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Abstract

Glioblastoma is a heterogeneous tumor for which effective treatment options are limited and 

often insufficient. Studies examining the intratumoral transcriptional and proteomic heterogeneity 

of the glioblastoma microenvironment to characterize the spatial distribution of potential 

molecular and cellular therapeutic immuno-oncology targets are limited. We applied an integrated 

multimodal approach comprised of NanoString GeoMx® Digital Spatial Profiling (DSP), 

single cell RNA-seq (scRNAseq), and expert neuropathological assessment to characterize 
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archival formalin-fixed paraffin-embedded (FFPE) glioblastoma specimens. Clustering analysis 

and spatial cluster maps highlighted the intratumoral heterogeneity of each specimen. Mixed 

cell deconvolution analysis revealed that neoplastic and vascular cells were the prominent 

cell types throughout each specimen, with macrophages, oligodendrocyte precursors, neurons, 

astrocytes, and oligodendrocytes present in lower abundance and illustrated the regional 

distribution of the respective cellular enrichment scores. Spatial resolution of the actionable 

immunotherapeutic landscape showed that robust B7H3 gene and protein expression was 

broadly distributed throughout each specimen and identified STING and VISTA as potential 

targets. Lastly, we uncovered remarkable variability in VEGFA expression and discovered 

unanticipated associations between VEGFA, endothelial cell markers, hypoxia, and the expression 

of immunoregulatory genes, indicative of regionally distinct immunosuppressive microdomains. 

This work provides an early demonstration of the ability of an integrated panelbased spatial 

biology approach to characterize and quantify the intrinsic molecular heterogeneity of the 

glioblastoma microenvironment.

BACKGROUND

Tumors are dynamic tissues comprised of malignant cells, various immune cell subtypes, 

distinct non-immune stromal cells, metabolites, soluble signaling molecules, and differential 

oxygenation and nutritional gradients.1,2 To truly harness the potential of immuno-oncology 

and identify rational therapeutic targets, a detailed molecular and cellular understanding 

of the tumor microenvironment is required. Spatial profiling is a novel approach that 

is well suited to meet this challenge by generating dozens to thousands of regionally 

distinct gene expression profiles from a single tissue.3-8 Glioblastoma is a challenging 

molecularly and cellularly heterogeneous malignancy of the central nervous system (CNS) 

with variable penetration of immune cells and resistant cancer stem cell subclones.9-16 We 

aimed to utilize spatial profiling using the NanoString GeoMx platform to characterize the 

intratumoral heterogeneity of this disease and reveal region-specific microenvironmental 

gene expression profiles. The data presented here demonstrates the utility of integrating 

clinical neuropathology, single cell sequencing, and spatial profiling technologies to identify 

and characterize the multiple region-specific tumor microenvironments within individual 

archived formalin-fixed paraffin embedded human glioblastoma specimens.

MATERIALS AND METHODS

Patient specimens

Archived FFPE specimens were obtained from the Department of Pathology at the 

Keck School of Medicine of the University of Southern California under Institutional 

Review Board protocol HS-11-00385 and in compliance with the Declaration of 

Helsinki. Specimens were obtained from adult patients with a neuropathological diagnosis 

of glioblastoma, IDH-wildtype, CNS World Health Organization (WHO) Grade 4.17 

Representative hematoxylin and eosin (H&E) stained slides from each specimen were 

evaluated for the following features to determine their suitability for profiling: tissue 

size, percent necrosis, and hemorrhage. IDH mutation status and specimen age were also 
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evaluated. Of the seven specimens identified, three were selected for further investigation. 

Serial 5μm slides were cut from each block and used for spatial RNA and protein profiling.

Protein assay slide preparation

Slides were baked in a drying oven, deparaffinized, rehydrated in an ethanol gradient, and 

placed in ditheyl pyrocarbonate (DEPC)-treated water. Antigen retrieval was performed with 

1X citrate buffer,pH6 in a pressure cooker on high temperature setting for 15 minutes. The 

slides were then blocked and incubated with the primary antibody mix and the fluorescently 

conjugated morphology markers. The morphology markers used are as follows: Iba1-647 

at 1:75 dilution (EMD Millipore, MABN92-AF647), CD3-594 at 1:50 dilution (Abcam, 

ab196147), GFAP-532 at 1:3000 dilution (Novus Biologicals, NBP2-33184AF532), and 

SYTO 13 at 1:5 dilution (Thermo Scientific S7575).

RNA assay slide preparation

Slides were prepared by baking in a drying oven and then processed using the Leica BOND 

platform (Leica Biosystems) as specified by the NanoString GeoMx DSP Slide Preparation 

User Manual. Briefly, slides were deparaffinized with xylene then rehydrated through a 

graded ethanol series. Targets were exposed by incubating the slides in a pressure cooker at 

100°C in 1X Tris-EDTA buffer, pH9 followed by proteinase K digestion. Next, the GeoMx 

NGS-RNA Probe Mix (NanoString Technologies) was applied to each slide, and slides were 

incubated at 37°C for 16-24 hours. This probe mix contained barcoded oligonucleotide 

probes against 1,700 gene targets and included internal positive and negative control probes. 

After washing, the slides were then blocked in Buffer W (NanoString Technologies) and 

stained with morphology markers for 1 hour. The fluorescently conjugated morphology 

markers used are as follows: Iba1 at 1:75 dilution (EMD Millipore, MABN92-AF647), 

CD3 at 1:50 dilution (Abcam, ab196147), GFAP at 1:3000 dilution (Novus Biologicals, 

NBP2-33184AF532), and SYTO 13 nuclei acid stain at 1:5 dilution (Thermo Scientific 

S7575).

Neuropathological assessment and ROI selection criteria

Regions of interest (ROIs) in each tissue were arbitrarily selected without regard to the 

morphology markers in attempts to broadly sample multiple regions of each tissue. H&E-

stained sections for each histologically-determined glioblastoma specimen were divided 

into individual ROIs. The mean ROI diameter and average nuclei/ROI are listed in 

Supplemental Table 1. Each ROI was reviewed by a board-certified neuropathologist (PJC) 

and annotated for histological features of glioblastoma according to the 2016 revised 

fourth edition of the World Health Organization Classification of Tumors of the Central 

Nervous System.17 Noted histological features included microvascular proliferation, blood 

vessels without microvascular proliferation, necrosis, pseudopalisading cells, hemorrhage, 

and tumor cellularity. Tumor cellularity was further provided as a qualitative visual estimate 

of cellularity (low, medium, and high) according to guidelines previously published for 

glioblastoma.16 Estimates of each feature were given as a percentage of ROI occupancy. 

Discriminating factors for ROI selection included the avoidance of areas with significant 

hemorrhage, necrosis, and other acellular regions that would result in a low signal-to-noise 
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ratio. ROIs were matched as best as possible between serial sections for the RNA and 

protein assays.

Library preparation and sequencing

Samples were prepared for next generation sequencing (NGS) on an Illumina NextSeq 

550 as specified by GeoMx – NGS Readout User Manual (MAN-10117, Nanostring 

Technologies). The quality of the libraries were checked using an Agilent Bioanalyzer and 

subsequently sequenced on an Illumina NextSeq 550 at a concentration of 1.6pM with a 5% 

PhiX spike-in as per Illumina manual instructions.

Normalization of GeoMx data

RNA Data: The negative control probes were used to estimate the number of background 

counts in each data point. This calculation was performed separately for each of the two 

probe pools used in this study. Expected background was subtracted from the raw counts, 

and negative values were reset to 0. Finally, each segment’s data was scaled such that all 

segments had the same 85th percentile expression value. Protein Data: Individual ROIs were 

examined to identify outliers with low signal and/or high background. Next, the data were 

normalized by dividing the antibody count value by the geometric mean of the housekeeping 

antibodies GAPDH and S6 as suggested by the GeoMx - NGS Data Analysis User Manual 

(MAN-10119-05, NanoString Technologies).

Single-sample gene set enrichment analysis

Single-sample gene set enrichment analysis (ssGSEA) was performed with the gene set 

variation analysis (GSVA) R library using the ssGSEA method with a Poisson kernel, 

applied to the normalized gene expression data described above. The fgsea R package was 

used to access the Reactome gene sets, and all sets with 5-500 genes were considered.

Mixed cell deconvolution

Cell type abundance was estimated using the SpatialDecon algorithm.18 The expected 

expression profiles for each cell type were derived using a publicly available scRNA-seq 

dataset derived from glioblastoma specimens.19 Cells that fell below the inflection point, 

were considered empty by emptyDrops, had a gene count above 2.5x the average gene 

count, or had a percentage of mitochondrial genes > 0.05 were removed from the data 

matrix.20 Genes were removed if they appeared in less than 2 cells or had low biological 

significance as measured by scran.21 The original cell type calls were retained with the 

exception of the myeloid cell cluster. Cells with the myeloid cell label were re-clustered 

and marker genes identified using Seurat.22 Clustered marker genes were compared to 

PanglaoDB markergenes (ubiquitousness index < 0.1, sensitivity > 0.6, specificity < 0.4, 

canonical marker).23 Cell clusters were named according to the PanglaoDB cell type 

with the most overlapping marker genes. Both new cell cluster names, “macrophage” 

and “microglia”, were manually reviewed for correctness. Each cell cluster’s profile was 

reported as the arithmetic mean of its cells’ expression profiles. From the matrix of expected 

cell type expression profiles, a subset of 432 informative genes was defined as all genes 

that surpassed a minimal expression level in at least one cell type and had a single cell type 
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accounting for at least 40% of their total expression level across the columns of the cell type 

matrix. This yielded a reference matrix of 432 genes in 8 cell types.

Statistical Analysis

Constellation plots were generated using JMP Pro 15 (SAS). Heatmaps, correlation 

matrices, and dendrograms were generated using Morpheus visualization and analysis 

software (https://software.broadinstitute.org/morpheus/). Uniform Manifold Approximation 

and Projection (UMAP) plots of the processed glioblastoma scRNA-seq data from Darmanis 

et al. were generated using the Single Cell Expression Atlas web interface (https://

www.ebi.ac.uk/gxa/sc/home).19 Stacked bar plots, dot plots, line graphs, and scatter plots 

were generated using Prism9 (GraphPad).

Spatial Heatmaps

The ROIs used for spatial profiling were manually applied to full slide images of the 

hematoxylin and eosin-stained tissues as individual vector graphics using Adobe Illustrator 

2021 (Adobe). Individual ROI vector graphics were pseudo-colored according to the 

corresponding color profile representing the value attributed to the gene/score in question.

RESULTS

Region-specific transcriptional profiles reveal intratumoral heterogeneity within individual 
glioblastoma specimens.

Glioblastoma is a markedly heterogeneous malignancy, both morphologically and 

molecularly.14,15 To assess the intratumoral transcriptional heterogeneity within each 

specimen, 32 spatially distinct ROIs were randomly chosen to capture a range of regions 

in each specimen, avoiding hemorrhagic and acellular portions of the tissues (Figure 1A-C). 

After processing and normalization, 29/32 ROIs in HGG03, 29/32 ROIs in HGG05, and 

31/32 ROIs in HGG06 were deemed sufficient for downstream analysis based on quality 

control thresholds and abundance of normalized gene counts.

Unsupervised hierarchical clustering was used to investigate the relatedness of the gene 

expression profiles for each ROI within each specimen (Figure 1D-F, left). Spatial cluster 

maps were generated to visualize the regional distribution of the ROIs comprising the 

different constellation plot clusters within each glioblastoma specimen (Figure 1D-F, 

right). This analysis illustrated the intrinsic transcriptional heterogeneity within individual 

glioblastoma specimens by showing the regional enrichment or dispersion of ROIs 

belonging to the same cluster assignment.

Next, we investigated the extent of intertumoral heterogeneity across the three specimens. 

Principal component analysis demonstrated that the ROIs in specimens HGG03 and 

HGG05 formed tight independent clusters with little overlap, indicating the transcriptional 

distinction between the two specimens (Supplemental Figure 1). The ROIs in specimen 

HGG06 clustered in a more diffuse manner with ROIs overlapping both the HGG03 and 

HGG05 clusters as well as distally related ROIs, indicating that regions of specimen HGG06 

are transcriptionally similar to specimens HGG03 and HGG05 while other regions are 
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transcriptionally divergent (Supplemental Figure 1). Together, these data demonstrate that 

glioblastomas are comprised of multiple regionally distinct gene expression profiles, further 

highlighting the intrinsic inter- and intra-tumoral heterogeneity of this complex disease.

Regional expression of genes commonly altered in glioblastoma.

EGFR, TP53, PTEN, and CDKN2B are recurrently mutated in a significant fraction of 

glioblastomas.14,24,25 We examined the relative expression levels of each of these genes 

in each ROI with respect to the percent tumor cellularity as determined by standard 

neuropathological assessment and observed regional variability in both tumor cellularity 

and gene expression values (Figure 1G-I). We observed profound differences in the percent 

viable tumor versus percent necrosis throughout specimen HGG03 whereas appreciable 

necrosis was only present in a single ROI in both specimens HGG05 and HGG06. Notably, 

CDKN2B expression was uniformly absent in all ROIs in specimen HGG03 and mostly 

absent in specimen HGG05, suggestive of widespread CDKN2B loss (Figure 1G-H, bottom 

panels). Whether the observed lack of CDKN2B was due to genomic deletion, point 

mutation, or epigenetic silencing was not determined in this study. Similarly, with little 

exception, low PTEN expression was also noted in the ROIs from specimen HGG03 (Figure 

1G, fourth panel).

Marked variation in EGFR expression was seen in ROIs from specimen HGG06 (Figure 

1I, second panel). Next, we determined if the regional alterations in EGFR expression were 

associated with differences in tumor cellularity. We observed lower EGFR expression and 

decreased tumor cellularity in only 2/32 ROIs examined (Figure 1I, first and second panels), 

indicating that decreased EGFR expression was not associated with decreased tumor cell 

content. We interpreted these data to indicate the presence of clonal glioma populations with 

varied EGFR gene expression. While not confirmed as part of this study, the magnitude 

of EGFR expression in specimen HGG06 may reflect clonal amplification of the EGFR 
locus in ROIs with excessive EGFR expression. Together, these data highlight the regional 

heterogeneity in the expression of recurrently mutated genes in glioblastoma.

Quantification and spatial distribution of tumor-infiltrating immune cells.

To determine the abundance and localization of infiltrating immune cells within each tissue, 

we examined the expression of known lymphocyte and macrophage marker genes. In each 

of the specimens, we found that the expression of the macrophage marker genes was more 

abundant than that of the lymphocyte marker genes, excluding CD4 and NCAM1 (Figure 

2A-C). To further validate this finding, we mined a publicly available glioblastoma scRNA-

seq dataset.19 The scRNA-seq data supported our spatial profiling data and showed abundant 

gene expression of macrophage markers and an absence of lymphocyte markers except for 

CD4 and NCAM1 (Figure 2D). The scRNA-seq data also showed that NCAM1 mapped to 

the neoplastic cell cluster (Figure 2D), consistent with the existing data stating that NCAM1 
marks glioma cells in addition to NK cells.26,27 Correlation analysis of the spatial gene 

expression data showed that CD4 expression significantly correlated with the expression 

of various macrophage marker genes rather than lymphocyte marker genes in each of the 

specimens (Supplemental Figure 2), suggesting that a population of CD4+ macrophages 

exists within these specimens.28
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Spatial heatmaps were used to illustrate the regional expression of CD14 (monocyte/

macrophage marker), CD163 (macrophage marker), FOLR2 (M2-tumor associated 

macrophage (TAM)), and MRC1 (M2-TAM) and revealed that CD163 was prominently 

expressed throughout most regions of the tissues (Figure 2E-G). While both FOLR2 and 

MRC1 mark M2-TAMs, we observed that FOLR2 gene counts were more abundant and 

more widely distributed than that of MRC1 in each of the specimens (Figure 2A-C, E-G). 

To validate the spatial gene expression data, we performed spatial proteomic profiling on 

serial tissue sections using molecularly barcoded antibodies against a panel of immune cell 

markers. Consistent with the gene expression data, this validation experiment showed that 

CD14, CD68, CD163, and NCAM1 proteins were highly expressed in each of the specimens 

(Figure 2H-J). Both granzyme-B and CD56 mark NK cells and subpopulations of cytotoxic 

T-cells. Spearman analysis revealed that CD56 protein expression does not positively 

correlate with granzyme-B protein expression, thus providing additional evidence that CD56 

marks glioblastoma cells rather than NK cells and/or cytotoxic T-cells (Supplemental Figure 

3). Taken together, these data suggest that macrophages are the prevailing immune cells 

within these glioblastoma specimens and that variations in the regional expression of the 

M2-TAM markers FOLR2 and MRC1 exist, highlighting the regional macrophage diversity 

in glioblastoma.29

Deconvolution and spatial mapping of resident glioblastoma cell types.

The SpatialDecon algorithm was used to compute abundance scores of resident astrocytes, 

macrophages, microglia, neoplastic cells, neurons, oligodendrocytes, oligodendrocyte 

precursor cells (OPC), and vascular cells based on glioblastoma scRNA-seq data (Figure 

3A).18,19 The lack of sufficient infiltrating lymphocytes in the scRNA-seq data precluded 

the generation of a lymphocyte cell score. Analysis of the SpatialDecon results showed 

that the ROIs were predominated by neoplastic and vascular cells, albeit in varying relative 

proportions (Figure 3B-D). The relatedness in the cellular composition of each ROI was 

assessed using unsupervised hierarchical clustering and was subsequently visualized using 

spatial cluster maps (Figure 3B-D). Spatial heatmaps were used to localize the relative 

abundance of each computationally inferred cell type score within different regions of each 

specimen, illustrating the variable intratumoral distribution of resident glioblastoma cell 

types (Figure 2E-G).

Comparison between computationally inferred cell type scores and neuropathological 
assessment.

To validate the utility and fidelity of our integrated approach, we compared the 

computationally inferred neoplastic and vascular cell type scores to the tumor cellularity 

and vascularity scores obtained by neuropathological examination (Supplemental Table 2). 

We observed a significant positive correlation between the inferred neoplastic score and the 

histological determination of percent tumor cellularity (Supplemental Table 3). Significant 

positive correlations between the inferred vascular score and vessels with microvascular 

proliferation were noted in specimens HGG05 and HGG06, whereas the computationally 

inferred vascular score correlated with vessels lacking microvascular proliferation in 

specimen HGG03. Together, these data validate the deconvolution method used in this study.
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Divergent correlations between VEGFA, immunomodulators, and vascular abundance.

With little variation, our SpatialDecon data identified the vasculature as the most abundant 

non-malignant cellular component in these specimens (Figure 3B-D), prompting our 

examination of VEGFA expression. In comparison to HGG05 and HGG06, specimen 

HGG03 had lower VEGFA expression (Figure 4A-C). Unexpectedly, specimens HGG05 

and HGG06 self-organized into VEGFA-High, VEGFA-Med, and VEGFA-Low ROIs, 

warranting deeper investigation of these specimens. Further analysis revealed significant 

inverse correlations between the vascular score and VEGFA expression in specimens 

HGG05 and HGG06 (Figure 4D-E), whereas no such correlation was apparent in specimen 

HGG03 (data not shown). Accordingly, we observed significantly higher vascular scores 

in the VEGFA-Low ROIs in specimens HGG05 and HGG06 (Figure 4F-H). The vascular 

score does not readily distinguish between blood and lymphatic vessels. To determine if the 

observed VEGFA-associated differences in the vascular score were specific to blood versus 

lymphatic endothelial cells, we compared the expression CDH5, FLT4, KDR, NRP1, and 

PECAM1 between VEGFA-Med/High ROIs and VEGFA-Low ROIs in specimens HGG05 

and HGG06. This analysis showed a significantly increased expression of each endothelial 

cell marker in the VEGFA-Low ROIs from both specimens (Figure 4I-J).

Next we investigated which genes in this 1,700-gene panel correlate with the expression of 

VEGFA in specimens HGG05 and HGG06. Nearest neighbors analysis uncovered positive 

correlations between VEGFA expression and the expression of immunomodulatory genes, 

immune checkpoint genes, and various markers of T-cell exhaustion in both HGG05 and 

HGG06 (Figure 4K-L). To further contextualize the data, we performed an additional 

nearest neighbors analysis using GSVA scores to determine which biological pathways 

positively and negatively correlated with VEGFA expression in specimens HGG05 and 

HGG06 (Supplemental Figure 4). This analysis showed that VEGFA expression positively 

correlated with transcription, cell cycle progression, and receptor tyrosine kinase signaling 

and inversely correlated with processes related to immune responses and extracellular matrix 

remodeling. Additional analyses revealed significant positive and negative correlations 

between various endothelial cell markers and pro-angiogenic genes in a specimen-dependent 

manner suggesting that VEGFA-independent mechanisms support the vascularization 

of these tumors (Supplemental Figure 5). Taken together, these data propose a non-

angiogenic function associated with excessive VEGFA expression that corresponds with 

the increased expression of immunomodulatory genes, thus promoting regionally distinct 

microenvironments in specimens HGG05 and HGG06.

Inter- and intra-tumoral variability in the hypoxic response.

It is well established that hypoxia drives angiogenesis by upregulating the expression of 

VEGFA and other pro-angiogenic molecules.30 Given our unanticipated finding that VEGFA 
inversely correlates with vascular markers in specimens HGG05 and HGG06 (Figure 4), we 

sought to investigate the relationship between VEGFA expression and hypoxia. GSVA was 

performed using the “Cellular Response to Hypoxia” gene set from the Reactome database 

to quantify hypoxia in each ROI. A modest, yet statistically significant decrease of the 

hypoxic response gene signature was observed in the VEGFA-Low ROIs from specimens 

HGG03 and HGG06, whereas this signature was not differentially enriched in specimen 
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HGG05 (Figure 5A-C). Correlation analysis was performed to investigate the relationship 

between the hypoxic response and various pro-angiogenic genes in VEGFA-Low and 

VEGFA-Med/High ROIs. This analysis showed that VEGFA gene expression positively 

correlated with the hypoxic response in VEGFA-Low ROIs (Figure 5D-F). Moreover, the 

data shows that the hypoxic response gene signature correlates with the expression of 

different pro-angiogenic genes in a specimen-specific manner. Together, these data illustrate 

regional differences in the hypoxic response and that this response is associated with 

angiokines other than VEGFA in regions with high VEGFA expression.

Regional expression of actionable immuno-oncology targets.

To extend our spatial analysis of the glioblastoma microenvironment, we examined the 

relative expression of genes encoding various actionable immuno-oncology targets. Of these 

targets, KIR2DL1, VSIR, and CD276 were consistently expressed in most of the ROIs 

in each of the three specimens (Figure 6A-C). Spatial heatmaps illustrated the regional 

variability of KIR2DL1, VSIR, and CD276 expression in specimen HGG03 (Figure 6A). 

Widespread and robust expression of CD276 and KIR2DL1 was observed throughout 

specimens HGG05 and HGG06 whereas regional differences in VSIR expression was noted 

(Figure 6B-C).

To further validate these data, we used serial sections from each specimen and applied 

the same ROIs to spatially profile the protein expression of B7-H3, STING, VISTA, 

TIM-3, CTLA4, ARG1, IDO1, PD-1, PD-L1, PD-L2, LAG3, and GITR using barcoded 

antibodies against each target. Antibodies against KIR2DL1 were not included in the 

antibody panel used for these experiments. In each specimen, high expression of B7-H3 was 

observed in almost all ROIs. (Figure 6D-F). Notably, regional variability in the expression 

of STING, VISTA, and CTLA4 was observed in each specimen whereas various other 

immuno-oncology targets such as PD-1, PD-L1, PD-L2, TIM3, IDO1, LAG3, ARG1, and 

GITR were minimally or not expressed (Figure 6D-F). The correlation between the antibody 

and gene expression counts for any given target in these specimens demonstrated varying 

degrees of statistical significance, suggesting an uncoupling of gene transcription from 

protein translation and/or post-translational regulation of protein stability. Nonetheless, the 

protein data largely agree with the gene expression data consistently showing moderate to 

high level expression of CD276 (encoding B7-H3) and TMEM173 (encoding STING) in 

each of the three specimens.

Next, we investigated the correlation between the expression of immunotherapeutic targets 

and the expression of different cell type marker genes. The marked differences observed 

in the correlation matrices between the three specimens shows the differential relationships 

between the expression of cell type-specific marker genes and actionable immunotherapeutic 

targets (Figure 7A-C). Despite the different correlation patterns observed in the specimens, 

CD276, VSIR, TMEM173, and, to a lesser extent, HAVCR2, consistently correlated with 

macrophage and vascular markers in each specimen (Figure 7A-C). Additionally, although 

the lymphocyte abundance in each specimen is low, the significant positive correlations 

between lymphocyte marker genes and genes associated with lymphocyte exhaustion 

suggest that the few lymphocytes present within these tumors may be exhausted. Taken 
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together, these data, combined with the SpatialDecon data showing the regional differences 

in cellular composition, highlight the regional heterogeneity of the cellular and molecular 

immuno-oncology landscape both within and between individual glioblastoma specimens.

DISCUSSION

We have demonstrated the utility of performing spatial transcriptional profiling on archived 

glioblastoma specimens to reveal the molecular heterogeneity within individual patient 

tissues. Because of the minimal amount of archival tissue required to generate a robust 

dataset, spatial profiling is an ideal platform to enable in depth molecular characterization 

of patient specimens that are in limited supply, such as those associated with clinical 

trial correlative biology studies, rare tumors, and pediatric tumors. While our gene panel 

used in this study was fixed at 1,700 genes, recent advances in the technology has 

allowed for spatially-resolved profiling of >18,000 genes, covering almost the entire coding 

transcriptome.31-33 Moreover, the NanoString GeoMx platform adds another dimension to 

spatial analysis by allowing for highly multiplexed digital antibody-based protein profiling 

on serial sections for an integrated multianalyte approach. Lastly, by combining clinical 

neuropathological examination, single cell sequencing data, and spatial transcriptomic and 

proteomic profiling, we demonstrate the applicability of an integrated multiparametric 

approach to characterize the tumor microenvironment of archived FFPE tissues on a per-

specimen basis.

Using deconvolution and marker gene methods to infer cell type is a common approach 

to reveal the cellular composition of the tumor microenvironment from RNA sequencing 

and gene expression datasets, yet each method has its limitation.34 The genes used to 

classify these cell types are not unique and can be expressed by other tissue-specific 

resident cell types in both pathologic and non-diseased tissues. For example, NCAM1, 

encoding CD56, is one of the primary genes used to describe natural killer cells yet 

this gene is highly expressed in non-diseased brain tissue and variably expressed in glial 

malignancies. 26,27 Additionally, microglia are CNS-resident macrophages yet these cells are 

not captured using popular methods such as XCell and CiberSort.35-37 For this reason, we 

used the SpatialDecon algorithm to derive resident glioblastoma cell type scores to describe 

the cellular composition of these specimens while retaining the contextual relevance.18 

While the resultant data from the SpatialDecon algorithm significantly correlated with 

the data obtained upon expert neuropathological examination, this comparison exposed a 

shortcoming in our approach. Computationally, we were unable to discern between vessels 

with and without microvascular proliferation, whereas these differences were evident by 

neuropathological examination. We attribute this to the fact that the 1,700 gene panel used 

for this study was not designed to distinguish between these vascular phenotypes, especially 

given the recently discovered transcriptional heterogeneity between different endothelial cell 

populations.38-42 To differentially interrogate the region-specific transcriptional programs 

associated with these vascular phenotypes additional studies using high resolution, spatially-

resolved whole transcriptome profiling will be needed.

B7-H3 is a cell surface protein that is highly expressed in glioblastoma along with several 

other CNS and solid tumors.43-45 Currently, targeting B7-H3 using chimeric antigen receptor 
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T-cells and antibody drug conjugates is an active area of research.45-50 Our data is consistent 

with the published data showing that B7-H3 is the most highly expressed immunotherapy 

target in our panel across all specimens. Although the ROI density used in this study is low, 

our data shows that B7-H3 expression is widely distributed throughout the tissues at both the 

protein and RNA levels, further highlighting the utility of B7-H3 as a ubiquitous therapeutic 

target.

We observed significant positive correlations between macrophage and/or endothelial 

cell markers and TMEM173, VSIR, and CD276, suggesting a context for combinatorial 

immunotherapeutic targeting of both macrophages and the tumor vasculature. As stated 

above, studies involving B7-H3 (encoded by CD276) are already underway. STING 

(encoded by TMEM173) is part of the cytosolic DNA sensing pathway where its activation 

induces a potent inflammatory response primarily driven by type I interferons. STING 

agonists are currently in development and preclinical studies indicate that STING is an 

attractive immunotherapeutic target.51-54 VISTA (encoded by VSIR) promotes quiescence 

of myeloid cells and lymphocytes.55,56 The mechanisms by which VISTA achieves 

immunosuppression are quite complex yet studies have demonstrated that blocking VISTA 

can enhance the antitumor immune response.56-58 Conceptually, combinatorial targeting of 

these three immunoregulatory molecules would allow for localized inflammation via STING 

activation, relieve the inhibitory effects of VISTA, and target B7-H3 expressing glioma cells, 

TAMs, and tumor vasculature. Preclinical studies will need to be performed to test this 

hypothesis and evaluate the therapeutic efficacy of this combinatorial immunotherapeutic 

approach.

VEGFA is a known driver of tumor angiogenesis and an important therapeutic target in 

glioblastoma.59 Our data has revealed that there are substantial regional differences in 

VEGFA expression in specimens HGG05 and HGG06 and that regions with high expression 

of VEGFA inversely correlate with vascularity. VEGFA is subject to alternative splicing, 

resulting in the generation of various protein isoforms with both pro- and anti-angiogenic 

functions.60 The gene panel used in this study was composed of multiple exon-specific 

probes per gene to quantify RNA levels, potentially allowing for the examination of exon 

skipping events for certain genes. Unfortunately, we were unable to assess exon usage to 

infer alternative splicing as probes targeting the most commonly alternatively spliced exons 

of VEGFA were not present in this panel. Our data also show strong positive correlations 

between various angiokines and several vascular markers, indicating that alternative 

pathways promote and/or maintain the tumor vasculature in the absence of angiogenic 

VEGFA signaling in specimens HGG05 and HGG06.61 Importantly, neuropathological 

examination of the tissues determined that specimens HGG05 and HGG06 exhibited 

microvascular proliferation whereas specimen HGG03 did not and this may contribute to 

the differences described in this study.

Vascular mimicry is a phenomenon whereby tumor cells adopt transcriptional and 

phenotypic characteristics reminiscent of endothelial cells to establish a network of 

dysfunctional vascular-like structures to supply the tumor.62 Yao et al. demonstrated 

that VEGFA-VEGFR2 signaling in glioma stem-like cells promotes vascular mimicry.63 

Hypoxia is also an established driver of vascular mimicry.62 Our finding of increased 
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enrichment of the hypoxic response gene signature and concomitant decreased expression 

of endothelial cell markers/vascular score in ROIs with excessive VEGFA expression 

may indicate region-specific vascular mimicry. As stated above, the content of this gene 

panel limits the depth of interrogation of complex biological processes. Thus, a plausible 

alternative interpretation of these results is that the hypoxic response in these regions 

is driven by a VEGFA-independent mechanism that cannot be readily elucidated by our 

approach.

In addition to its notable role in vascular biology, VEGFA exerts immunomodulatory 

effects within the tumor microenvironment, including the promotion of T-cell exhaustion, 

recruitment of suppressive myeloid cells, and the polarization of TAMs towards an M2 

phenotype.64-66 Targeting the immunosuppressive functions of VEGFA is currently an 

active area of research and clinical trials investigating the therapeutic efficacy of combining 

VEGFA antagonists with immune checkpoint inhibitors are currently ongoing.65,67-69 Here 

we show that, in addition to differential vascular abundance, increased VEGFA expression 

is associated with the expression of immunomodulatory genes in distinct regions of the 

specimens. Functional studies are needed to determine whether VEGFA orchestrates the 

immunosuppressive tissue niche or if increased VEGFA is a consequence of a preexisting 

localized suppressive environment. Utilizing high resolution spatial profiling technologies 

combined with multiplexed immunofluorescent staining will be pivotal in such studies.

In conclusion, we have successfully achieved our goal of demonstrating the applicability of 

spatially-resolved transcriptional profiling to reveal novel biologic insights using archived 

FFPE material. Currently, various spatial biology technologies exist and each platform 

has its strengths and limitations.8 Nonetheless, integrated multimodal investigations can 

offset the platform-specific weaknesses to enable robust downstream analyses that inform 

the biological interpretation of the data. While we have highlighted the utility of this 

pre-production assay for discovery-based/hypothesis generating studies, the commercial 

NanoString GeoMx whole transcriptome assay is extremely well suited for hypothesis 

driven research where ROIs are selected based on specific markers or histological features of 

interest and subsequently profiled using a highly multiplexed panel of approximately 18,000 

gene targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to thank Frances Chow for critically reading this manuscript and for the insightful comments. This 
project was conceptualized while TAM was affiliated with the University of Southern California and was completed 
in its entirety at the National Cancer Institute.

Funding

TAM and JG are supported by the Intramural Research Program of the NIH, NCI, Center for Cancer Research. The 
views and opinions contained within this article do not necessarily reflect those of the NIH or the US Department 
of Health and Human Services. The mention of trade names and/or commercialized products does not indicate 
endorsement by the US government.

Kim et al. Page 12

Mod Pathol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Availability

The normalized data files are available upon request.

REFERENCES

1. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The Tumor Microenvironment: A Milieu 
Hindering and Obstructing Antitumor Immune Responses. Front Immunol. 2020;11:940. 
doi:10.3389/fimmu.2020.00940 [PubMed: 32499786] 

2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 
Nov 2013;19(11):1423–37. doi:10.1038/nm.3394 [PubMed: 24202395] 

3. Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA 
in fixed tissue. Nat Biotechnol. 05 2020;38(5):586–599. doi:10.1038/s41587-020-0472-9 [PubMed: 
32393914] 

4. Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: A scalable technology for measuring 
genome-wide expression at high spatial resolution. Science. Mar 29 2019;363(6434):1463–1467. 
doi:10.1126/science.aaw1219 [PubMed: 30923225] 

5. Salmen F, Stahl PL, Mollbrink A, et al. Barcoded solid-phase RNA capture for Spatial 
Transcriptomics profiling in mammalian tissue sections. Nat Protoc. Nov 2018;13(11):2501–2534. 
doi:10.1038/s41596-018-0045-2 [PubMed: 30353172] 

6. Stahl PL, Salmen F, Vickovic S, et al. Visualization and analysis of gene expression in 
tissue sections by spatial transcriptomics. Science. Jul 1 2016;353(6294):78–82. doi:10.1126/
science.aaf2403 [PubMed: 27365449] 

7. Villacampa EG, Larsson L, Kvastad L, Andersson A, Carlson J, Lundeberg J. Genome-
wide Spatial Expression Profiling in FFPE Tissues. bioRxiv. 2020:2020.07.24.219758. 
doi:10.1101/2020.07.24.219758

8. Bassiouni R, Gibbs LD, Craig DW, Carpten JD, McEachron TA. Applicability of spatial 
transcriptional profiling to cancer research. Mol Cell. 04 15 2021;81(8):1631–1639. doi:10.1016/
j.molcel.2021.03.016 [PubMed: 33826920] 

9. Rutledge WC, Kong J, Gao J, et al. Tumor-infiltrating lymphocytes in glioblastoma are associated 
with specific genomic alterations and related to transcriptional class. Clin Cancer Res. Sep 15 
2013;19(18):4951–60. doi:10.1158/1078-0432.CCR-13-0551 [PubMed: 23864165] 

10. Salmaggi A, Boiardi A, Gelati M, et al. Glioblastoma-derived tumorospheres identify a population 
of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. 
Glia. Dec 2006;54(8):850–60. doi:10.1002/glia.20414 [PubMed: 16981197] 

11. Kumar A, Boyle EA, Tokita M, et al. Deep sequencing of multiple regions of glial tumors 
reveals spatial heterogeneity for mutations in clinically relevant genes. Genome Biol. Dec 03 
2014;15(12):530. doi:10.1186/s13059-014-0530-z [PubMed: 25608559] 

12. Manini I, Caponnetto F, Dalla E, et al. Heterogeneity Matters: Different Regions of 
Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways. Cancers (Basel). 10 
13 2020;12(10)doi:10.3390/cancers12102960

13. Meyer M, Reimand J, Lan X, et al. Single cell-derived clonal analysis of human glioblastoma 
links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. Jan 20 2015;112(3):851–6. 
doi:10.1073/pnas.1320611111 [PubMed: 25561528] 

14. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically 
relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and 
NF1. Cancer Cell. Jan 19 2010;17(1):98–110. doi:10.1016/j.ccr.2009.12.020 [PubMed: 20129251] 

15. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict 
prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer 
Cell. Mar 2006;9(3):157–73. doi:10.1016/j.ccr.2006.02.019 [PubMed: 16530701] 

16. Puchalski RB, Shah N, Miller J, et al. An anatomic transcriptional atlas of human glioblastoma. 
Science. 05 11 2018;360(6389):660–663. doi:10.1126/science.aaf2666 [PubMed: 29748285] 

Kim et al. Page 13

Mod Pathol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of 
Tumors of the Central Nervous System: a summary. Acta Neuropathol. 06 2016;131(6):803–20. 
doi:10.1007/s00401-016-1545-1 [PubMed: 27157931] 

18. Danaher P, Kim Y, Nelson B, et al. Advances in mixed cell deconvolution enable quantification 
of cell types in spatial transcriptomic data. Nat Commun. Jan 19 2022;13(1):385. doi:10.1038/
s41467-022-28020-5 [PubMed: 35046414] 

19. Darmanis S, Sloan SA, Croote D, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic 
Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 10 31 2017;21(5):1399–1410. 
doi:10.1016/j.celrep.2017.10.030 [PubMed: 29091775] 

20. Lun ATL, Riesenfeld S, Andrews T, et al. EmptyDrops: distinguishing cells from empty droplets in 
droplet-based single-cell RNA sequencing data. Genome Biol. 03 22 2019;20(1):63. doi:10.1186/
s13059-019-1662-y [PubMed: 30902100] 

21. Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing 
data with many zero counts. Genome Biol. Apr 27 2016;17:75. doi:10.1186/s13059-016-0947-7 
[PubMed: 27122128] 

22. Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. Cell. 06 13 
2019;177(7):1888–1902.e21. doi:10.1016/j.cell.2019.05.031 [PubMed: 31178118] 

23. Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse 
and human single-cell RNA sequencing data. Database (Oxford). 01 01 2019;2019 doi:10.1093/
database/baz046

24. Network CGAR. Comprehensive genomic characterization defines human glioblastoma genes 
and core pathways. Nature. Oct 23 2008;455(7216):1061–8. doi:10.1038/nature07385 [PubMed: 
18772890] 

25. Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. 
Cell. Oct 10 2013;155(2):462–77. doi:10.1016/j.cell.2013.09.034 [PubMed: 24120142] 

26. Gingras MC, Roussel E, Bruner JM, Branch CD, Moser RP. Comparison of cell adhesion 
molecule expression between glioblastoma multiforme and autologous normal brain tissue. 
J Neuroimmunol. Mar 1995;57(1-2):143–53. doi:10.1016/0165-5728(94)00178-q [PubMed: 
7535788] 

27. Todaro L, Christiansen S, Varela M, et al. Alteration of serum and tumoral neural cell adhesion 
molecule (NCAM) isoforms in patients with brain tumors. J Neurooncol. Jun 2007;83(2):135–44. 
doi:10.1007/s11060-006-9312-0 [PubMed: 17216340] 

28. Shaw TN, Houston SA, Wemyss K, et al. Tissue-resident macrophages in the intestine are long 
lived and defined by Tim-4 and CD4 expression. J Exp Med. 06 04 2018;215(6):1507–1518. 
doi:10.1084/jem.20180019 [PubMed: 29789388] 

29. Landry AP, Balas M, Alli S, Spears J, Zador Z. Distinct regional ontogeny and activation of tumor 
associated macrophages in human glioblastoma. Sci Rep. 11 11 2020;10(1):19542. doi:10.1038/
s41598-020-76657-3 [PubMed: 33177572] 

30. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. Dec 
2011;2(12):1117–33. doi:10.1177/1947601911423654 [PubMed: 22866203] 

31. Khan M, Yoo SJ, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-
CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 11 24 
2021;184(24):5932–5949.e15. doi:10.1016/j.cell.2021.10.027 [PubMed: 34798069] 

32. Salem F, Perin L, Sedrakyan S, et al. The spatially resolved transcriptional profile of acute T 
cell-mediated rejection in a kidney allograft. Kidney Int. Jan 2022;101(1):131–136. doi:10.1016/
j.kint.2021.09.004 [PubMed: 34555393] 

33. Delorey TM, Ziegler CGK, Heimberg G, et al. COVID-19 tissue atlases reveal SARS-
CoV-2 pathology and cellular targets. Nature. 07 2021;595(7865):107–113. doi:10.1038/
s41586-021-03570-8 [PubMed: 33915569] 

34. Sturm G, Finotello F, Petitprez F, et al. Comprehensive evaluation of transcriptome-based cell-
type quantification methods for immuno-oncology. Bioinformatics. 07 15 2019;35(14):i436–i445. 
doi:10.1093/bioinformatics/btz363 [PubMed: 31510660] 

35. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. 
Genome Biol. Nov 2017;18(1):220. doi:10.1186/s13059-017-1349-1 [PubMed: 29141660] 

Kim et al. Page 14

Mod Pathol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression 
from bulk tissues with digital cytometry. Nat Biotechnol. 07 2019;37(7):773–782. doi:10.1038/
s41587-019-0114-2 [PubMed: 31061481] 

37. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression 
profiles. Nat Methods. May 2015;12(5):453–7. doi:10.1038/nmeth.3337 [PubMed: 25822800] 

38. Kalucka J, de Rooij LPMH, Goveia J, et al. Single-Cell Transcriptome Atlas of Murine Endothelial 
Cells. Cell. 02 20 2020;180(4):764–779.e20. doi:10.1016/j.cell.2020.01.015 [PubMed: 32059779] 

39. Xie Y, He L, Lugano R, et al. Key molecular alterations in endothelial cells in human glioblastoma 
uncovered through single-cell RNA sequencing. JCI Insight. 08 09 2021;6(15)doi:10.1172/
jci.insight.150861

40. Zhao Q, Eichten A, Parveen A, et al. Single-Cell Transcriptome Analyses Reveal Endothelial Cell 
Heterogeneity in Tumors and Changes following Antiangiogenic Treatment. Cancer Res. 05 01 
2018;78(9):2370–2382. doi:10.1158/0008-5472.CAN-17-2728 [PubMed: 29449267] 

41. Feng W, Chen L, Nguyen PK, Wu SM, Li G. Single Cell Analysis of Endothelial Cells Identified 
Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. 
Front Cardiovasc Med. 2019;6:165. doi:10.3389/fcvm.2019.00165 [PubMed: 31850371] 

42. Jambusaria A, Hong Z, Zhang L, et al. Endothelial heterogeneity across distinct vascular beds 
during homeostasis and inflammation. Elife. 01 16 2020;9doi:10.7554/eLife.51413

43. Kraan J, van den Broek P, Verhoef C, et al. Endothelial CD276 (B7-H3) expression is increased in 
human malignancies and distinguishes between normal and tumour-derived circulating endothelial 
cells. British Journal of Cancer. 2014/07// 2014;111(1):149–156. doi:10.1038/bjc.2014.286 
[PubMed: 24892449] 

44. Picarda E, Ohaegbulam KC, Zang X. Molecular Pathways: Targeting B7-H3 (CD276) for 
Human Cancer Immunotherapy. Clinical Cancer Research. 2016/07/15/ 2016;22(14):3425–3431. 
doi:10.1158/1078-0432.CCR-15-2428 [PubMed: 27208063] 

45. Seaman S, Zhu Z, Saha S, et al. Eradication of Tumors through Simultaneous Ablation 
of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature. Cancer Cell. 2017/04// 
2017;31(4):501–515.e8. doi:10.1016/j.ccell.2017.03.005 [PubMed: 28399408] 

46. Du H, Hirabayashi K, Ahn S, et al. Antitumor Responses in the Absence of Toxicity in 
Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell. 02 11 
2019;35(2):221–237.e8. doi:10.1016/j.ccell.2019.01.002 [PubMed: 30753824] 

47. Haydar D, Houke H, Chiang J, et al. Cell-surface antigen profiling of pediatric brain tumors: 
B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. 
Neuro Oncol. 06 01 2021;23(6):999–1011. doi:10.1093/neuonc/noaa278 [PubMed: 33320196] 

48. Kendsersky NM, Lindsay J, Kolb EA, et al. The B7-H3-Targeting Antibody-Drug Conjugate 
m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. 
Clin Cancer Res. 05 15 2021;27(10):2938–2946. doi:10.1158/1078-0432.CCR-20-4221 [PubMed: 
33619171] 

49. Majzner RG, Theruvath JL, Nellan A, et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, 
Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. 
Clin Cancer Res. 04 15 2019;25(8):2560–2574. doi:10.1158/1078-0432.CCR-18-0432 [PubMed: 
30655315] 

50. Nehama D, Di Ianni N, Musio S, et al. B7-H3-redirected chimeric antigen receptor T 
cells target glioblastoma and neurospheres. EBioMedicine. Sep 2019;47:33–43. doi:10.1016/
j.ebiom.2019.08.030 [PubMed: 31466914] 

51. Chin EN, Yu C, Vartabedian VF, et al. Antitumor activity of a systemic STING-activating 
non-nucleotide cGAMP mimetic. Science. Aug 21 2020;369(6506):993–999. doi:10.1126/
science.abb4255 [PubMed: 32820126] 

52. Demaria O, De Gassart A, Coso S, et al. STING activation of tumor endothelial cells 
initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A. Dec 15 
2015;112(50):15408–13. doi:10.1073/pnas.1512832112 [PubMed: 26607445] 

53. Perera SA, Kopinja JE, Ma Y, et al. STimulator of INterferon Genes Agonism 
Accelerates Anti-tumor Activity in Poorly Immunogenic Tumors. Mol Cancer Ther. Nov 23 
2021;doi:10.1158/1535-7163.MCT-21-0136

Kim et al. Page 15

Mod Pathol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Wang-Bishop L, Wehbe M, Shae D, et al. Potent STING activation stimulates immunogenic 
cell death to enhance antitumor immunity in neuroblastoma. J Immunother Cancer. 03 
2020;8(1)doi:10.1136/jitc-2019-000282

55. ElTanbouly MA, Zhao Y, Nowak E, et al. VISTA is a checkpoint regulator for naïve T cell 
quiescence and peripheral tolerance. Science. 01 17 2020;367(6475)doi:10.1126/science.aay0524

56. Yuan L, Tatineni J, Mahoney KM, Freeman GJ. VISTA: A Mediator of Quiescence and 
a Promising Target in Cancer Immunotherapy. Trends Immunol. 03 2021;42(3):209–227. 
doi:10.1016/j.it.2020.12.008 [PubMed: 33495077] 

57. Li TT, Jiang JW, Qie CX, et al. Identification of active small-molecule modulators targeting 
the novel immune checkpoint VISTA. BMC Immunol. 08 11 2021;22(1):55. doi:10.1186/
s12865-021-00446-4 [PubMed: 34380434] 

58. Pan J, Chen Y, Zhang Q, et al. Inhibition of lung tumorigenesis by a small molecule 
CA170 targeting the immune checkpoint protein VISTA. Commun Biol. 07 23 2021;4(1):906. 
doi:10.1038/s42003-021-02381-x [PubMed: 34302042] 

59. Cheng SY, Huang HJ, Nagane M, et al. Suppression of glioblastoma angiogenicity and 
tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. 
Proc Natl Acad Sci U S A. Aug 06 1996;93(16):8502–7. doi:10.1073/pnas.93.16.8502 [PubMed: 
8710899] 

60. Mamer SB, Wittenkeller A, Imoukhuede PI. VEGF-A splice variants bind VEGFRs with 
differential affinities. Sci Rep. 09 02 2020;10(1):14413. doi:10.1038/s41598-020-71484-y 
[PubMed: 32879419] 

61. Nomura M, Yamagishi S, Harada S, Yamashima T, Yamashita J, Yamamoto H. Placenta 
growth factor (PlGF) mRNA expression in brain tumors. J Neurooncol. Nov 1998;40(2):123–30. 
doi:10.1023/a:1006198422718 [PubMed: 9892094] 

62. Wei X, Chen Y, Jiang X, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor 
microenvironments. Mol Cancer. 01 04 2021;20(1):7. doi:10.1186/s12943-020-01288-1 [PubMed: 
33397409] 

63. Yao X, Ping Y, Liu Y, et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key 
role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-
like cells. PLoS One. 2013;8(3):e57188. doi:10.1371/journal.pone.0057188 [PubMed: 23536763] 

64. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and 
Development. Cell. 03 07 2019;176(6):1248–1264. doi:10.1016/j.cell.2019.01.021 [PubMed: 
30849371] 

65. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments 
and vice versa. Nat Rev Clin Oncol. May 2018;15(5):310–324. doi:10.1038/nrclinonc.2018.9 
[PubMed: 29434333] 

66. Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front Immunol. 
2018;9:978. doi:10.3389/fimmu.2018.00978 [PubMed: 29774034] 

67. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy 
using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. May 2018;15(5):325–
340. doi:10.1038/nrclinonc.2018.29 [PubMed: 29508855] 

68. Wallin JJ, Bendell JC, Funke R, et al. Atezolizumab in combination with bevacizumab 
enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 08 
2016;7:12624. doi:10.1038/ncomms12624 [PubMed: 27571927] 

69. Wu X, Giobbie-Hurder A, Liao X, et al. VEGF Neutralization Plus CTLA-4 Blockade 
Alters Soluble and Cellular Factors Associated with Enhancing Lymphocyte Infiltration 
and Humoral Recognition in Melanoma. Cancer Immunol Res. 10 2016;4(10):858–868. 
doi:10.1158/2326-6066.CIR-16-0084 [PubMed: 27549123] 

Kim et al. Page 16

Mod Pathol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Regional intratumoral heterogeneity of gene expression profiles within individual 
glioblastoma specimens.
(A-C) Histology images of tumor samples (A) HGG03, (B) HGG05, and (C) HGG06 with 

spatially distinct regions of interest (ROIs) in each specimen indicated by black circles. 

XY scale bars in bottom left corner of each image represent 1000μm on each axis. (D-E) 

Left: Constellation plots depicting the unsupervised hierarchical clustering of the entire 

1,700 gene panel in specimens (D) HGG03, (E) HGG05, and (F) HGG06 showing distinct 

transcriptionally associated clusters. Each colored circle corresponds to an individual ROI. 

Right: Spatial cluster maps showing the cluster identity and distribution of ROIs within each 

specimen where individual ROIs are colored according to their assigned clusters as indicated 

by the constellation plots on the left. (G-I) Regional heterogeneity in the expression of 

commonly altered glioblastoma tumor suppressor genes and oncogenes. Dot plots showing 

the percentage of viable tumor (top, left Y-axis), necrosis (top, right Y-axis) and the 

expression of EGFR (second row), TP53 (third row), PTEN (fourth row), and CDKN2B 
(bottom row) in each ROI in specimens (G) HGG03, (H) HGG05, and (I) HGG06. Percent 

tumor and necrosis were scored by standard neuropathological examination. ROI’s where 

tumor cellularity was ambiguous were not plotted.
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Figure 2: Regional expression of immune cell markers indicates a robust and widespread 
infiltration of macrophages.
(A-C) Heatmaps illustrating the unsupervised hierarchical clustering of the gene expression 

counts of lymphocyte and macrophage markers in specimens (A) HGG03, (B) HGG05, 

and (C) HGG06. Each row represents an individual ROI. Dendrograms were omitted to 

minimize figure congestion. (D) scRNA-seq data from glioblastoma tissue displayed as 

UMAP plots. Left: Cell type annotations. Right: Expression of individual lymphocyte 

and macrophage markers. (E-G) Spatial heatmaps demonstrating the distribution of pan-

macrophage and M2-macrophage markers in specimens (D) HGG03, (E) HGG05, and 

(F) HGG06. (H-I) Heatmaps of the normalized antibody count data for lymphocyte and 

macrophage markers in specimens (H) HGG03, (I) HGG05, and (J) HGG06. The data are 

presented as fold change over mean IgG control value.
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Figure 3: Spatially resolved enrichment of glioblastoma cell type-specific gene signatures using 
SpatialDecon mixed cell deconvolution.
(A) Schematic of SpatialDecon workflow and the cell types identified by this process. 

The color key for each inferred cell type is consistent throughout the figure. (B-D) 

Cellular composition of each ROI in specimens (B) HGG03, (C) HGG05, and (D) HGG06. 

Top: Unsupervised hierarchical clustering dendrograms and associated stacked bar graphs 

showing relative fraction of each inferred cell type score within each ROI (column). 

Bottom: Mean score for each inferred cell type in each of the clusters identified above. 

The graph lines are colored in accordance with their assigned clusters designated by the 

dendrogram above. Right: Spatial cluster maps showing the cluster identity and distribution 

of ROIs within each specimen. Individual ROIs are colored according to their assigned 

clusters as indicated by the dendrograms to the left. (E-G) Spatial heatmaps showing the 

relative inferred cell score in each of the ROIs within specimens (E) HGG03, (F) HGG05, 

and (G) HGG06. Abbreviations are as follows: Astro, astrocyte; Macro, macrophage; 

Micro, microglia; Neo, neoplastic cells; Neuro, Neuron, Oligo, oligodendrocyte; OPC, 

oligodendrocyte precursor cells; Vasc, vasculature.
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Figure 4: Regional heterogeneity in VEGFA gene expression inversely correlates with vascular 
abundance in specimens HGG05 and HGG06.
(A-C) Left: Dot plots of VEGFA expression in specimens (A) HGG03, (B), HGG05, and 

(C) HGG06. Right: Spatial heatmaps showing regions of low (blue ROIs), medium (yellow 

ROIs), and high (red ROIs) VEGFA expression in each corresponding specimen. (D-E) 

Spearman correlations between normalized VEGFA gene counts and the inferred vascular 

score in specimens (D) HGG05 and (E) HGG06. Correlation and significance values are 

listed along the X-axis of each scatter plot. (F-H) Box plots showing the vascular score in 

VEGFA-Low and VEGFA-Med/High ROIs in specimens (F) HGG03, (G) HGG05, and (H) 

HGG06. (I-J) Box plots showing the normalized gene counts of endothelial cell markers in 

VEGFA-Low and VEGFA-Med/High ROIs in specimens (I) HGG05 and (J) HGG06. Box 

plot p-values were calculated using an unpaired t-test with Welch’s correction where p < 

0.05 is considered statistically significant. (K-L) Heatmaps showing the results of VEGFA 
nearest neighbors analysis in specimens (K) HGG05 and (L) HGG06.
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Figure 5: Associations between hypoxic response gene signature and VEGFA expression.
(A-C) Box plots showing the “Cellular Response to Hypoxia” gene set enrichment score in 

VEGFA-Low and VEGFA-Med/High ROIs in specimens (A) HGG03, (B) HGG05, and (C) 

HGG06. P-values were calculated using an unpaired t-test with Welch’s correction where p 

< 0.05 is considered statistically significant. (D-F) Spearman correlation matrix showing the 

relationships between genes encoding pro-angiogenic molecules and the “Cellular Response 

to Hypoxia” gene set enrichment score in VEGFA -Low and VEGFA -Med/High ROIs in 

specimens (D) HGG03, (E) HGG05, and (F) HGG06. Circle size indicates p value where 

circles with inlaid black squares indicating failure to reach statistical significance (p<0.05). 

Color bar indicates Spearman’s rho.
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Figure 6: Immunotherapeutic targets are expressed in spatially distinct regions throughout the 
tissues.
(A-C, left) Heatmaps of the normalized count data for genes encoding immunotherapeutic 

targets in specimens (A) HGG03, (B) HGG05, and (C) HGG06. (A-C, right) Spatial 

heatmaps of specimens of each specimen depicting the normalized count data corresponding 

to the three genes with the highest median count value. (D-F, left) Heatmaps of the 

normalized antibody count data for immunotherapeutic targets in specimens (D) HGG03, 

(E) HGG05, and (F) HGG06. The data are presented as fold change over mean IgG control 

value. (D-E, right) Spatial heatmaps of each specimen showing the distribution of the 

normalized antibody count data for the three protein targets with the highest median value.
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Figure 7: Correlations between immunotherapeutic targets and different cell type markers.
Spearman correlation matrix showing the relationships between genes encoding 

immunotherapeutic targets and marker genes for lymphocytes, monocytes/macrophages, 

endothelial cells, and glioma cells in specimens (A) HGG03, (B) HGG05, and (C) HGG06. 

Circle size indicates p value where circles with inlaid black squares indicating failure to 

reach statistical significance (p<0.05). Color bar indicates Spearman’s rho.
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