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Abstract 

CRISPR-Cas systems have been widely used in genome editing and transcriptional regulation. Recently, CRISPR-Cas 
effectors are adopted for biosensor construction due to its adjustable properties, such as simplicity of design, easy 
operation, collateral cleavage activity, and high biocompatibility. Aptamers’ excellent sensitivity, specificity, in vitro 
synthesis, base-pairing, labeling, modification, and programmability has made them an attractive molecular recogni-
tion element for inclusion in CRISPR-Cas systems. Here, we review current advances in aptamer-based CRISPR-Cas 
sensors. We briefly discuss aptamers and the knowledge of Cas effector proteins, crRNA, reporter probes, analytes, 
and applications of target-specific aptamers. Next, we provide fabrication strategies, molecular binding, and detec-
tion using fluorescence, electrochemical, colorimetric, nanomaterials, Rayleigh, and Raman scattering. The application 
of CRISPR-Cas systems in aptamer-based sensing of a wide range of biomarkers (disease and pathogens) and toxic 
contaminants is growing. This review provides an update and offers novel insights into developing CRISPR-Cas-based 
sensors using ssDNA aptamers with high efficiency and specificity for point-of-care setting diagnostics.
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Introduction
In recent years, novel diagnostic tools empowered by the 
integration of CRISPR-Cas proteins  (clustered regularly 
interspaced short palindromic repeats-CRISPR asso-
ciated) have fueled several applications for food sens-
ing and biosafety analysis [1]. CRISPR-Cas is part of the 
adaptive immune system of the bacteria and archaea, 

which protects the host from invading genetic materi-
als, like bacteriophages or plasmids [2]. In principle, the 
CRISPR-associated proteins (Cas protein) use specific 
sequences that make up the guide RNA (gRNA) to cleave 
recognition sites of the foreign DNA under the control 
of gRNA. This effectively silences the exogenously intro-
duced genetic elements and protects the host organism.

Further, advancements in the revolutionary CRISPR-
Cas-based gene editing system won it a Nobel Prize in 
Chemistry in 2020. This biotechnological  tool has been 
widely adopted in genomic editing for insertion, knock-
out, fusion, gene regulation, epigenetic modification, tar-
geted mutagenesis, localization, and crop improvement. 
Several CRISPR-Cas systems have been shown to have 
specific (cis-cleavage) or nonspecific (trans-cleavage or 
collateral-damage) degrading activity on dsDNA, ssDNA, 
or ssRNA. The discovery of the unusual spread of repeti-
tive DNA elements in bacteria led to concurrent series of 
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revelations regarding the multifunctional role of CRISPR-
Cas proteins [1]. Later findings on CRISPR-Cas9 fueled 
the race to understand and develop CRISPR-Cas technol-
ogy in gene editing under the guidance of gRNA. Sub-
sequently, outstanding application of the CRISPR-Cas9 
system for genome editing was evidenced [3], which fur-
ther catapulted elaborate studies and novel applications 
in microbiology, plant biology, and biomedical sciences, 
specifically genomic editing and molecular diagnostics 
[4]. The RNA-guided and specific-targeted CRISPR effec-
tors like Cas9, Cas12, Cas13, and Cas14 (Fig. 1) were suc-
cessively discovered [2, 5].

In cis-cleavage, Cas proteins (CRISPR-Cas9) first rec-
ognizes the protospacer-adjacent motif (PAM) in spe-
cific dsDNA and then uses guide CRISPR-RNA (crRNA) 
to create a double-stranded break. Whereas, the trans-
cleavage activity (collateral damage) occurs when a ter-
nary complex of Cas, crRNA, and target nucleic acid 
(ssDNA or ssRNA) is formed, which then activates indis-
criminate nonspecific cleavage of nearby nucleic acids 

(DNA or RNA). This indiscriminate nucleic acid degra-
dation potential is coupled with fluorescence labeling of 
DNA probes as reporter molecules and for signal amplifi-
cation (Table 1).

The collateral cleavage of nucleic acids has opened a 
new chapter in sensing of diverse targets such as genetic 
elements, disease markers, pathogenic agents, and other 
biomolecules using nucleic acids as molecular recog-
nition elements. For example, CRISPR-Cas12a-based 
DETECTR, HOLMES, and CRISPR-Cas13a-based 
SHERLOCK assays (Fig. 2) are designed for this purpose 
[5, 6]. The CRISPR-Cas tools are easy to design and con-
struct, moreover, it possesses high specificity and sensi-
tivity. Therefore, these assays could be incorporated into 
a portable format as point-of-care (POC) diagnostics 
tools.

Before 2019, CRISPR-Cas sensors could only recog-
nize  nucleic acid markers. An impediment was develop-
ing a system to identify and bind specifically to various 
non-nucleic acid targets not directly  recognized by Cas 

Fig. 1  Overview of CRISPR-Cas enzyme activities and their catalytic mechanisms. A Cas9 can cleave the target and non-target strands of 
DNA; a short trinucleotide PAM is also essential for the initial DNA binding; B Cas12a can cleave dsDNA under the guidance of gRNA. The Cas12a 
enzyme recognizes the PAM of the original T-rich spacer and then recognizes the target sequence to generate PAM distal dsDNA breaks with 
staggered 5′ and 3′ ends, and Cas12 has the side chains trans-cleavage activity. At the time that the sgRNA-guided DNA is combined in Cas12, 
Cas12 will release a powerful, indiscriminate single-stranded DNA (ssDNA) cleavage activity; C Cas13 can activate its single-stranded RNA (ssRNA) 
cleavage activity by binding to crRNA, and it has a additional cleavage activity triggered by the target RNA; D Cas14 protein is a RNA-guided 
nuclease and can recognize the target ssDNA without restriction sequences and cleave it, and also can non-specifically cleave the surrounding 
ssDNA nucleases molecule (Modified after: Li et al., Diagnostics 2022, 12(10); Copyright: CC BY License)
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proteins [7, 8]. To overcome this hurdle, a study demon-
strated short ssDNA sequences (such as, a fragment of 
DNA aptamer); can serve as an “activator DNA (acDNA)” 
to initiate CRISPR-Cas12a trans-cleavage activity [9]. 
Use of acDNA molecules catapulted CRISPR-Cas appli-
cations for non-nucleic acid molecules by integrating 
aptamers as molecular recognition elements (Table 2).

SELEX is commonly used for aptamer discovery and 
produces highly specific aptamers against target mol-
ecules, where the aptamers are short fragments of nucleic 
acids (ssDNA or RNA) sequences that attach to their 
targets with a high binding affinity [10–12]. Aptamer 
possesses several merits over other molecular recog-
nition elements, for example, ease of in  vitro synthesis, 
amplification, sequencing, fluorescent labeling, chemical 
modifications, and modular design. The aptamers have 
applications in a wide range of fields. Over several hun-
dred precise and characterized aptameric sequences are 
available for the detection of small molecules, proteins, 
live cells, pathogens, metal ions, pesticides, and antibiot-
ics ([13–16]). Many aptameric sensors are available for 
screening in biomedical and life sciences and have been 
helpful for analytical chemistry, environmental, and food 
analysis [17]

Optimizing the CRISPR-Cas effectors for aptamer-
based biosensing has opened new doors in molecular 
diagnostics. The inclusion of aptamers for high-affin-
ity detection of more comprehensive targets enables 
direct measurement of a signal as a result of a binding 
event of an aptamer to the target molecules and relay-
ing it in CRISPR-Cas supported signal enhancement 
by collateral cleavage of ssDNA probes. CRISPR-Cas-
based diagnostics, aptamers facilitate sensing of non-
nucleic acid targets. In general, an ssDNA plays the 
role of activators as crRNA could recognize aptamer; 
depending on target recognition or binding detec-
tion and quantification of oligonucleotides is possible; 
and collateral damage provides a direct readout from 
reporter probes. Here, we provide holistic coverage of 
advancements in aptamer-based CRISPR-Cas sensors. 
This review presents the basics of the CRISPR-Cas12 
system and aptamer, including the necessary compo-
nents of CRISPR-Cas for diagnostics (Fig. 2). Then, we 
focus on signal generation strategies using fluorescence 
modifications, colorimetric assays, electrochemical, 
nanomaterials (gold nanoparticles, nanosheets, mag-
netic particles, etc.), Rayleigh-and Raman scattering for 
diagnostics.

Fig. 2  CRISPR-based diagnostics. A, B Schematic of DETECTR and SHERLOCK assays; C Sequence-specific target binding. Catalytically inactive 
Cas proteins bind to the target gene that is complementary to gRNA. D Sequence-specific target cleavage. Cas proteins cleave the target gene, 
followed by the sequence-specific binding. E Target-specific trans-cleavage. Some Cas proteins such as Cas12a or Cas13a non-specifically cleave 
the ssDNA or ssRNA nearby upon binding to the target gene. F Three widely-used signal detection techniques: the fluorescence, colorimetric 
or electrochemical signal can be monitored to detect the existence of the analytes (Figure modified after Kim et al., Biomolecules 2021, 11(8); 
Copyright: CC BY License)



Page 4 of 15Kadam et al. Applied Biological Chemistry           (2023) 66:13 

Fundamental concepts of CRISPR‑Cas‑based 
biosensing
The polymorphic genes and Cas proteins, which form 
the basis of CRISPR-Cas technology, are characterized 
by the presence of palindromic sequences, protospacer 
motifs, and an upstream leader sequence in the pro-
moter regions. With unique activity, Cas proteins, and 
the mechanism of CRISPR-Cas, it is classified as Class 1 
and Class 2. Class 1 is a multi-factor effector system that 
necessitates several Cas protein subunits and is less ame-
nable; however, the Class 2 effectors have a simple com-
ponent and depend on a single Cas protein which forms 
the basis of diagnostics applications. For the design of the 

CRISPR-Cas diagnostics assay, a Cas protein, crRNA, an 
activator DNA, a labeled reporter, and the target specific 
ssDNA aptamers are required.

The examples of  Class 2 Cas proteins include Cas3, 
Cas9, Cas10, Cas12a (Fig. 3), Cas13a (Fig. 4), and Cas14a 
(Fig.  5). Among these, Cas12a  is most commonly used 
in biosensing, it is a single guide RNA-mediated DNA 
nuclease with two unique domains: a Nuc and a RuvC [2, 
18] RuvC domain is involved in target recognition and 
facilitates the cleavage activity by Nuc lobes. Cas12a can 
be activated either by dsDNA or ssDNA and can degrade 
both the specific target sequence and the nonspecifically 
(collateral damage)  any sequence. A protospacer motif 

Fig. 3  Applications of CRISPR/Cas12. A. RAA-based E-CRISPR, uses MB to modify the ssDNA reporter gene and assemble it on the working 
electrode, the sample is first amplified by RAA, when the target sequence exists, non-specifically cleaves the MB-modified reporter gene on the 
electrode surface, finally analyzed by SWV to measure the microelectrochemical signal before and after the introduction of the target nucleic acid 
sequence; B. EIS-CRISPR, fixes ssDNA on a gold electrode to limit the electronic communication between the electrode and the solution; when 
the target DNA exists, the Cas12/gRNA system binds to the target DNA and trans-cleaves the ssDNA on the gold electrode and accelerates the 
electron transfer between the electrode and the solution, detecting subtle changes in the electrode surface current at last (Modified after Li et al., 
Diagnostics 2022, 12(10); Copyright: CC BY License)
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region (PAM) is essential for binding to dsDNA tar-
gets, while a PAM sequence is not required for ssDNA. 
Among several Cas proteins, Cas12a is commonly used 
in aptamer-based sensing. Another Cas protein, Cas13a, 
recognizes RNA as a target and requires a single RNA; it 
also possesses two separate domains for target recogni-
tion and RNA degradation. Cas13a enzyme digests flank-
ing RNA sequence next to crRNA on complimentary site 
and also cleaves ssRNA in a nonspecific manner; com-
monly employed for viral analysis. Another Cas protein, 
Cas14a, is highly compact and much smaller than Cas9; 
can target and degrade ssDNAs nonspecifically without 
need of a target sequence. Moreover, Cas14a has shown 
a high affinity towards ssDNAs than Cas12a and could 
degrade long ssDNA probes. Cas14a is a newly found 
enzyme used to analyze various targets [19, 20].

The major limiting factor in the CRISPR-Cas system 
is the design of effective crRNA, which facilitates target 
recognition, binding, and cleavage efficiency [21]. The 
crRNA nucleotide composition, sequence, and length 
need careful evaluation for a successful outcome of the 
diagnostic assay. The crRNA contains two functional 
domains of a guide region and an activator sequence. 
Cas12a, the guide region sequence which forms the scaf-
fold is 5’-UAA​UUU​CUA​CUA​AGU​GUA​GAU-3’ (Fig.  6). 
The guide sequence, which forms the basis of crRNA 
and makes a binding scaffold, helps the Cas enzyme and 
varies according to the Cas protein. In Cas13a, this seg-
ment carries a sequence of 5’-ACC​CCA​AAA​AUG​AAG​
GGG​ACU​AAA​A-3’. An ssDNA activator sequence is 
used for Cas proteins, usually designed with complemen-
tary a fragment of target nucleic acids such as aptamer 
sequences. The molecular identification and efficient 
binding to the activator is a prerequisite to proceed col-
lateral cleavage of fluorophore-modified reporter DNAs. 
The reporter modifications vary from fluorophore-
quencher (F:Q) pair to nanoparticles to antibodies or 
affinity tags at 5’ or 3’-ends (or both terminals). Addition-
ally, the molar ratio of the Cas protein to crRNA has to 
be carefully adjusted for efficient signal amplification [2, 
5, 8].

The aptamer-based sensing of the target has reached 
its saturation; hence, there is a necessity for signal 

enhancement and diversification of diagnostics for field-
level testing. The past couple of years has seen a rise in 
applications of CRISPR-Cas proteins biosensing due 
to rapid and specific detection potential [8]. Moreover, 
the combination of CRISPR-Cas with aptamers pro-
vides solutions because they are quick, simple, accurate, 
modular, dynamic, and cheap. Additionally, these sensors 
can be used in compact assembly with portable biosens-
ing [22, 23]. Several signal generation and transduction 
are demonstrated by coupling with aptameric sensors, 
including use of novel nanomaterials for electrochemi-
cal, fluorescent, colorimetric, and SERS sensors (Fig. 7). 
In following section, we discuss some of the most com-
monly used signal detection approaches.

Fluorescence‑based sensing
The development of fluorophore-modified aptameric 
sensors brings agility and ease of conducting assay due to 
increased sensitivity and availability of wide range of sig-
nal detection devices. Fluorescence analysis is one of the 
key technique in molecular diagnostics. Several strategies 
are found to construct aptamer-based CRISPR-Cas fluo-
rescent sensors, for instance, direct detection, sandwich 
design, and allosteric hairpin (AH) mediated detection. 
The direct sensing strategy depends on Cas enzymes’ 
potential to damage collaterally via binding with ssDNA 
activator regions to crRNA; there is no need for pre-
amplification steps. Two ways direct binding and detec-
tion can be performed using aptamers: direct-activation 
strategy and locked-activated strategy. This detection 
strategy uses a short activator ssDNA (acDNA) sequence 
to facilitate CRISPR-Cas binding. The reporter sequences 
are dual labeled with a fluorophore and a quencher at 
both ends, and start with the quenched fluorescence. 
One of the most commonly used F:Q pairs is Fluorescein-
Black Hole Quencher 1 (FAM-BHQ1). Upon binding of 
activator DNA to the ribonucleoprotein complex formed 
by Cas12a-crRNA, the activation of Cas enzyme takes 
place, and the collateral cleavage of the F:Q reporter by 
Cas12a begins, which in turn produces intense fluores-
cence. The fluorescence signal is measured and quantified 
(or could be used for presence and absence in visual anal-
ysis). As aptamers are specific to the target molecules, in 

(See figure on next page.)
Fig. 4   Applications of CRISPR/Cas13 and CRISPR/Cas14 technology. A LLPS-CRISPR, combined with the collateral cleavage activity of Cas12a/
Cas13a, cleaves long-chain into short-chain nucleotides when the target sequence is present; then the solution will become clear afterwards; B 
Light-up aptamer-based-Cas13a introduces a new light-up RNA aptamer broccoli/DFHBI-1T complex; when the target sequence is present, Cas13a 
digests the aptamer broccoli, and the high-fluorescence bound-state DFHBI-1T becomes the low-fluorescence free state; C APC-Cas’s aptamer 
domain will specifically recognize and bind to the target pathogen, so that AP expands from a hairpin-like inactive structure and transforms into 
an active structure; the primer domain can be combined with the primer, and then, with the participation of DNA polymerase, AP is used as 
the template chain to generate dsDNA, which replaces the target pathogen and realizes the first amplification; then the T7 promoter domain is 
amplified by T7 RNA polymerase to achieve the second step of amplification; subsequently, the Cas13a/crRNA complex recognizes the ssRNA 
produced by the second step and non-specifically cleaves a large number of surrounding RNA gene reporter probes, achieving the third step of 
amplification, finally generating a fluorescent signal (Figure modified after Li et al., Diagnostics 2022, 12(10); Copyright: CC BY License)
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the presence of the target, they would form a high affinity 
binding complex with the target, and the acDNA would 
be released, resulting in concentration-dependent cleav-
age by Cas12a. The assay could be used in the opposite 

manner, where signal yield is directly proportional to 
free-aptamer concentration; the approach has been 
devised for ATP detection [24]. Some factors affect-
ing CRISPR-Cas detection were identified, including 

Fig. 4   (See legend on previous page.)
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the concentration of Mg2+ ions and the ratio of acDNA. 
While developing CRISPR-Cas for sensing Mg2+ ions 
using aptamers, the effect of ionic strength was noticed, 
which was found to play a role in the conformation of the 
RuvC domain [25].

Nonspecific or background signals present unnecessary 
hurdles in fluorescence analysis using aptamer-based 
CRISPR-Cas detection. To overcome this challenge, 
a locked-activated approach was designed in which a 
complementary strand of aptamer acts as an acDNA. In 
this design, the structure-switching approach of ssDNA 
aptamer is exploited, where a complementary acDNA 
probe is allowed to hybridize with the aptamer [26]. In 

the presence of the target, the aptamer preferentially 
binds to the target molecule, and that would release 
acDNA. By direct strategy, the acDNA binds to CRISPR-
Cas and activates the nuclease activity. The approach 
could differentiate live vs. killed dead bacterial cells using 
aptamer-Cas14-a1 [19, 20].

For successful detection based on acDNA, opti-
mal probe design is essential. Using partial base pair-
ing in ATP aptamers (Fig.  6B, C) to lock acDNA 
with a sandwich probe of a1-acDNA-a2 (aptamer1-
acDNA-aptamer2) [19]. Similarly, an excellent onsite 
aptasensor toolkit was developed that displayed high sen-
sitivity of 38 nM to melamine, compared to single acDNA 

Fig. 5  . Magnetic-bead-assisted dual-signal-amplification aptasensor for sensitive ZEN detection based on the Nt.AlwI enzyme and the 
Cas12a enzyme. Step 1: The aptamer probe recognizes the ZEN toxin and causes Z1 to dissociate into solution by competitive binding. Step 2: 
After Z1 and Z2 were hybridized, the cutting activity of the Nt.AlwI enzyme was activated, the Z2 chain was cut to release Z3, Z1 was self-shed 
after the cutting was finished and it hybridized with Z2 again, and a large amount of Z3 was released by the enzyme-cutting signal amplification 
to achieve the first signal amplification. Step 3: The combination of Z3 and the Cas12a-crRNA complex activates trans-cleavage activity, 
non-specifically cleaving any ssDNA so that the added fluorescent signal molecule was cleaved and the quenched fluorescence was restored 
(Figure from Yao et al., Foods 2022, 11(3); Copyright: CC BY License)
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activation approach [27]. Thus, the sandwich probe in 
technique was proven to be better for increased sensi-
tivity. In another study, dsDNA as the acDNA elevated 
the collateral cleavage ability of Cas12a than ssDNA to a 
higher level [18].

Antibody-based enzyme-linked immunosorbent assay 
(ELISA) is a popular analytical approach [28]. Modified 

ELISA has used aptamer as an alternative to antibod-
ies (ELASA) [29]. Aptamers are easier to load onto a 
plate and label with a variety of reporters, linkers, and 
functional groups, making signal transformation more 
efficient than an antibody. CRISPR-Cas coupled with 
ELASA, now called CLASA, provides even more sensi-
tive and practical applications [29, 30].

Fig. 6  The small molecule diagnostics. A Generalized schematic of the molecular radar strategy for small molecules diagnostics (Figure from Niu 
et al., Biosensors and Bioelectronics 183 (2021) 113196; Copyright by Elsevier, used with permission). B Proposed CRISPR-Cas12a biosensor for ATP 
detection;  C The schematic of target ssDNA as well as crRNA used; the target site is highlighted in red (Figure from Peng et al., Sensors & Actuators: 
B. Chemical 320 (2020) 1281642; Copyright by Elsevier, used with permission)

Fig. 7  The principle of Raman spectrometer-read CRISPR/Cas biosensor for nucleic acids detection of pathogenic bacteria. A The 
activation of CRISPR/Cas12a for trans-cleavage. The green ribbon represents single-stranded DNA subject to trans-cleavage. B The preparation of 
gold nanostar@4-mercaptobenzoic acid@goldnanoshell structures (AuNS@4-MBA@Au) and their utility in combination with CRISPR/Cas12a for 
SERS-based bacterial detection for both in-tube and μPAD detection. DNA1 and DNA2 were colored as blue and red, respectively and linker ssDNA 
was green. C The schematics of the biosensing processes with the estimated assay time for each step. D The nucleic acid sequences required for 
the proposed biosensor and the hybridization of linker ssDNA with DNA1 and DNA2. AA  ascorbic acid. (Figure from Zhuang et al., Biosensors and 
Bioelectronics 207 (2022) 114167; Copyright by Elsevier;used with permission)
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Three types of sandwich design strategies are employed 
in ELISA—antibody-target-antibody (anti-T-anti), anti-
T-aptamer (anti-T-apt), and apt-T-apt. The indiscrimi-
nate cleavage activity of the Cas enzyme can overcome 
HRP’s detection limit in ELISA. For example, using an 
anti-T-anti sandwich biosensor and antibody-dsDNA 
as the acDNA for human IL-6 and VEGF, a highly accu-
rate detection with more than 100 times powerful com-
pared to ELISA was achieved [31]. Similarly, Li et al. [29] 
adopted the apt1-T-apt2 sandwich strategy to improve 
upon this technology. In some cases, when targets have 
multiple aptamers, the “apt1-T-apt2” strategy becomes 
obsolete. Therefore, an “anti-T-apt” sandwich was pro-
posed in combination with Cas enzymes [32]. Most sig-
nificantly, optical fiber instead of PS was used to form a 
sandwich of fiber/anti-T-apt/ Cas-crRNA, which was 
able to detect interferons with over 1000-fold higher sen-
sitivity compared to ELISA [33]. To combine the Cas sen-
sitivity with PCR technology, in  situ PCR amplification 
after sandwich formation to increase acDNA and CD109 
aptamers served as templates [29]. The PCR dsDNA 
product and a crRNA activated the downstream Cas12a 
system.

Electrochemical‑based sensing
Being highly  sensitive, easy to handle, cheap, modular 
assembly, portability, and rapid signal detection, the elec-
trochemical sensors have captivated researchers’ atten-
tion and made waves in CRISPR-Cas-based analysis for 
aptamer [34]. For electrochemical sensing, direct target 
recognition, label-free analysis, pre-amplification free, 
and availability of novel electrode materials make it a 
lucrative option for integration in aptamer coupled with 
Cas sensing. For example, Dai et al. [9] created a Cas12a-
based EC sensor with aptamer as the acDNA, captured 
by crRNA to start collateral cleavage. In which methylene 
blue was attached to one end for electrical signal trans-
duction, while a thiol moiety helped to link another end 
on the electrode. Cas12 cleaved off the methylene blue 
(redox probe) and detached from the electrode surface, 
reducing the signal; using this strategy, TGF-b1 protein 
was detected with a sensitivity of 0.2 nM [35]. Addition-
ally, an electrochemiluminescence (ECL) sensor using 
Cas and aptamer sensing was designed [36]. Electro-
chemical sensing usually needs electroactive labels and 
a sensitive interface. Abnous et  al. created a label-free 
aptamer-based CRISPR-Cas supported EC sensor by 
employing acDNA with TdT [37], which allowed the 
redox probe of [Fe(CN)6]3−/4− to react with the surface, 
producing a quantifiable signal of cocaine binding to the 
aptamer. Using a similar approach, Liu et al. [38] designed 
EC impedance spectroscopy with Cas12a substrate and 

in  situ RCA amplification on a gold electrode to detect 
nucleocapsid protein at picogram per mL concentrations.

A preassembled EC module was used  to increase sig-
nal [38, 39], where the HCR  (hybridization chain reac-
tion) product peripheral is exposed to a lot of acDNA to 
promote collateral cleavage activity. A modified approach 
of immuno-RCA assembly multiplies signals from long 
ssDNA for bacterial strain-specific aptamers and targets 
repetitive acDNAs. Further, a sandwich-type “apt1-T-
apt2” CRISPR sensing on AuNPs@Ti3C2Tx-Mxene sur-
face and aptamer for VEGF could detect sub-picomolar 
range [31]. To overcome some of the limitations of these 
assays, an immobilization-free EC sensor with stacking 
interaction between DNA molecules and the reduced 
GO/GCE was established [40] and demonstrated for suc-
cessful detection of thrombin with as low as single fem-
tomoles. Large particle size modifications detach the 
substrate from the electrode, which hinders electron con-
duction and performance. Ultra-thin two-dimensional 
covalent organic framework nanosheets may have supe-
rior application in modifications due to their shorter 
charge transfer durations and distances, high exposure to 
surfaces, and active binding sites. To make use of aptam-
ers and CRISPR-Cas effectors with HDA probe-triggered 
single-circle amplification, the detection of PD-L1 in 
exosomes at 38 particles per mL was recorded [41].

Nanotechnology‑based  sensing 
There are several nanotechnological strategies evolved 
for biomolecular detection. For example, use of gold 
nanoparticles (AuNPs) in the biological analysis is well 
known [42–47]. Zhao et  al. designed an AuNPs-based 
nanoprobe for Cas sensing to improve acDNA carrier 
to gain fluorescence yield [48]. A sandwich structure of 
anti-T-aptamer/AuNP/acDNA was created that acti-
vated the trans-cleavage system. Higher loading on the 
AuNP surface leads to three times more sensitivity than 
free acDNA wither better accuracy. Li et  al. assembled 
apt-acDNA as in hybrid DNA architecture (HDA) struc-
ture, with partial ssDNA sequences [29], carrying PAM 
sequence specific to promote cis-cleavage by Cas12a with 
the potential of 1000 times sensitivity over traditional 
Cas enzyme.

In addition to AuNPs, magnetic nanoparticles, such as 
magnetic beads (MB) (Figs. 7 and 8) are popularly used in 
diagnostics [49, 50]. The use of MB for capture or carrier 
and enrichment in aptamer sensing is highly beneficial. 
While combining aptamers with CRISPR-Cas, MB can 
be used to convert signals, separate, or reject non-target 
molecules such as DNA or RNA. MB with a high surface-
to-volume ratio can potentially increase acDNA trans-
port [49].



Page 10 of 15Kadam et al. Applied Biological Chemistry           (2023) 66:13 

Linking of ssDNA aptamer to MBs via streptavidin 
(SA)-biotin binding was found to outbid MB-HDA dis-
sociation [50]. Upon magnetic sorting, the conjugates 
retained free-complementary strands and retained 
acDNA collateral cleavage activity. Such magnetic sort-
ing made sure acDNA is capable of catalysis without 
off-target or unexpected cleavage by inappropriate DNA 
hybridized structure formation with crRNA. The MB 
nanoparticle-assisted method has demonstrated great 
promise for several targets, such as microcystin-LR 
detection, toxic lead ion detection, and miRNAs analysis 
[51]. Furthermore, using a modification of DNA hybridi-
zation to MB and Cas enzymes, several aptamers were 
employed to detect variable targets such as cocaine, 

alpha-fetoprotein, and SARS-CoV-2 viral particles [52, 
53].

Connecting a target to higher CRISPR-Cas activators 
(ssDNA or dsDNA) improves sensitivity, towards this 
rolling circle amplification (RCA) was employed [54], 
where SA/MB/Apt-A captured protein A-positive bac-
teria by magnetic separation, and then target-specific 
methicillin-resistant staphylococcus aureus (MRSA) 
were identified by enrichment of the penicillin-binding 
proteins 2a (PBP2a) with apt-B. In turn, complemen-
tary DNA was released and involved in cyclized padlock 
by hybridizing with its two terminals and triggering the 
following RCA assisted by T4 DNA ligase. Moreover, 
the strategy was exploited using Nt.AlwI endonuclease 
to obtain multiple copies of acDNA, which improved 
the sensitivity of ZEN toxin [55]. Similarly, Wang et  al. 
used hydrazone ligation in a three-dimensional DNA-
zyme walking nanomachine to generate more acDNAs to 
amplify trans-cleavage activity [56]. It is a versatile tool 
for understanding molecular behavior  and mobility. Its 
high nanoparticle surface-to-volume ratio enabled signal 
enhancement and freely available acDNA boosted down-
stream collateral damage after magnetic separation that 
could detect lipopolysaccharide with 7.31  fg/mL detec-
tion limit [57].

Recently, an MB-multivalent duplexed aptamer mod-
ule has been shown to detect PTK7, a cancer biomarker 
using Cas enzyme. Using rolling circle amplification 
(RCA) and preassembled target-specific aptamer on the 

Fig. 8  The characterization of AuNS@4-MBA@Au and AuNS@4-MBA@Au@DNA (thiolated ssDNA conjugates). Raman spectra (A) and 
histogram of SERS signals at wavenumber of 1075 cm-1 (B) for AuNSs, 4-MBA, physically mixed solution of AuNSs together with 4-MBA and 
AuNS@4-MBA@Au. C UV–Vis absorbance spectrum of each sample. D DLS profile of each sample. E Picture of each sample. 1: AuNPs; 2: AuNSs; 3: 
AuNS@4-MBA; 4: AuNS@4-MBA@Au; 5: AuNS@4-MBA@Au@DNA. TEM images of AuNPs (F), AuNSs (G), AuNSs@4-MBA (H), AuNS@4-MBA@Au (I) and 
the crosslinked AuNS@4-MBA@Au@DNA (J) (Figure from Zhuang et al., Biosensors and Bioelectronics 207 (2022) 114167, Copyright by Elsevier; used 
with permission)

Table 1  Salient features of various Cas proteins used in 
diagnostics

Cas Protein Class Target PAM Collateral 
Activity

Refs.

Cas9 Class 2 dsDNA NGG No [85]

Cas12a Class 2 Both (ss/
dsDNA)

TTTN Yes (ssDNA) [5, 18, 86]

Cas12b Class 2 Both (ss/
dsDNA)

TTN Yes (ssDNA) [6]

Cas13a Class 2 ssRNA – Yes (ssRNA) [5]

Cas13d Class 2 ssRNA – Yes (ssRNA) [87]

Cas14a Class 2 ssDNA – Yes (ssDNA) [3]
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surface of MB to elongate ssDNA strands; resulted in very 
high collateral damage activity. Similarly, to overcome the 
slow release of acDNA, an assay performed using hybrid 
DNA for exponential signal improvement; repeated acD-
NAs enhanced frequency and accessibility to Cas12a/
crRNA complex and increased sensitivity [58]. Using this 
approach, SARS-CoV-2 RNA was detected to be as low 
as ~ 42 copies/mL. To simplify the multi-step process as 
described earlier, a wash-free homogeneous allosteric 
hairpin probe (using single, dual, and ternary) circle 
amplification was proposed. Using single-circle ampli-
fication [59, 60], an AH probe mediates strand displace-
ment amplification with aptamer, nicking enzyme cutting 
site, and signal transduction. The aptamer could find the 
target and unzip the AH probe, revealing two regions to 
allow the formation of a primer junction. Employing KF 
polymerase catalysis, dsDNA was generated and could 
be recognized by Nt. BbvCI to be digested as an acDNA 
fragment, further amplified collateral damage. This per-
mitted detection of tobramycin with high sensitivity up 
to picomolar range. Enzyme-free dynamic DNA network 
catalysis was used in another study to multiply acDNA 
copies [61], bypassing the complicated polymerase/enzy-
matic reaction. The inclusion of T7 RNA polymerase and 
CRISPR-Cas13a triggered the reaction, as demonstrated 
in aptamer application for bacterial detection of 1 CFU, 
a level 40 times better than RT-PCR [24, 62]. Similarly, 
dual and ternary circle-based the CRISPR-Cas sensor 
detected various targets raging from extracellular vesicles 
trace level of ATP [24].

The sequential mixing  reduced the number of preparatory 
steps and increased reproducibility. 2D nanomaterials, 

such as metal carbide (MXene) nanosheets with high 
surface area, act as efficient quenchers [63] and minimize 
background signals. Sheng et al. designed a flexible PAM 
domain with dsDNA probes as the acDNA achieved 
super-quenching to quantify picograms of lipopolysac-
charide and two-digit Gram-negative bacteria. Further, 
2D nanosheet and Cas14a coupled to aptamer and por-
phyrin metal–organic framework nanosheets as the 
quencher was able to detect MC-LR at very low levels 
[64–66].

Colorimetry‑based sensing
The fluorescence and EC assays are dependent on elec-
tronic devices and expensive designs. A signal readout 
that the naked eye can visualize makes appealing alterna-
tives for resource-limited point-of-care settings [46, 47]. 
Several colorimetric assays with DNAzyme-based color-
imetry, nanoparticle aggregation, and colorimetric strips 
are being developed [45, 46].

Integration of optical and visual  detection into 
CRISPR-Cas12a using an HRP-mimicking DNAzyme 
that formed the sandwich complex of PS/apt1-T-apt2/
acDNA and activated the cascade reaction of hemin-per-
oxide, tetramethyl benzidine (TMB) [67] for visualizable 
color change produced sensor with 1.5 X 106 times sen-
sitivity for ATP detection [24]. Moreover, this approach 
was used in a sandwich design of PS/antibody-T-apt/
acDNA to detect several targets such as CEA protein, 
bacteria, and norovirus [68]. Additionally, due to the 
peroxidase-mimic activity and distance-dependent opti-
cal behavior of AuNPs, they have been found in use in 
the construction of colorimetric sensing. For example, 

Table 2  Key representative examples of CRISPR-Cas proteins and aptamers in diagnostic assays of variety of targets

Target Signal CRISPR-Cas Effector LOD Refs.

DNA methylation Fluorescence Cas12b 10–8 nM [6]

Extracellular vesicle Fluorescence Cas12a 100 particles/mL [88]

Extracellular vesicles Fluorescence Cas12a 100 particles/µL [89]

ATP Fluorescence Cas12a 0.39 μM [67]

Na+ Fluorescence Cas12a 0.21 μM [67]

Aflatoxin B1 (AFB1) Biolayer interferometry (BLI) Cas12a 0.8 ng mL − 1 [90]

Salmonella typhimurium Electrochemical Cas12a 20 CFU/mL [38]

Bacillus
cereus

Fluorescence/RNA Light-Up Cas13a 10 CFU [91]

PDGF-BB Fluorescence Cas12a 0.75 pM [29]

Telomere Fluorescence Cas9 – [92]

17β-estradiol Raman sensing/LFA Cas12a 10 pM [93]

Thrombin Electrochemical Cas12a 1.26 fM [40]

ATP and Na+ LRET Cas12a  ~ 18 nM and ~ 0.37 μM [68]

Prostate-specific antigen (PSA) Colorimetric/AuNPs Cas12a 0.030 ng/ mL [69]

Cardiac troponin I (cTnI) Fluorescence Cas13d 12.6 pM [87]
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AuNPs coupled with Cas12a collateral digestion and 
RCA amplification were used for colorimetric CRISPR-
Cas sensing, where aptamer/crRNA/Cas12a ternary 
complexes cleave primer sequences and padlock probes 
modified on AuNPs. Wang et  al. [69] used distance-
dependent optical properties of AuNPs and nicking 
enzyme-free amplification to produce more acDNA and 
detected aflatoxin M1 (AFM1) with ppb level of accuracy 
and sensing of serum PSA [69, 70].

Lateral flow assays (LFA) or paper-strip designs based 
on CRISPR-Cas effectors can cleave products and incor-
porate AuNPs for colorimetric readout signals. For 
instance, an MC-LR strip using FAM and biotin dual-
modified ssDNA as the intermediate reporter was devel-
oped [65]. The target caused the cascade reaction and 
Cas12a trans-cleavage, resulting in FAM- and biotin-
ssDNA segments. The reporter and cleaved FAM-ssDNA 
were conjugated to anti-FAM-coated AuNPs as they 
migrated along the strip. Additionally, the common preg-
nancy strip tests (PST) targeted at the detection of human 
chorionic gonadotropin (hCG) [ 22, 71, 72], have found 
different usage. Like, Tang et  al. [73] developed a novel 
NHP probe that could hybridize with cauliflower-like 
large-sized DNA assemblies (CLD). The target-induced 
cleavage event prevented the complex CLD-NHP from 
forming, and the cleaved NHP probe migrated on PST 
with a red T line. This clever design detected adenosine 
in colorimetric fashion using the naked eyes.

Other sensing approaches
In addition to the above approaches, several CRISPR-Cas 
target sensing mechanisms are integrated with ssDNA 
aptamer to generate unique signal transduction modules 
that provide precise and reliable analytical alternatives. 
To name a few methods include luminescence reso-
nance energy transfer (LRET), light-up RNA, resonance 
Rayleigh scattering (RRS), and surface-enhanced Raman 
scattering (SERS).

Luminescence resonance energy transfer (LRET) based 
sensing can overcome background interference, offer-
ing a strong enough capability to handle complicated 
biological samples [74]. Lin et  al. used ssDNA-UCNPs 
as reporters and gold nanoparticle-modified Ti3C2Tx 
MXene-AuNP nanosheets as quenchers to create an 
LRET adsorptive quenching sensor [75]. in the absence 
of target, the acDNA interact and initiate Cas12a to per-
form collateral digestion of ssDNA conjugated to upcon-
verted nanoparticles (UCNPs), and get adsorbed on 
MXene-AuNPs that would retain upconverted of lumi-
nescence (UCL). While Cas12a action is blocked if the 
target is present, non-cleaved reporters bind to MXene-
AuNP, resulting in a quenching effect. Deoxy-nivalenol 
was detected at 0.64  ng/mL by the sensor; the method 

achieved ultra-sensitive detection of ATP [68] and car-
diac troponin I (cTnI) [76] For ochratoxin A (OTA) 
detection, Mao et  al. developed a UCNP-MB probe 
[77] making feasible for OTA bound with aptamer and 
unfolded HDA probes to release complementary DNA 
and initiate trans-cleavage action. After magnetic separa-
tion, OTA was detected with the sub-ppb level of sensi-
tivity in CRISPR supported assay.

Introducing RNA reporter probes like Broccoli that 
could bind DFHBI-1 T dye and switch on its fluorescence 
[78] with Cas13a by careful designing the crRNA pro-
vides [79, 80] the light-up RNA aptamer-based CRISPR 
sensor. It has the potential to replace expensive chemi-
cal modification and extensive synthesis steps with bet-
ter quantification potential. Cas13a-catalyzed products 
cannot interact with DFHBI-1  T dyes, resulting in a 
“turn-off” signal. The light-up RNA sensor could detect 
bacteria and was useful for the differentiation of living vs. 
dead bacterial cells with very low CFUs.

Gao et  al. introduced a G-wire assisted non-cross-
linking HCR reaction to create a label-free resonance 
Rayleigh scattering (RRS) CRISPR-effector powered 
aptameric sensor system that could reveal the molecular 
size, shape, conformation, and interfacial features [81]. 
When the target was present, the aptamer containing the 
PAM segment specifically recognized the target rather 
than crRNA/Cas12a system, suppressing trans-cleavage 
activity and triggering the HCR reaction by automati-
cally aggregating reporter probes. The hyperbranched 
product produced signal amplification and very high 
RRS intensity. This approach detected LPS with accuracy 
and high specificity. Recently, Li et al. created a dual sig-
nal detection aptamer-based CRISPR-enzymatic paper 
strip for colorimetric and Raman scattering-based diag-
nosis; for which biotin-ssDNA-digoxin as the interme-
diate reporter was used and digoxin antibody-SERS tags 
(Au@BDT@Au) were exploited for generation of read-
out signals [82–84]. Such Raman sensing strips are easy 
for batch production, long-term stability, short sample 
demand, and cost-effectiveness; however, the unavailabil-
ity of hand-held Raman devices may limit the diffusion of 
this innovative technology.

Future directions and conclusions
The high affinity and specific binding properties of 
aptamers along with versatile CRISPR-Cas effectors 
make it idealistic sensors for detection and quanti-
fication. CRISPR-Cas enzymes are poised to impact 
and advance aptamer-based detection of various 
biomarkers and small toxic compounds. Although 
both technologies have seen exponential growth in a 
proof-of-concept, it would be interesting to see how 
field-level applications evolve in the coming future. 
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The sandwich-type CLASA using nanoprobes for sig-
nal  enhancement and preassembly for amplification-
free detection will continue to develop in the coming 
years. Colorimetric strips, portable designs, and smart-
phone-based optical sensors are desired to simplify 
detection in POC settings. The aptamer-based CRISPR-
Cas platforms have been demonstrated for analysis in 
biomedical sciences, environmental monitoring, food 
safety, and clinical diagnosis. Although several biosen-
sors have adopted CRISPR-Cas effectors and exhibited 
their performance, critical technical issues still need to 
be addressed. For example, Cas effector proteins use 
different sequences to detect targets, so their crRNAs 
have changed activated regions, requiring complex 
optimization with activator sequences to initiate Cas 
enzymatic activity efficiently. CRISPR-Cas effectors’ 
cleavage potential is also affected by the ambient envi-
ronment, pH, buffer, salt concentrations, etc. Hence, 
optimization of assay conditions offers a challenging 
task for POC setting analysis. The design of crRNA, 
cost and time for producing Cas effectors,  concentra-
tion of crRNA, and the ratio with reporters need to be 
minimized. These factors will determine the real-time 
and onsite detection affordably. Moreover, a multi-step 
process is involved in CRISPR-Cas and aptamer sen-
sors; this must be streamlined to obtain robust  read-
outs or signals. Therefore, the use of nanotools for 
colorimetric detection, LFA strips, and microfluidic 
chips provide attractive options to democratize the 
novel CRISPR-Cas and aptamer-based sensing for 
practical purposes. Overall, the advances in material 
science, molecular biology, enzyme engineering, and 
bioanalytical chemistry would help to design an ideal 
platform for next-generation diagnostics.
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