
average in microglia (β = 0.02, P = 3.72 × 10−5) and stem cells
(β = 0.05, P = 3.51 × 10−4) at 10 gestational weeks of age (GW), as-
trocytes at 19 GW (β = 0.02, P = 1.48 × 10−4) and 26 GW (β = 0.05,
P = 1.35 × 10−7), and GABAergic neurons at 26 GW (β = 0.04,

P = 3.97 × 10−4) (Fig. 3E and table S24). Similarly, genes associated
with edge-level connectivities showed up-regulation on average in
microglia (β = 0.02, P = 5.07 × 10−4) and stem cells (β = 0.06,
P = 5.18 × 10−6) at 10 GW, neurons at 16 GW (β = 0.06,
P = 9.32 × 10−5), and astrocytes (β = 0.05, P = 3.50 × 10−6) and GA-
BAergic neurons at 26 GW (β = 0.05, P = 1.01 × 10−4; Fig. 3F and
table S25).

Fig. 3. Genes associated with variation in the adult white matter connectome
are enriched for specific neurodevelopmental roles. (A) Sixty-one functionally
defined gene sets showed significant enrichment of association with node-level
connectivity. (B) Seventy-two functionally defined gene sets showed significant
enrichment of association with edge-level connectivity. (C and D) On the basis of
BrainSpan data from 11 life-span stages or 29 age groups, genes associated with
variation in (C) adult node-level connectivity and (D) adult edge-level connectivity
show up-regulation in the human brain prenatally. (E and F) On the basis of single-
cell gene expression data from the prenatal brain, genes associated with variation
in (E) adult node-level connectivity show up-regulation in astrocytes when con-
sidering all prenatal age groups combined and in stem cells and microglia at 10
gestational weeks (GW), astrocytes at 19 GW, and GABAergic neurons and astro-
cytes at 26 GWwhen breaking down by developmental stages, and similarly, genes
associated with variation in (F) adult edge-level connectivity show up-regulation in
astrocytes when considering all prenatal age groups combined and in stem cells
and microglia at 10 GW, neurons at 16 GW, and GABAergic neurons and astrocytes
at 26 GW when breaking down by developmental stages. (C to F) Black lines in-
dicate the significance threshold P < 0.05 after Bonferroni correction within each
analysis. PCW, postconceptional weeks.
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Genetics of left-hemisphere language network
connectivity
To illustrate how the brain-wide mvGWAS results can be queried in
relation to any specific brain network of interest, we selected four
left-hemisphere regions that correspond to a network that is reliably
activated by sentence-level language tasks in a left-lateralized
manner in the majority of people and across languages (46), i.e.,
the opercular and triangular parts of inferior frontal cortex
(Broca’s region) and the superior and middle temporal cortex (in-
cluding the Wernicke’s region; Fig. 4). These four nodes are linked
by six edges with heritabilities ranging from 7.3 to 17.1% (table S3),
which together correspond well to the arcuate fasciculus and also
probably include streamlines via the uncinate fasciculus—two
prominent fiber tracts involved in language (Fig. 4) (47). Of the
211 lead SNPs from our brain-wide mvGWAS of edge-level connec-
tivity, 31 were significantly associated with at least one of these six
edges according to the edge-specific z scores derived fromMOSTest
(Bonferroni correction at 0.05; table S26). For example, rs12636275
on 3p11.1 is located within an intron of EPHA3, a gene that encodes
an ephrin receptor subunit that regulates the formation of axon pro-
jection maps (48), and has also been associated with functional con-
nectivity between language-related regions (49). As another
example, rs7580864 on 2q33.1 is an eQTL of PLCL1 that is impli-
cated in autism (50), a neurodevelopmental disorder that often
affects language and social skills. Other positional candidate genes
based on the 31 SNPs include CRHR1, encoding corticotropin re-
leasing hormone receptor 1, and CENPW (centromere protein W)
involved in chromosome maintenance and the cell cycle (Fig. 4 and
table S26).

Multivariate associations of the structural connectomewith
polygenic scores for brain disorders and behavioral traits
For each of the 30,810 individuals in our study sample, we calculated
polygenic scores (51) for various brain disorders or behavioral traits
that have shown associations with white matter variation, using pre-
viously published GWAS summary statistics: schizophrenia (10, 52–
54), bipolar disorder (55, 56), autism (10, 53, 57, 58), attention-
deficit/hyperactivity disorder (59, 60), left-handedness (61, 62),
Alzheimer’s disease (63, 64), amyotrophic lateral sclerosis (65,
66), and epilepsy (67, 68) (Materials and Methods). There were 18
significant partial correlations (i.e., adjusted for demographic and
technical covariates; see Materials and Methods) between different
pairs of these polygenic scores across individuals (Bonferroni-cor-
rected P < 0.05): 16 correlations were positive, with the highest
between polygenic scores for schizophrenia and bipolar disorder
(r = 0.36, P < 1 × 10−200) and between attention-deficit/hyperactiv-
ity disorder and autism (r = 0.33, P < 1 × 10−200), while 2 were neg-
ative, between polygenic scores for amyotrophic lateral sclerosis and
bipolar disorder (r = −0.03, P = 2.26 × 10−6) and amyotrophic
lateral sclerosis and autism (r = −0.03, P = 8.81 × 10−6; table S27
and fig. S12).
Separately, for each of these polygenic scores, we used canonical

correlation analysis to investigate their multivariate associations
with the 90 heritable node-level connectivity measures across the
30,810 individuals. All canonical correlations were highly signifi-
cant: schizophrenia: r = 0.07, P = 8.98 × 10−34; bipolar disorder:
r = 0.07, P = 1.53 × 10−35; autism: r = 0.06, P = 7.87 × 10−24; atten-
tion-deficit/hyperactivity disorder: r = 0.08, P = 7.84 × 10−44; left-
handedness: r = 0.07, P = 1.74 × 10−31; Alzheimer’s disease: r = 0.07,
P = 4.14 × 10−33; amyotrophic lateral sclerosis: r = 0.06,

Fig. 4. Genetics of left-hemisphere language network connectivity. (A) Four regions with core functions in the left-hemisphere language network, encompassing the
classically defined Broca’s (frontal lobe) and Wernicke’s (temporal lobe) areas. Also shown are the six edges connecting these four regions when considered as network
nodes. (B) Visualization of the six edges in an example individual, with red representing connections between the pars opercularis and pars triangularis, green repre-
senting connections between the middle temporal and superior temporal cortex, gold representing connections between the pars opercularis and middle temporal
cortex, blue representing connections between the pars opercularis and superior temporal cortex, purple representing connections between the pars triangularis and
middle temporal cortex, and yellow representing connections between pars triangularis and superior temporal cortex. (C) The closest genes to independent lead SNPs
from the brain-wide mvGWAS of edge-level connectivity, which showed significant association with at least one of the six left-hemisphere language network edges
(Bonferroni correction at 0.05; table S26).
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P = 1.29 × 10−25; epilepsy: r = 0.05, P = 1.49 × 10−20. Therefore,
polygenic dispositions to these various disorders or behavioral
traits in the general population are partly reflected in the brain’s
white matter connectivity.
Canonical correlation analyses yielded loadings for each node-

level connectivity measure, reflecting the extent and direction of
each measure’s association with polygenic disposition for a given
disorder/behavioral trait. For psychiatric disorders, the majority
of loadings were negative, i.e., increased polygenic risk for these dis-
orders was more often associated with reduced than increased con-
nectivity across brain regions (Fig. 5 and table S28). This was
especially marked for polygenic risks for schizophrenia (85
regions with negative loadings, 5 regions with positive loadings),
bipolar disorder (81 negative, 9 positive), and autism (64 negative,
26 positive). Polygenic disposition to left-handedness was also asso-
ciated with more reduced node-level connectivities (62 negative
loadings) than increased node-level connectivities (28 positive load-
ings). In contrast, increased polygenic risk for Alzheimer’s disease
was associated with increased white matter connectivity for a ma-
jority of brain regions (62 of 90) in the U.K. Biobank data, even
while some known regions of disorder pathology showed decreased
connectivity, such as medial temporal cortex (69). (These results re-
mained stable when excluding theAPOE locus that is known to have
a substantial individual effect on Alzheimer’s disease risk; see Ma-
terials and Methods and table S29). Similar observations were made
for polygenic risk for amyotrophic lateral sclerosis, where 74 of 90
regions showed positive loadings (Fig. 5 and table S28).
For each polygenic score, we identified the specific node-level

connectivities that showed the strongest loadings in canonical cor-
relation analyses, i.e., brain regions with loadings of >0.2 or <−0.2.
These regions were used to create a single brain mask for each poly-
genic score, which was then used to query the Neurosynth database
of 14,371 functional brain imaging studies (70). In this process, a
brain-wide coactivation map was generated for each mask, based
on all functional maps in the database, and these were then corre-
lated with cognitive and behavioral term-specific maps derived
from the studies included in the database (70).
For example, the mask for schizophrenia polygenic risk com-

prised 32 regions showing the strongest associations with white
matter connectivity, distributed in the bilateral temporal, dorsoven-
tral, and posterior cingulate cortex (Fig. 5A and table S28), and there
were seven functional term-based correlations of >0.2 with the cor-
responding coactivationmap for these regions (Fig. 5A, fig. S13, and
table S30), including “working memory” and “language.” This sug-
gests that polygenic disposition to schizophrenia influences the con-
nectivity of brain regions especially involved in working memory
and language (see Discussion). The mask for bipolar disorder poly-
genic risk comprised 30 regions, including temporal, medial frontal,
superior parietal, and visual cortex, as well as hippocampus and
caudate, and these regions together received functional annotations
of “mood,” working memory, and language-related processes
(Fig. 5B, fig. S13, and tables S28 and S30). Polygenic risk for
autism was mainly associated with white matter connectivity of
the right dorsolateral prefrontal, right temporal, right sensorimotor,
and bilateral visual cortex, as well as the left amygdala, and these
regions were annotated with visual, working memory, executive,
and attention functions (Fig. 5C, fig. S13, and tables S28 and
S30). Polygenic disposition to left-handedness was associated with
node-level connectivity of Broca’s area, left superior temporal

cortex, left medial prefrontal and left visual cortex, and right thala-
mus, functionally annotated with language-related cognitive func-
tions (Fig. 5E, fig. S13, and tables S28 and S30). See Fig. 5, fig. S13,
and tables S28 and S30 for the equivalent maps and functional an-
notations for all disorder/trait polygenic scores. The polygenic risks
for bipolar disorder and schizophrenia had the most similar brain
maps, in terms of node-level structural connectivity associated with
each of these polygenic risks (r = 0.56 between the loadings for these
two polygenic scores, across the 90 nodes; fig. S14 and table S31).

DISCUSSION
This large-scale mapping study used white matter tractography and
multivariate analysis to characterize the contributions of common
genetic variants to individual differences in structural connectivity
of the adult human brain. Multivariate associations between struc-
tural connectivity and polygenic dispositions to brain-related disor-
ders or behavioral traits were also characterized and described in
terms of functional activations of the implicated brain regions. To-
gether, these various analyses in over 30,000 individuals from the
general population linked multiple levels of biological organization:
from genes and cell types through developmental stages to adult
brain structure and function, behavior, and individual differences,
implicating hundreds of genomic loci that had not previously been
associated with human brain measures.
Different brain regions are interconnected through white matter

nerve fibers; this fundamental property subserves functional net-
works involved in cognition and behavior. In over 30,000 adults
from the general population, we found that interindividual varia-
tion in white matter connectivity is especially influenced by genes
that are (i) active in the prenatal developing brain; (ii) up-regulated
in stem cells, astrocytes, microglia, and neurons of the embryonic
and fetal brain; and (iii) involved in neurodevelopmental processes
including neural migration, neural projection guidance, and axon
development. A likely neurodevelopmental origin of much interin-
dividual variation of adult white matter connectivity is consistent
with findings from large-scale imaging genetic studies of other
aspects of brain structural and functional variation (10, 21, 58).
These statistical enrichment findings serve as a strong biological val-
idation of our mvGWAS findings, as there was no reason for such
clearly relevant functional enrichment to occur by chance in rela-
tion to brain white matter tracts.
Astrocytes are the largest class of brain glial cells with a range of

known functions, including neuronal homeostasis and survival,
regulation of synaptogenesis, and synaptic transmission (71). Less
well known is that during neurodevelopment, astrocytes can
express positional guidance cues, such as semaphorin 3a, that are
required for neuronal circuit formation, through mediating the at-
traction or repulsion of the growth cone at the axonal tip (72). In
our gene-based association analysis, SEMA3Awas the most signifi-
cantly associated individual gene with edge-level connectivity in the
whole genome. Together, our data suggest that the formation of
fiber tracts in the developing human brain may be affected substan-
tially by positional cues provided by astrocytes, in addition
to neurons.
As regard microglia, these phagocytic cells not only are well

known for immune functions but also help to remove dying
neurons and prune synapses, as well as modulate neuronal activity
(73). Less is known of their roles during development, but
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embryonic microglia are unevenly distributed in the brain and as-
sociate with developing axons, which again suggests roles in regu-
lating axonal growth and positional guidance (74). Mouse brains
without microglia, or with immune activated microglia, show ab-
normal dopaminergic axon outgrowth (75), while disruption of mi-
croglial function or depletion of microglia results in a failure of
growing axons to adhere and form bundles in the corpus callosum,
the largest fiber tract of the brain (76). Our data support such

observations, through showing that genes up-regulated in microglia
in the embryonic human brain are enriched for variants that asso-
ciate with individual differences in adult white matter connectivity.
Further research on the roles of astrocytes and microglia in fiber
tract development is therefore warranted.
While our results point especially to genes involved in neurode-

velopment, it is also likely that some genetic effects on white matter
connectivity act later in life. For example, astrocytes and microglia

Fig. 5. Polygenic dispositions to various brain-related disorders or behavioral traits show multivariate associations with regional (node-level) white matter
connectivities in 30,810 participants. Loadings are shown from canonical correlation analyses that indicate the extent and direction to which each node-level con-
nectivity is associated with polygenic scores for (A) schizophrenia, (B) bipolar disorder, (C) autism, (D) attention-deficit/hyperactivity disorder, (E) left-handedness, (F)
Alzheimer’s disease, (G) amyotrophic lateral sclerosis, and (H) epilepsy. A positive loading (red) indicates a higher–node-level connectivity associated with increased
polygenic disposition for a given disorder/behavioral trait, while a negative loading (blue) represents a lower–node-level connectivity associated with increased poly-
genic disposition for a given disorder/behavioral trait. Word clouds represent functions associated with the map of regions (nodes) showing the strongest loadings
(|r| > 0.2) for each polygenic score. Functions were assigned using large-scale meta-analyzed functional neuroimaging data (Materials and Methods). The font sizes in
theword clouds represent correlationmagnitudes between themeta-analyzed functional maps for those terms and the coactivationmap for the set of regions associated
with each polygenic score. See table S30 for the correlation coefficients. wm, working memory; dmn, default-mode network.
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may affect the maintenance and aging of brain fiber tracts during
adulthood, with implications for brain disorders and possibly sug-
gesting therapeutic targets. We mapped the multivariate associa-
tions of polygenic scores for various brain-related disorders and
behavioral traits with regional white matter connectivities and an-
notated the resulting brain maps using meta-analyzed functional
imaging data. Some maps and their annotations were consistent
with the symptomatology of the traits in question—for example,
polygenic disposition to bipolar disorder was associated with
white matter connectivity of brain regions prominently involved
in mood, while polygenic dispositions to attention-deficit/hyperac-
tivity disorder or autism were associated with the connectivity of
regions important for executive functions. Polygenic scores for
left-handedness and for schizophrenia were associated with the
connectivity of language-related regions, consistent with altered
left-hemisphere functional dominance for language in both of
these traits (12, 77) and a phenotypic association between them
(78). Polygenic scores for left-handedness and schizophrenia have
also been associated with altered structural asymmetry of gray
matter in language-related regions (53, 61).
Regarding genetic risks for neurological disorders, polygenic

scores for Alzheimer ’s disease and amyotrophic lateral sclerosis
were associated with the connectivity of regions important for
working memory, while polygenic scores for epilepsy were associat-
ed with connectivity of the default mode network, a set of brain
regions involved in internally initiated thoughts and semantic and
episodic memory (79). Previous analysis of white matter tracts in
Alzheimer’s disease has indicated a broad-based reduction of con-
nectivity (80), so it was unexpected that the majority of brain
regions in the U.K. Biobank adult population dataset showed in-
creased connectivity with higher polygenic risk for this disorder,
even while some core regions of pathology showed decreased con-
nectivity as expected. A similarly notable pattern was seen for amyo-
trophic lateral sclerosis, where increased polygenic risk was
associated with increased structural connectivity for a majority of
brain regions. It may be that increased connectivity of some
regions occurs as a compensatory reconfiguration in response to de-
creased connectivity of others, or at least that white matter connec-
tivity is relatively spared while cortical graymatter is reduced during
aging of those at higher polygenic risk.
The brain-wide mvGWAS approach that we used provided high

statistical power to detect relevant genomic loci, compared to amass
univariate approach (16). At the same time, the multivariate results
could be queried post hoc to identify loci associated with particular
edge-level connectivities of interest. We illustrated this by querying
the results with respect to six connections linking four core regions
of the left-hemisphere language network, together approximating to
Broca’s and Wernicke’s classically defined functional areas (46). As
expected, these connections together formed an overall feature that
closely resembles the arcuate fasciculus plus some connections
running through the uncinate fasciculus (Fig. 4), the two major lan-
guage-related tracts (47, 81). Thirty-one implicated loci included
the EPHA3 locus, encoding an ephrin receptor subunit that acts
as a positional guidance cue for the formation of axon projection
maps and has also been associated with functional connectivity
between regional components of the language network that are es-
pecially involved in semantics (49). This is therefore a concordant
genetic finding with respect to both structural and functional con-
nectivity of the human brain’s language network.

In this study, we used deterministic tractography which we
found to be computationally feasible in more than 30,000 individ-
uals (and which took roughly 4 months of processing on a cluster
server). An alternative approach, probabilistic tractography, is gen-
erally more demanding in terms of run time and storage require-
ments but can have advantages, especially as it permits modeling
of multiple tract orientations per voxel and therefore allows for
crossing fibers (82). However, it has been reported that determinis-
tic tractography tends to have a lower likelihood of generating false-
positive connections than probabilistic approaches (83). This is im-
portant because false positives can be more detrimental to the
correct calculation of network measures than false negatives (83).
Similarly, Sarwar et al. (84) assessed the performance across tractog-
raphy models and reported that deterministic tractography yielded
the most accurate connectome reconstructions, especially when
omitting connections with the fewest number of streamlines. Ac-
cordingly, we only included a connection in our structural connec-
tivity matrix when it was detected in at least 80% of participants.
Applying this threshold removed 3058 weak or spurious connec-
tions from our study, leaving 947 for further analysis, of which
851 showed significant heritability and were taken forward into
mvGWAS analysis. This threshold has been found to be suitable
for white matter network property analysis, as it provides a
balance between the elimination of false-positive connections and
creating false-negative connections (85). Anatomical connectivity
constructed by deterministic tractography has been well confirmed
by microdissection in the postmortem human brain (86), indicating
robustness and reliability of this approach (87). In addition, deter-
ministic tractography has been widely used to construct white
matter connectivity patterns in previous diffusion MRI studies,
which investigated structural characteristics during neurodevelop-
ment, aging, and in brain disorders (4, 88, 89).
It has been reported that tract specificity can be lost through bot-

tlenecks such as the corpus callosum when applying DTI-based
tractography (90), although other studies have reported that deter-
ministic tractography can achieve successful reconstruction of in-
terhemispheric connections via the corpus callosum (91, 92). In
addition, interhemispheric connectivity via the corpus callosum
that was reconstructed from conventional diffusion imaging data
has been supported by high angular resolution diffusion imaging
and also by postmortem examination of white matter anatomy
(93–95). We found the average heritability of interhemispheric con-
nections to be only slightly lower than for intrahemispheric connec-
tions, which suggests that the interhemispheric connections were
measured reliably enough to contribute to the identification of
genetic effects.
We measured structural connectivity linking pairs of regions

defined according to parcellation at the macroscopic level, using
the AAL (Automatic Anatomical Labeling) atlas (13). This atlas
was created by manual neuroanatomical delineation on the basis
of high-resolution structural imaging. Previous studies have found
that this atlas, in combination with DTI data, reliably indexes struc-
tural connectivity (96–98). In addition, the AAL atlas in combina-
tion with deterministic tractography has been applied before in a
study of vascular burden and cognitive ability in the U.K.
Biobank dataset (99), which showed that this protocol is suitable
and practical given the large size and scanning resolution of this
dataset. Furthermore, AAL atlas regions are defined in volume
space and are therefore consistent to apply across cortical and
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subcortical structures (unlike cortical surface–based segmenta-
tions), which was a goal of the present study. Tractography using
volume-based atlases, such as AAL, has also been shown to
capture variation arising from cortical thickness or bundle shape
better than surface-based atlases (100, 101). The AAL labeling
system integrates anatomical features from sulcal and gyral geome-
try, while the relatively large regions help to overcome variability
arising during spatial registration and normalization of brain
images from different individuals. While it would be informative
to apply different atlases in future studies, it is likely that the per-
centage of interregional connections not detected (i.e., with zero
streamlines) would increase with a more fine-grained atlas having
more, smaller parcellations.
This study had some limitations: (i) We maximized our statisti-

cal power for GWAS using the available data as one large discovery
sample, but this did not permit a discovery-replication design.
Nonetheless, ultimately, the total combined analysis in the largest
available sample is the most representative of the available evidence
for association. As mentioned earlier in this section, the various en-
richment analyses indicated biological validity of the GWAS find-
ings. It has been argued that discovery-replication designs have less
utility in the current era of Biobank-scale genetic studies than they
used to and that other forms of validation such as biological enrich-
ment should be given increased weight in interpretation (102). (ii)
This was a large-scale observational mapping study, which meant
that many of the analyses were screen-based and descriptive.
Science proceeds through a combination of observation and hy-
pothesis testing—this study incorporated both to varying degrees.
Some of the biological observations were notable and informative,
for example, the likely involvements of microglia and astrocytes in
affecting white matter tracts during embryonic and fetal develop-
ment, which should now be studied more extensively in animal
models. (iii) This study did not consider rare genetic variants
(with population frequencies below 1%). Future analysis of the
U.K. Biobank’s exome and genome sequence data in relation to
white matter connectivity may reveal further genes and suggest ad-
ditional mechanisms, cell types, and life-span stages in affecting in-
terindividual variation.
In summary, we used large-scale analysis to chart the white

matter connectivity of the human brain, its multivariate genetic ar-
chitecture, and its associations with polygenic dispositions to brain-
related disorders and behavioral traits. The analyses implicated spe-
cific genomic loci, genes, pathways, cell types, developmental stages,
brain regions, fiber tracts, and cognitive functions, thus integrating
multiple levels of analysis and suggesting a range of future research
directions at each of these levels.

MATERIALS AND METHODS
Sample quality control
This study was conducted under U.K. Biobank application 16066,
with C.F. as principal investigator. The U.K. Biobank received
ethical approval from the National Research Ethics Service Com-
mittee North West-Haydock (reference 11/NW/0382), and all of
their procedures were performed in accordance with the World
Medical Association guidelines (103). Written informed consent
was provided by all of the enrolled participants. We used the
dMRI (diffusion MRI) data released in February 2020, together
with the genome-wide genotyping array data. For individuals

with available dMRI and genotype data, we first excluded partici-
pants with amismatch of their self-reported and genetically inferred
sex, with putative sex chromosome aneuploidies, or who were out-
liers according to heterozygosity (principle component corrected
heterozygosity > 0.19) and genotype missingness (missing
rate > 0.05) as computed by Bycroft et al. (104). To ensure a high
degree of genetic homogeneity, analysis was limited to participants
with white British ancestry, which was defined by Bycroft et al.
(104), using a combination of self-report and cluster analysis
based on the first six principal components that capture genetic an-
cestry. We also randomly excluded one participant from each pair
with a kinship coefficient of >0.0442, as calculated by Bycroft et al.
(104). All of these metrics are available within U.K. Biobank data
category 263 or 100313. Our inclusion procedure lastly resulted in
30,810 participants, with a mean age of 63.84 years (range, 45 to 81
years), 14,636 were male and 16,174 were female.

Genetic quality control
We downloaded imputed SNP and insertion/deletion genotype data
from the U.K. Biobank (i.e., v3 imputed data released in March
2018; U.K. Biobank data category 263 and data field 22828).
QCTOOL (v.2.0.6) and PLINK v2.0 (105) were used to perform ge-
notype quality control. Specifically, we excluded variants with a
minor allele frequency of <1%, a Hardy-Weinberg equilibrium
test P < 1 × 10−7, and an imputation INFO score of <0.7 (a
measure of genotype imputation confidence), followed by removing
multiallelic variants that cannot be handled by many programs used
in genetic-related analyses. This pipeline lastly yielded 9,803,735
biallelic variants.

Diffusion MRI-based tractography
DiffusionMRI data were acquired from Siemens Skyra 3 T scanners
running protocol VD13A SP4, with a standard Siemens 32-channel
RF receive head coil (106). We downloaded the quality-controlled
dMRI data that were preprocessed by the U.K. Biobank brain
imaging team (106, 107) (U.K. Biobank data field: 20250, first
imaging visit). The preprocessing pipeline included corrections
for eddy currents, head motion, outlier slices, and gradient distor-
tion. We did not make use of imaging-derived phenotypes released
by the U.K. Biobank team, such as FA (fractional anisotropy) and
mean diffusivity (microstructural measures). Rather, we used the
quality-controlled dMRI data to perform tractography in volume
space in each individual, which generated three-dimensional
curves that characterize white matter fiber tracts. Briefly, diffusion
tensors were modeled to generate an FA image in native diffusion
space, which was used for deterministic diffusion tensor tractogra-
phy usingMRtrix3 (108). Streamlines were seeded on a 0.5-mm grid
for every voxel with an FA of 0.15 and propagated in 0.5-mm steps
using fourth-order Runge-Kutta integration. Tractography was ter-
minated if the streamline length was <20 or >250mm, if it turned an
angle of >45°, or reached a voxel with an FA of <0.15. These param-
eters were consistent with a previous study exploring the structural
network correlates of cognitive performance using the U.K.
Biobank dataset (99). Tens of thousands of streamlines were gener-
ated to reconstruct the white matter connectivity matrix of each in-
dividual on the basis of the Automated Anatomical Labelling atlas
(13) comprising a total of 90 regions encompassing cortical and
subcortical structures (45 regions per hemisphere). This

Sha et al., Sci. Adv. 9, eadd2870 (2023) 17 February 2023 11 of 19

SC I ENCE ADVANCES | R E S EARCH ART I C L E



deterministic tractography process took roughly 16 weeks on six
cluster server nodes running in parallel.
From the streamline data, we computed the mean lengths of all

interregional connections reconstructed by the deterministic trac-
tography, using the “scale_length” option of the “tck2connectome”
function in the MRtrix3 toolbox (109).

Network construction and analysis
Describing the structural network of each participant requires the
definition of network nodes and edges. In this study, the network
nodes corresponded to the 90 regions of the Automated Anatomical
Labeling atlas, a three-dimensional volume-based parcellation
scheme (13). The labeling system integrates detailed anatomical fea-
tures from sulcal and gyral geometry, reducing anatomical variabil-
ity that can arise from spatial registration and normalization of
brain images taken from different individuals (13). For each partic-
ipant, the T1 images (U.K. Biobank data field: 20252, first imaging
visit) were nonlinearly transformed into the ICBM152 T1 template
in the MNI (Montreal Neurological Institute) space to generate the
transformation matrix (110). Inverse transformation was used to
warp the Automated Anatomical Labeling atlas (13) from the
MNI volume space to native volume space. Discrete labeling
values were preserved using a nearest-neighbor interpolation
method (110). Two nodes were considered connected if they were
joined by the end points of at least one reconstructed streamline.
Separately, for each individual in the dataset, network edges were
computed by the number of streamlines connecting a given pair
of regions, divided by the volume of the two regions, because
regions with larger volumes tend to have more streamlines connect-
ing to them. This is a common approach in studies of white matter
networks (111–113). We only included edges that were detected in
at least 80% of participants, which removed 3058 weak or spurious
connections from our study. This yielded a zero-diagonal symmet-
rical 90 × 90 undirected connectivity matrix for each participant, in
which 947 edges were retained. The node-level connectivity of a
region was then defined as the sum of all existing volume-weighted
edges between that node and all other nodes in the network, reflect-
ing the total connectivity of that node within the overall network.
Rank-based inverse normalization across individuals was per-

formed on each network measure and regression on age (U.K.
Biobank field: 21003), nonlinear age [i.e., (age-mean_age)2], assess-
ment center (U.K. Biobank data field: 54), genotype measurement
batch (data field: 22000), and sex (data field: 31). Residuals were
then further regressed on the first 10 genetic principal components
that capture population genetic diversity (U.K. Biobank field:
22009) (104), followed by rank-based inverse normalization of the
residuals once more, and visual inspection of their distributions to
confirm normality. The normalized, transformed measures were
used for subsequent genetic analyses.

SNP-based heritability
We constructed a genetic relationship matrix using 9,516,306 vari-
ants on the autosomes with minor allele frequencies of >1%, an
INFO score of >0.7, and Hardy-Weinberg equilibrium P >
1 × 10−7, using GCTA (version 1.93.0beta) (15). We further exclud-
ed one random participant from each pair having a kinship coeffi-
cient higher than 0.025 (as SNP-based heritability analysis is
especially sensitive to participants with higher levels of relatedness),
yielding 29,027 participants for this particular analysis. Genome-

based restricted maximum likelihood analyses were then performed
to estimate the SNP-based heritability for each normalized structur-
al network measure, again using GCTA (15). Bonferroni correction
was applied separately for each type of network measure to identify
those that were significantly heritable at adjusted P < 0.05: 90 node-
level connectivities and 851 edge-level connectivities.

Reliability of heritable network measures
For our main analysis of the 30,810 individuals (above), we used
data from the first scanning visit at a U.K. Biobank assessment
center. One thousand five of these individuals had also undergone
brain scans (T1 structural and DTI) on a subsequent, separate oc-
casion, from 733 to 974 days after their first scan. To examine the
reliability of significantly heritable brain network measures we re-
ran deterministic tractography on the “second scan” data from these
1005 individuals, with the same set of parameters and quality filters
as the primary analysis, and recomputed the same edge-wise con-
nectivity metrics as in the primary analysis. Each edge measure was
then linearly adjusted for the same covariates as the main analysis,
and rank-based inverse normalization was applied as in the main
analysis. The adjusted, normalized values from the first and
second scans were then used to compute the ICC for each heritable
network measure, to evaluate reliability (114). ICC was calculated
by the following formula

ICC ¼
BMS � WMS

BMSþ ðm � 1ÞWMS

where BMS represents the between-individual mean square, WMS
represents the within-individual mean square, and m indicates the
number of repeat measures (here, m = 2).

Multivariate genome-wide association analysis
A total of 9,803,735 biallelic variants were used for mvGWAS anal-
ysis, spanning all autosomes and chromosome X. The sample size
for mvGWAS was 30,810 (see the “Sample quality control” section
above). We applied theMOSTest toolbox (16) to performmvGWAS
analysis for the significantly heritable measures, separately for
node-level connectivities and edge-level connectivities. MOSTest
can leverage the distributed nature of genetic influences across hun-
dreds of spatially distributed brain phenotypes while accounting for
their covariances, which can boost statistical power to detect
variant-phenotype associations (16). Specifically, the multivariate
correlation structure is determined on randomly permuted geno-
type data. MOSTest calculates the Mahalanobis norm as the sum
of squared decorrelated z values across univariate GWAS
summary statistics, to integrate effects across measures into a mul-
tivariate z statistic for each genetic variant, and uses the gamma cu-
mulative density function to fit an analytic form for the null
distribution. This permits extrapolation of the null distribution
below the P = 5 × 10−8 significance threshold without performing
an unfeasible number of permutations [5 × 10−8 is a widely used
threshold for GWAS multiple test correction in European-descent
populations (115)]. Close matching of the null P value distributions
from the permuted and analytic forms indicates that the method
correctly controls type 1 error; this was the case for all four of our
mvGWAS analyses (figs. S6 and S7). In this framework, the signs
(positive or negative) of univariate z scores indicate the correspond-
ing directions of effects (with respect to increasing numbers of
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minor alleles at a given SNP), whereas multivariate z scores are
always positive.

Identification of genomic loci, functional annotations, and
SNP-to-gene mapping
We used FUMA (version v1.4.0) (17) to identify distinct genomic
loci showing significant multivariate associations with brain struc-
tural connectivity and applied functional annotations, using default
parameters. LD structure was applied according to the 1000
Genomes European reference panel (116). SNPs with genome-
wide significant mvGWAS P < 2.5 × 10−8 that had LD r2 < 0.6
with any others were identified. For each of these SNPs, other
SNPs that had r2 ≥ 0.6 with them were included for further anno-
tation (see below), and independent “lead SNPs” were also defined
among them as having low LD (r2 < 0.1) with any others. If LD
blocks of significant SNPs were located within 250 kb of each
other, then they were merged into one genomic locus. Therefore,
some genomic loci could include one or more independent lead
SNPs. The major histocompatibility complex region on chromo-
some 6 was excluded from this process by default, because of its es-
pecially complex and long-range LD structure. Functional
annotation and SNP-to-gene mapping were carried out in FUMA
according to previously published criteria (58).

Multivariate association profiles of independently
associated lead SNPs
For each SNP, MOSTest derives a z score for each brain measure,
calculated from the P value of the univariate association of that
SNP with each individual measure. The z scores give an indication
of which measures contribute most to the multivariate association
for a given SNP (16). We used the z scores from the mvGWAS of
fiber tracts to identify lead SNPs that were significantly associated
with at least one from a set of six left-hemisphere language-related
fiber tracts (see Results: Genetics of left-hemisphere language con-
nectivity). To determine significance in this context, a threshold z
score with an unsigned magnitude of >3.56 was applied, corre-
sponding to a P value of 2.37 × 10−4 (i.e., P < 0.05 after Bonferroni
correction for all 211 lead SNPs from the mvGWAS of fiber tracts
and considering six fiber tracts). To determine which structural
connectivity measures contributed most to the multivariate associ-
ations as considered across lead SNPs, we summed the unsigned
univariate z scores separately for each measure across all lead
SNPs (separately for the mvGWAS analyses of node-level connec-
tivities and fiber tracts).

Gene-based association analysis
MAGMA (v1.08) (23), with default parameters as implemented in
FUMA (SNP-wise mean model), was used to test the joint associa-
tion arising from all SNPs within a given gene (including 50-kb up-
stream to 50-kb downstream) while accounting for LD between
SNPs. SNPs were mapped to 20,146 protein-coding genes on the
basis of National Center for Biotechnology Information build
37.3 gene definitions, and each gene was represented by at least
one SNP. Bonferroni correction was applied for the number of
genes (P < 0.025/20,146), separately for each mvGWAS.

Gene-set enrichment analysis
MAGMA (v1.08), with default settings as implemented in FUMA,
was used to examine the enrichment of association for predefined

gene sets. This process tests whether gene-based P values among all
20,146 genes are lower for those genes within predefined functional
sets than the rest of the genes in the genome while correcting for
other gene properties such as the number of SNPs. A total of
15,488 gene sets from the MSigDB database version 7.0 (43)
[5500 curated gene sets, 7343 gene ontology (GO) biological pro-
cesses, 1644 GOmolecular functions, and 1001 GO cellular compo-
nents] were tested. Bonferroni correction was applied to correct for
the number of gene sets (P < 0.05/15,488), separately for
each mvGWAS.

Cell type–specific expression analysis in developing
human cortex
On the basis of a linear regression model, the CELL TYPE function
of FUMA was used to test whether gene-based association z scores
were positively associated with higher expression levels in certain
cell types, based on single-cell RNA sequencing data from the de-
veloping human prefrontal cortex (GSE104276) (45). This dataset
comprised (i) expression per cell type per age group, ranging
from 8 to 26 postconceptional weeks, and (ii) expression profiles
per cell type, averaged over all ages combined. Results were consid-
ered significant if the association P values were smaller than the rel-
evant Bonferroni threshold for the number of cell types/age groups.
Analysis was performed separately for each mvGWAS.

Developmental stage analysis
We used MAGMA (default settings as implemented in FUMA) to
examine whether lower gene-based association P values tended to
be found for genes showing relatively higher expression in Brain-
Span gene expression data (44) from any particular life-span stage
when contrasted with all other stages, separately for 29 different age
groups ranging from 8 postconceptional weeks to 40 years old, and
11 defined life-span stages from early prenatal to middle adulthood.
A false discovery rate threshold of 0.05 was applied separately for
each analysis. Positive β coefficients for this test indicate that
genes showing more evidence for association are relatively up-reg-
ulated on average at a given life-span stage.
The Brainspan study originally collected and assigned human

brain postmortem tissue samples to 1 of 31 developmental/life-
span stages (44), but FUMA’s implementation excluded two age
groups that had less than three samples each (i.e., 25 postconcep-
tional weeks and 35 postconceptional weeks), resulting in 29 age
groups being specified for this analysis by FUMA.

Polygenic disposition to brain-related disorders or
behavioral traits
We used PRS-CS (51) to compute polygenic scores for 30,810 U.K.
Biobank individuals (see the “Sample quality control” section) for
each of the following brain-related disorders or behavioral traits,
using GWAS summary statistics from previously published, large-
scale studies: schizophrenia (n = 82,315) (52), bipolar disorder
(n = 51,710) (55), autism (n = 46,350) (57), attention-deficit/hyper-
activity disorder (n = 55,374) (60), left-handedness (n = 306,377)
(61), Alzheimer’s disease (n = 63,926) (63), amyotrophic lateral
sclerosis (n = 152,268) (66), and epilepsy (n = 44,889) (68). None
of these previous studies used U.K. Biobank data, except for the
GWAS of left-handedness (61); however, the individuals in that
GWAS were selected to be nonoverlapping and unrelated to those
with brain image data from the February 2020 data release, so that
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none of the 30,810 U.K. Biobank individuals from the present study
had been included in that GWAS. This ensured that training and
target sets for polygenic score calculation were independent. PRS-
CS infers posterior effect sizes of autosomal SNPs on the basis of
genome-wide association summary statistics, within a high-dimen-
sional Bayesian regression framework. We used default parameters
and the recommended global effect size shrinkage parameter
ϕ = 0.01, together with LD information based on the 1000
Genomes Project phase 3 European-descent reference panel
(117). Polygenic scores were calculated using 1,097,390 SNPs for
schizophrenia, 1,098,372 SNPs for bipolar disorder, 1,092,080
SNPs for autism, 1,042,054 SNPs for attention-deficit/hyperactivity
disorder, 1,103,632 SNPs for left-handedness, 1,105,067 SNPs for
Alzheimer’s disease, 1,085,071 SNPs for amyotrophic lateral sclero-
sis, and 852,343 SNPs for epilepsy (these numbers came from three-
way overlaps between U.K. Biobank data, GWAS results, and 1000
Genomes data). PRS-CS has been shown to perform in a highly
similar manner to other established polygenic risk algorithms,
with noticeably better out-of-sample prediction than an approach
based on P value thresholds and LD clumping (118, 119).
Polygenic scores were linearly adjusted for the effects of age,

nonlinear age [i.e., (age-mean_age)2], assessment center, genotype
measurement batch, sex, and the first 10 genetic principal compo-
nents that capture population genetic diversity, before performing
rank-based inverse normalization (i.e., the same set of covariate
effects that the brain metrics were adjusted for; see the “Network
construction and analysis” section) and visual inspection of their
distributions to confirm normality. The adjusted and normalized
polygenic scores were used as input for subsequent analyses.
Separately, for polygenic scores for each disorder or behavioral

trait, canonical correlation analysis across 30,810 participants (“can-
oncorr” function in MATLAB) was used to test multivariate associ-
ation with the 90 heritable node-level connectivity measures (which
had also been adjusted for covariates and normalized; see the
“Network construction and analysis” section). This multivariate
analysis identified a linear combination of the 90 node-level con-
nectivity measures (i.e., a canonical variable) that maximally corre-
lated with the polygenic score for a particular disorder or behavioral
trait across participants. Separately, for the polygenic score of each
disorder or behavioral trait, the cross-participant Pearson correla-
tion between each node-level connectivity and the canonical vari-
able was used as a loading, reflecting the extent and direction of
the contribution that a node-level connectivity made to a particular
multivariate association. We also assessed the pairwise correlations
across individuals between adjusted and normalized polygenic
scores for the different disorders and behavioral traits.
As the APOE locus is known to have a substantial effect on the

risk of Alzheimer’s disease, we also recalculated polygenic scores for
this disease after excluding a region from Chr19:45,116,911 to
Chr19:46,318,605 (GRCh37) (120) around this locus and repeated
the residualization, normalization, and canonical correlation anal-
yses to check that the results stably reflected the polygenic contribu-
tion to risk.

Functional annotation of brain regions associated most
strongly with polygenic scores
From each separate canonical correlation analysis of polygenic
scores and node-level connectivity, we identified the regions
showing loadings of >0.2 or <−0.2, which were then used to

define a single mask in standard brain space (Montreal Neurological
Institute space 152) (i.e., one mask for each polygenic score). Each
mask was analyzed using the “decoder” function of the Neurosynth
database (http://neurosynth.org), a platform for large-scale synthe-
sis of functional MRI data (70). This database defines brain-wide
activation maps corresponding to specific cognitive or behavioral
task terms using meta-analyzed functional activation maps. The da-
tabase included 1334 term-specific activation maps corresponding
to cognitive or behavioral terms from 14,371 studies. Eachmask that
we created was used separately as input to define a brain-wide co-
activation map based on all studies in the database. The resulting
coactivation maps were then correlated with each of the 1334
term-specific activation maps (70). We report only terms with cor-
relation coefficients r > 0.2 while excluding anatomical terms, non-
specific terms (e.g., “Tasks”), and one from each pair of virtually
duplicated terms (such as “Words” and “Word”). This method
does not use inferential statistical testing but rather ranks terms
based on the correlations between their activation maps and that
of the input mask.
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