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Abstract
Atrazine (ATR) is an extensively used herbicide that is often found in drinking water and waterways. After metaboliza-
tion and excretion in the liver, ATR residues or its metabolites were found in tissues causing harmful effects mainly to the 
endocrine system and liver. This study aimed to elucidate the toxic impact of ATR on the liver and possible ameliorative 
effects of L-carnitine (LC). It utilized 30 adult male albino rats divided into three equal groups; the control group received 
0.5 cc distilled water orally for 14 days, an ATR-treated group received ATR in a dose of 400 mg/kg BW dissolved in 
distilled water by oral gavage daily for 14 days, and a protected group (ATR + LC) received 400 mg/kg BW of ATR dis-
solved in distilled water, plus 100 mg/kg LC dissolved in distilled water by oral gavage daily for 14 days. At the end of the 
experiment, the liver tissue was prepared for histological and biochemical analyses and showed significant elevation of 
liver enzymes and oxidative parameters, altered expression of apoptotic and antiapoptotic genes, and hepatic degenerative 
changes in the ATR-treated group. In conclusion, atrazine induces oxidative stress, inflammation, and apoptosis in the liver 
of rats, and these toxic effects can be alleviated by L-carnitine.

Keywords Apoptosis · Atrazine · Gene expression · Hepatotoxicity · L-carnitine · Oxidative stress

Introduction

Pesticides are crucial to increasing agricultural output. How-
ever, worries exist that these compounds may negatively 
impact both human health and the environment (Mnif et al. 
2011; Gore et al. 2015). Excess use of these compounds in 
agricultural fields has increased their levels in the environ-
ment, thus increasing the probability of affecting physiologi-
cal and biochemical performance in living organisms, espe-
cially mammals. Exposure to pesticides has been claimed 
to induce genotoxicity and oxidative stress in mammals 
(Morgan et al. 2019).

Atrazine (ATR) (2-chloro 4-ethylamine-6-isopropy-
lamines-triazine) is a herbicide of concern because of its 
extensive use, endocrine disrupting abilities, and slow bio-
degradation (Mnif et al. 2011). It is one of the most common 
herbicides used in agriculture around the world and has a 
half-life of more than 100 days in water and 240 days in soil 
according to the Australian Pesticides and Veterinary Medi-
cines Authority (APVMA 2004) and the US Environmental 
Protection Agency (EPA 2003), so it is exceptionally stable 
in the environment. As a result, ATR levels increase in soil, 
groundwater, and surface water over time and have a con-
tinuous impact on ecosystems (Ludlow 2010). These effects 
resulted in its ban in 2003 by the European Union (Com-
mission 2004). Despite this, ATR is still used extensively in 
many countries (Benbrook 2016; Alonso et al. 2018), with 
more than 3000 and 32,500 tons administered annually in 
Australia and the USA, respectively (Farruggia et al. 2016; 
Harper et al. 2020). Additionally, ATR remains a major her-
bicide in Egypt due to its efficacy, low price, and widespread 
use among farmers (Khozimy et al. 2022).

Oral ingestion is the primary route of ATR expo-
sure, and most likely occurs through drinking water, with 
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concentrations typically between 0.01 and 5 mg/L (WHO 
2010). Additionally, ingestion of contaminated fish is a com-
mon mean of exposure because ATR accumulates in the 
nervous system, gall bladder, hepatic cells, and gut of some 
fish. Inhalation and cutaneous penetration during application 
are two additional exposure routes (Rajkovic et al. 2014).

Once ATR is absorbed, it is rapidly transported to 
the liver where it is metabolized into deisopropyl and 
dealkilated (DACT) metabolites. These compounds are 
completely excreted in urine, along with approximately 2% 
of unchanged ATR. Although it undergoes biotransforma-
tion and excretion, traces of ATR and/or its metabolites have 
been found in some tissues (Catenacci et al. 1993), as well 
as in human physiological fluids, such as sperm, follicular 
fluid, and cervical mucus (Thornton et al. 2010).

Previous studies have recorded toxic effects of ATR, 
including premature and low birth weight babies (Chevrier 
et al. 2011), hepatotoxicity (Jin et al. 2014; Wang et al. 
2017), and reproductive and immunological alterations in 
laboratory rodents (Pogrmic-Majkic et al. 2010). Accord-
ing to Song et al. (2015), ATR triggered apoptosis-related 
neurodegenerative damage to nerve cells as evidenced by the 
overexpression of Bax, as well as the downregulation of Bcl-
2, Bcl-xl, and caspase-9. Furthermore, ATR exposure raised 
Bax and FasL expression and decreased Bcl-2 expression 
in the kidney according to data published by Zhang et al. 
(2018). These data suggested that ATR caused nephrocytes 
to induce apoptosis.

L-carnitine (LC) (4-trimethyl ammonium 3-hydroxybu-
tyric acid, the biologically active stereoisomer) is condition-
ally produced from the amino acids methionine and lysine in 
the brain, hepatic cells, and renal cells and is found primar-
ily in meat and dairy products and is involved in fatty acid 
oxidation (Thangasamy et al. 2008). Carnitine is engaged in 
energy generation through fat metabolism, which is linked to 
oxidation and is important for delivering fatty acids into the 
mitochondria (Jiang et al. 2013). LC is a bioactive carnitine 
derivative nutrient necessary for energy generation, and a 
lack of it has been linked to reduced energy availability in 
essential organs such as the liver (Sakai et al. 2016).

Previously, Ishikawa et  al. (2014) showed that LC 
enhanced liver function, reduced oxidative stress, and 
increased mitochondrial oxidation. Additionally, Alshiekh-
Nasany and Douer (2016) reported that LC showed thera-
peutic efficacy in drug-induced hepatotoxicity. It was also 
reported by Vardiyan et al. (2020) that LC enhanced Bcl-2 
expression and suppressed Bax expression, suggesting that it 
may also reduce apoptosis. It was additionally found to have 
an antiapoptotic effect on the testicular tissue of mice receiv-
ing gamma radiation by Altun et al. (2014). They found that 
LC protected the apoptosis of germ cells after radiotherapy.

Therefore, the aim of the present study was to evalu-
ate the effects of LC on histopathological changes in the 

hepatic tissue, antioxidant activity, and gene expression of 
caspase-3, Bax, and Bcl-2 in ATR-induced rats.

Materials and methods

Chemicals

ATR is a white, odorless powder. For this study, 97% pure 
ATR was obtained from Kafr El Zayat Pesticides & Chemi-
cals Co., Kafr El Zayat, Egypt. The powder was weighed and 
dissolved in distilled water according to the weight of the 
rats. LC was provided by MEPACO-MEDIFOOD Company 
for Pharmaceuticals and Medicinal Plants, Sharkeya, Egypt, 
in the form of 350 mg capsules in boxes of 20 capsules each. 
These capsules were opened and dissolved in distilled water.

Animals

A total of 30 adult male albino (Sprague Dawley) rats weigh-
ing 230–250 g were obtained from the Faculty of Medicine’s 
animal facility, Zagazig University, for use in this study. All 
animals were maintained in a clean environment, fed regular 
meals, and provided tap water to drink. They were housed 
in vented polypropylene cages with stainless steel lids and 
wood shaving bedding, and the temperature was maintained 
at 23 °C ± 2 °C. They were given 15 days to acclimatize to 
the lab environment before the experiment began. All rats 
were cared for and utilized in compliance with the Zagazig 
University Institutional Animal Care and Use Committee’s 
(ZU-IACUC Committee) standard rules and regulations, 
with approval number ZU-IACUC/3/F/188/2021.

Experimental protocol

Rats were divided into three equal groups (control group, 
ATR-treated group, and protected group): the control group 
did not receive any medication during the duration of the 
experiment but received 0.5 cc distilled water orally. The 
ATR-treated group received ATR in a dose of 400 mg/kg 
BW (a subacute dosage of 400 mg/kg/day (LD50/5)) dis-
solved in distilled water by oral gavage daily for 14 days 
(Juliani et al. 2008), and the protected group rats were given 
400 mg/kg BW of ATR dissolved in distilled water, plus 
100 mg/kg LC dissolved in distilled water, by oral gavage 
daily (Abd‐Elrazek and Ahmed‐Farid 2018) for 14 days. The 
rats were observed for overall behavior, toxicity signs, and 
mortality throughout the study.

Sample preparation

At the end of the experiment, rats were weighed, anes-
thetized with an intra-peritoneal injection of 30 mg/kg 
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thiopental, and then sacrificed. A laparotomy was con-
ducted to expose the liver. To eliminate all red blood cells 
and clots, tissues were extensively perfused with a 50 mM 
sodium phosphate buffer saline (100  mM  Na2HPO4/
NaH2PO4) (pH 7.4) and 0.1 m ethylenediaminetetraacetic 
acid (EDTA) solution prior to dissection. Then, the har-
vested liver of each rat was divided into three parts: a small 
part for gene expression analysis, another part for homoge-
nate tissue analyses, and the remaining part for histopatho-
logical examination.

Serum biochemical analysis

The rats were sedated, and blood samples were taken from 
the retro-orbital venous plexus using anticoagulated micro-
capillary syringes, which were allowed to coagulate at 
ambient temperature for 30 min before being processed at 
3000 rpm. Pure sera which had not been hemolyzed were 
quickly obtained and processed at − 20 °C for biochemical 
analysis. Alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) activities were measured using the 
pyruvate and oxaloacetate concentration monitoring meth-
ods, respectively (Reitman and Frankel 1957). Diamond 
Diagnostics Chemical Company reagent kits were used for 
the assays (Cairo, Egypt).

Homogenate tissue analysis for oxidative stress 
parameters

Liver tissues were homogenized in 10 × phosphate-buffered 
saline (PBS), pH 7.4, containing 0.2 g potassium chloride 
(KCl), 8 g sodium chloride (NaCl), 0.24 g potassium dihy-
drogen phosphate  (KH2PO4), and 1.4 g disodium hydrogen 
phosphate  (Na2HPO4), and then centrifuged at 10,000 g 
for 15 min at 4 °C. The collected supernatant was used to 
assay the activity of the following: superoxide dismutase 
(SOD), an antioxidant enzyme that was assayed accord-
ing to the method of Marklund and Marklund (1974). The 
difference in color absorbance at 430 nm at 0 and 10 min 
was assessed by measuring enzyme activity using a biodi-
agnostic kit (SD 25 21, bio-diagnostic.com, Giza, Egypt). 
Malondialdehyde (MDA): Liver oxidative stress marker 

was measured by the thiobarbituric acid method (Liu et al. 
1997), using a biodiagnostic kit (MD 2529, bio-diagnostic.
com, Giza, Egypt).

RNA isolation and semi‑quantitative reverse 
transcriptase‑PCR (RT‑PCR)

Total RNA was extracted from 30 mg of rat liver using Tri-
zol (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), the efficiency and density of the RNA were 
measured using the NanoDrop® ND-1000 Spectrophotom-
eter (NanoDrop Technologies, Wilmington, DE, USA), 
and cDNA was generated with a HiSenScriptTM RH ( −) 
cDNA Synthesis Kit (NanoDrop Technologies, Wilming-
ton, DE, USA). The real-time RT-PCR was performed in 
a Mx3005P Real-Time PCR System (Agilent Stratagene, 
Santa Clara, CA, USA) using TOPreal™ qPCR 2X Pre-
MIX (SYBR Green with low ROX) (Cat. #P725 or P750, 
Enzynomics, Daejeon, Korea) according to the manufac-
turer’s criteria.

Denaturation at 95 °C for 12 min was followed by 40 
cycles of denaturation at 95 °C for 20 s, annealing at 60 °C 
for 30 s, and extension at 72 °C for 30 s under PCR cycling 
conditions. Sangon Biotech (Beijing, China) synthesized the 
oligonucleotide-specific primers listed in Table 1 (Khamis 
et al. 2021). Following PCR amplification, a dissolving curve 
analysis was performed. The mRNA expression of a well-
known housekeeping gene, GAPDH, was utilized to equalize 
the target genes’ expression levels. The results were expressed 
as fold-changes and compared with the control group using 
the  2−ΔΔC

T method (Livak and Schmittgen 2001).

Histological and morphometric examination

After dissection, liver tissues were collected from the rats 
and rinsed with saline, and then specimens were extended 
on filter paper and preserved in buffered formalin at a con-
centration of 10%, pH 7.4. The fixed specimens were sliced, 
processed, and embedded in paraffin blocks which were then 
cut into 4-μm paraffin sections. These were stained with 
hematoxylin and eosin, Masson trichrome, and toluidine 

Table 1  Primers

Khamis et al. (2021)

Forward primer (5′–3′) Reverse primer (5′–3′) Size Accession no

Bax CGA ATT GGC GAT GAA CTG GA CAA ACA TGT CAG CTG CCA CAC 109 NM_017059.2
Bcl-2 GAC TGA GTA CCT GAA CCG GCATC CTG AGC AGC GTC TTC AGA GACA 135 NM_016993.1
Casp-3 GAG ACA GAC AGT GGA ACT GAC GAT G GGC GCA AAG TGA CTG GAT GA 147 NM_012922.2
Gapdh (Rat) GGC ACA GTC AAG GCT GAG AATG ATG GTG GTG AAG ACG CCA GTA 143 NM_017008.4
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blue stains (Bancroft and Gamble 2008). The slides were 
examined and photographed using a light microscope 
(LEICA ICC50 W, Leica Microsystems, Wetzlar, Germany), 
in the Anatomy Department, Faculty of Medicine, Zagazig 
University.

The area percentage of collagen fibers from Masson’s tri-
chrome-stained liver sections was measured at 400 × magni-
fication using image analysis software (ImageJ 1.36b, http:// 
rsbweb. nih. gov/ ij). Quantitative data was estimated in five 
different, non-intersected sections, for the same slide of each 
animal. This resulted in a total of 25 fields for each group.

Immunohistochemical and morphometrical 
examination

After liver tissue Sections.  (5 μm) were deparaffinized, 
endogenous peroxidase was satisfied with 3%  H2O2/metha-
nol for 5 min. Primary antibodies were applied to sections 
overnight at 4 °C, followed by a 1-h incubation at room 
temperature with a biotinylated secondary antibody. By 
treating the slices in diaminobenzidine, antibody binding 
was seen. PBS was used for all the incubations, and then 
the sections were dehydrated and coated after being coun-
terstained with hematoxylin. The slices were then incubated 
with a rabbit polyclonal anti-GFAP (glial fibrillary acidic 
protein) primary antibody (1:1000, 4 °C, overnight; Agilent 
Dako, Santa Clara, CA, USA) and then with a biotinylated 
goat anti-rabbit secondary antibody (Agilent Dako).

The area percentage of GFAP immunoreactivity at 400 × mag-
nification was measured using image processing software (ImageJ 
1.36b, http:// rsbweb. nih. gov/ ij). Quantitative data was estimated 
in five different non-intersected sections for the same slide of each 
animal. This resulted in a total of 25 fields for each group.

Statistical analysis

The Statistical Package for Social Science (SPSS for Win-
dows, version 18.0, SPSS, Inc., Chicago, IL, USA) was used 
to statistically analyze the biochemical and morphometric data 
collected. The normal distribution of the data was assured 
using the Shapiro–Wilk test, where p > 0.05. For ease of pres-
entation, normally distributed data were summarized by mean 
and standard deviation. As a key assumption of the one-way 
ANOVA, homogeneity of variance was assessed among the 
compared groups using Bartlett’s test for equality of vari-
ances, where p > 0.05. The mean values of individual groups 
were compared using the one-way ANOVA test. Multiple 
comparisons were assessed using the least significant differ-
ence test. A value of p < 0.001 was statistically significant, 
while p > 0.05 was considered non-statistically significant.

Results

ATR-treated animals displayed decreased weights with 
changes in eye color and thinned hair; while the administra-
tion of LC with ATR reduced the weight decrease somewhat.

Biochemical results

Serum enzymes and oxidative parameters

As illustrated in Table 2, the ATR-treated group showed 
a significant increase in AST and ALT levels compared 
with the control, recording percentage increases of 
96.1% and 99.3%, respectively. In contrast, the protected 
group showed significant decreases of AST and ALT 

Table 2  Serum levels of liver 
enzymes and oxidative stress 
markers

One-way ANOVA
Sd standard deviation
NS non-significant
* Significant (P < 0.001)
a Versus control
b Versus treated
AST aspartate aminotransferase, ALT alanine aminotransferase, MDA malondialdehyde, SOD superoxide 
dismutase, N number
% of change were calculated by comparing the ATR-treated group with control and protected group

Parameter Control 
N = 10
Mean ± sd

ATR treated 
N = 10
Mean ± sd

% of change Protected 
N = 10
Mean ± sd

% of change P value

AST (U/l) 23.1 ± 2.3 45.3 ± 4.7ª  + 96.1% 36.7 ± 3.5a,b − 18.9%  < 0.001*
ALT (U/l) 14.7 ± 1.7 29.3 ± 4.1ª  + 99.3% 19.6 ± 1.8a,b  − 33.1%  < 0.001*
MDA (nmol/ml) 28.1 ± 2.38 49.16 ± 3.2ª  + 74.9% 37.57 ± 2.6a,b − 28.5%  < 0.001*
SOD (u/ml) 20.57 ± 2.57 12.78 ± 2.29a  − 37.3% 16.57 ± 2.7a,b  + 28%  < 0.001*
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compared with the ATR-treated group, with changes of 
18.9% and 33.1%, respectively. Concerning oxidative 
parameters, MDA levels in the treated group were con-
siderably greater than in the control group, with a 74.9% 
change, suggesting oxidative damage. Using LC in the 
protected group led to a significant decrease (28.5%) 
in MDA levels compared with the ATR-treated group, 
indicating decreased lipid peroxidation, SOD recorded 
a decrease of 37.3% in the ATR-treated group compared 
with the control, and the percentage increased 28% in the 
protected group when compared with the ATR-treated 
group.

The real‑time quantitative PCR

It was demonstrated that the antiapoptotic Bcl-2 gene 
expression ratio was 0.228 ± 0.03 and 0.858 ± 0.07-fold 
in the ATR-treated and ATR-protected groups, respec-
tively. Furthermore, the proportion for Bax, a pro-apop-
totic gene, was 4.31% ± 0.53% in the ATR-treated rats 
and 1.87% ± 0.29% in the control rats (Table 3).

The expression of Bcl-2 significantly differed between 
the experimental groups, and when compared with the 
ATR-treated group, the transcription of this gene was 
greater in the protected group (p > 0.001). Furthermore, 
compared with the protected and control groups, the Bax 
signaling pathway was considerably greater in the treated 
group (p > 0.001). Additionally, compared with the other 
two groups, caspase-3 genetic variation was considerably 
higher in the ATR-treated group (p > 0.001). The propor-
tion of Bax to Bcl-2 (Bax/Bcl-2) was computed as 1.0, 
19.5 ± 4.5, and 2.2 ± 0.47 for the control, treated, and pro-
tected groups, respectively.

Histological results

Hematoxylin and eosin

Histological examination of tissue sections from the con-
trol group displayed normal histological organization of 
the liver. This consisted of hexagonal hepatic lobules, with 
each lobule consisting of cords of hepatocytes radiating 
from the central vein toward the periphery and entrapped 
liver blood sinusoids between them. Hepatocytes were 
polygonal-shaped cells containing vesicular nuclei and 
prominent nucleoli with acidophilic cytoplasm. The portal 
tract was found at the periphery with its three components, 
branches of the portal vein, hepatic artery, and bile duct. 
In the ATR-treated group, the normal liver structure was 
disturbed, and degenerative changes were observed in the 
hepatocytes in the form of faint pyknotic nuclei that were 
sometimes even absent and vacuolation of their cytoplasm. 
Dilated congested central veins and widened congested 
liver sinusoids were also observed. Edema of the portal 
tract, formation of new bile ductules, and dilated con-
gested portal veins with a surrounding fibrotic area were 
also observed. In the protected group, the histopathologi-
cal organization of the liver was restored to some extent 
with the restoration of normal liver structures but still 
remained minimal affection in the form of mild dilation 
of the central and portal veins as well as hepatic sinusoids, 
hepatocyte degeneration, fibrosis around the portal vein, 
and new bile ductules (Fig. 1).

Masson’s trichrome

Normal distribution of collagen fibers was observed in the 
control group, while the ATR-treated group displayed an 
apparently increased amount of collagen fibers, mostly around 
blood vessels in the portal tract. In the protected group, a slight 
increase of collagen fiber distribution was observed (Fig. 2).

Toluidine blue

Toluidine blue-stained liver tissue sections displayed heavy 
infiltration of polymorphic mast cells around the portal tract in 
ATR-treated group. In the protected group, some cells were also 
noticed, but no cells were observed in the control group (Fig. 3).

Immunohistochemical results

GFAP-immunostained liver tissue sections displayed a 
marked increase of immunoreactivity in the ATR-treated 
group compared with the protected group, while minimal 
reaction was detected in the control group (Fig. 4).

Table 3  Effect of ATR and LC on gene expression of apoptotic path-
way genes

One-way ANOVA
Sd standard deviation
NS non-significant
* Significant(P < 0.001)
a Versus control
b Versus treated
N number

Parameter Control
N = 10

ATR treated 
N = 10
Mean ± sd

Protected 
N = 10
Mean ± sd

P value

Bax 1.0 4.31 ± 0.53ª 1.87 ± 0.29a,b  < 0.001*
Bcl-2 1.0 0.228 ± 0.03 0.858 ± 0.07b  < 0.001*
Caspase-3 1.0 6.14 ± 1.07ª 2.88 ± 0.47a,b  < 0.001*
Bax/Bcl-2 Ratio 1.0 19.5 ± 4.5 2.2 ± 0.47  < 0.001*
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Fig. 1  H&E-stained liver tissue sections at 400 × magnifications from 
all groups showing normal hepatocytes (arrowhead) arranged in cords 
radiating from the central vein (cv) and entrapping normal blood 
sinusoids (black thick arrow) between the cords. Components of the 
portal tract, portal vein (pv), hepatic artery (ha), and bile duct (black 
star) appear normal in control group (A and B). ATR-treated group 
(C and D) shows dilated congested central (ccv) and portal (cpv) 
veins, pyknotic nuclei (curved arrow), and vacuolated cytoplasm (red 

arrow) of hepatocytes, fibrosis (wavy arrow) around the portal vein, 
and formation of new bile ductules (red star). The protected group (E 
and F) shows restoration of the normal liver structure with slight dila-
tation of the central (cv) and portal (pv) veins and hepatic sinusoids 
(thick red arrow), pyknotic nuclei (curved arrow) of hepatocytes, 
fibrosis (wavy arrow) around the portal vein, and new bile ductule 
(red star)

Fig. 2  Masson’s trichrome-
stained liver tissue sections at 
400 × magnifications showing 
the distribution of collagen 
fibers (arrow) around the portal 
tract which is normally distrib-
uted in the control group (A), 
markedly increased around the 
vessels in ATR-treated group 
(B), and slightly increased in 
the protected group (C). Chart 
shows morphometrical analysis 
of area percentage of collagen 
fibers (D)
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Morphometrical results

Area (%) of collagen fibers and GFAP immunoreactivity in 
the ATR-treated group showed a statistically significant dif-
ference compared with the control (Table 4) and protected 
groups (Figs. 2D and 4D).

Discussion

ATR is a widespread herbicide used to promote growth in 
maize, pineapple, sorghum, sugar beet, and cereal crops. 
It has a half-life of 95–350 days and is not decayed. For 
many years, ATR residues, its metabolite deethylatrazine, 

Fig. 3  No mast cells were 
noticed in the control group (A). 
Toluidine blue-stained liver tis-
sue sections at 400 × magnifica-
tions showing heavy infiltration 
of mast cells (arrow) around the 
portal tract in the ATR group 
(B) compared with protected 
groups (C)

Fig. 4  GFAP-immunostained 
liver tissue sections at 
400 × magnifications showing 
positive reaction (arrow) which 
is minimal in the control group 
(A), marked in ATR-treated 
group (B), and moderate in 
the protected group (C). Chart 
shows morphometrical analysis 
of GFAP positive stained area 
percentage (D)
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and other metabolites have polluted soil and water (Singh 
et al. 2008). Therefore, ATR poisoning is inevitably causing 
neurologic, immunological, and cardiac dysfunction, skin-
related diseases, and respiratory problems (Jestadi et al. 
2014). Moreover, adult ATR abuse has been associated 
with various non-lymphoma cancers, and premature birth 
and intrauterine growth retardation have been correlated 
with the presence of ATR in drinking water. The glandular 
(hormonal) system and the liver are the primary targets of 
ATR in humans and livestock (Abarikwu 2014).

In the present study, the ATR-treated group had sig-
nificantly higher AST and ALT levels compared with the 
control group and protected groups. This contrasted with 
findings of Campos-Pereira et al. (2012), who found no 
considerable increase in serum ALT levels, implying that 
the necrotic zone observed in the histologic examina-
tion was insufficient to induce a significant increase in 
ALT levels. However, our findings were consistent with 
those of Jestadi et  al. (2014), who found a significant 
increase in AST and ALT activity in rats treated with ATR 
(300 mg kg/BW) compared with the control group. The 
current study’s observed increase in ALT was particularly 
associated with ATR-induced liver cell damage (Konstan-
tinova and Russanov 1999). The increased serum AST is 
thought to be related to ATR-induced mitochondrial dam-
age caused by reactive oxygen species (ROS) (Zilva et al. 
1988).

In this study, signs of necrosis were seen as weak pyk-
notic nuclei, which were also seen in rats given chlorpyrifos 
for 4 weeks (Ezzi et al. 2016). According to Campos-Pereira 
et al. (2012), necrosis is caused by cellular breakdown, 
which is characterized by organelle swelling and disturbed 
cytoplasm, followed by nuclei shrinkage and collapse. To 
confirm these results, the mechanism of ATR-induced cell 
death was investigated. Two genes known to participate in 
apoptosis are Bcl-2 and Bax; these genes are either actively 
or passively associated with ROS metabolism (Ye et al. 

1999) and are also required for the induction of apoptosis 
(Polyak et al. 1997). The present study evaluated the impacts 
of ATR and LC on the expression of Bcl-2 and Bax, and the 
outcomes of this experiment showed that the expression of 
Bax in ATR-treated rats was significantly increased com-
pared with the control group, while the expression of Bcl-2 
in ATR-treated rats was significantly decreased compared 
with the control group. These results confirm that ATR 
enhances the expression of apoptotic genes and accelerates 
the process of apoptosis, eventually leading to impaired liver 
function. Moreover, the changes in Bax and Bcl-2 expression 
result in a high Bax/Bcl-2 ratio, which is a significant factor 
in determining cell vulnerability to apoptosis. Thus, ATR-
induced apoptosis is regulated by a harmony of apoptosis-
enhancing and apoptosis-inhibiting molecules.

Additionally, caspase-3 gene expression was found to be 
significantly increased in the ATR-only treated group. This 
was confirmed by similar observations by Abarikwu and 
Farombi (2015), who investigated the effects of ATR on 
human neuroblastoma (SHSY5Y) cells, and Morgan et al. 
(2019), who evaluated the modulatory role of glycyrrhizic 
acid susceptibility against harmful impacts of ATR in the 
rabbit spleen.

SOD, CAT, and GPx are antioxidant enzymes that guard 
against peroxidation by transforming free radicals or reac-
tive oxygen intermediate products to non-radical products 
(Montilla et al. 1998). SOD acts as an initial protective bar-
rier against oxygen-derived oxidative stress, reducing cell 
damage through  O2

− dismutation (Fujii et al. 2003). In this 
study, it was discovered that there was a considerable rise 
in SOD activity in ATR-treated rats when compared with 
non-treated rats. The elevation in SOD activity following 
ATR treatment seems to be an adaptation in response to the 
enhanced production of free radicals. Animals exposed to 
xenobiotics have been shown to have increased SOD activity 
in a variety of tissues (Wafa et al. 2013). In contrast, other 
studies observed that elevated SOD levels in the hepatic 

Table 4  Percentage of collagen 
fibers and area stained positive 
with GFAP% of different 
studied group

One-way ANOVA
Sd standard deviation
NS non-significant (P > 0.05)
* Significant (P < 0.05)
a Versus control
b Versus treated
N number

Parameter Control group 
N = 10
Mean ± sd

ATR treated 
N = 10
Mean ± sd

Protected 
N = 10
Mean ± sd

P value

Collagen fibers area percentage 9.13 ± 1.7 20 ± 1.15a 11.5 ± 1.3a,b  < 0.001a*

GFAP percentage area 9.5 ± 0.46 22.7 ± 1.8a 13.4 ± 0.79a,b  < 0.001a*

 < 0.001b*
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tissue of ATR-exposed rats were not statistically significant 
when compared with control rats (Jestadi et al. 2014).

MDA is an oxidative stress marker that can be used to 
assess the redox balance of healthy and damaged tissues 
(Marrocco et  al. 2017). In this study, exposure to ATR 
caused an increase in MDA production that was significantly 
higher in ATR-treated and protected groups compared with 
control animals, thus indicating lipid peroxidation. Despite 
this finding, using LC in the protected group led to a sig-
nificant decrease in MDA level compared with the toxic 
level in the ATR-only treated group, indicating decreased 
lipid peroxidation, which was consistent with the studies 
conducted by Nwani et al. (2010), Bhatti et al. (2011), and 
Campos-Pereira et al. (2012).

Histological results in this work revealed histological 
alterations in ATR-treated hepatocytes in the form of cel-
lular degenerative changes and vacuolization. These findings 
were consistent with those of Campos-Pereira et al. (2012), 
who administered an ATR aqueous suspension at a dosage of 
400 mg/kg/day orally to mature male Wister rats for 14 days. 
These effects were also noted in mice treated with 200 mg 
ATR for 28 days (Batool et al. 2021). The accumulation 
of lipids in cytoplasmic vesicles is known as cytoplasmic 
vacuolation, but it has also been proposed that vacuolar pro-
duction is a defensive cellular response to toxic substances 
designed to reduce cellular metabolism (Bourne 2012).

In the current study, engorged central veins and enlarged 
congested liver sinusoids were observed. This concurred 
with Lin et al. (2016), who discovered central vein hyper-
emia, as well as hepatic sinusoids in quail exposed to differ-
ent dosages of ATR, with increasing damage as the dosages 
increased. Furthermore, Sena et al. (2021) discovered bal-
looning and congestion of liver cells in frog livers exposed 
to ATR, with exacerbation of the damage with higher ATR 
concentrations.

Using toluidine blue staining, the current study dis-
covered increased mast cell infiltration around the portal 
tract after ATR treatment that copes with Mizota and Ueda 
(2006) who reported that ATR induces some inflammatory 
effects mediated by mast cell degranulation that may serve 
as additional warnings of the ecological problems. Also, it 
was consistent with the findings of Deshmukh and Ramteke 
(2015), who discovered prolonged intercellular inflamma-
tion, lymphocytes, and eosinophil invasion in rats given 
ATR for 120 days. This could be due to oversensitivity to 
ATR or inflammatory responses.

In this study, many collagen fibers were detected around 
the portal zone identified by Masson’s trichrome stain in 
ATR-only treated rats. This may be related to the observed 
inflammatory cellular penetration. Morphometric data veri-
fied this observation, revealing a considerable rise in col-
lagen area percentage in the ATR group compared with 
the control group. This could result from mitochondrial 

dysfunction and weakness caused by ROS and lipid peroxi-
dation agents, which can result in cell apoptosis and necro-
sis, as well as amplification of a pathway contributing to 
fibrosis and collagen production (Duval et al. 2014).

ATR-induced tissue toxicity is caused by a multitude 
of mechanisms. It may result in an increase in ROS, caus-
ing oxidative stress and compromising energy metabolism 
(Thompson and Al-Hasan 2012). An elevation in the expres-
sion of Slc27a5, which codes for the fatty acid transporter 
protein 5, was also linked to ATR. This gene is present solely 
in the liver and is implicated in fatty acid intake, which can 
lead to the formation of triglycerides in the organ (Gimeno 
2007). There were also increases in low-density lipoprotein 
receptor expression in embryos exposed to ATR prenatally, 
a protein that transports low-density lipoproteins into liver 
cells (Harper et al. 2020).

Hepatic stellate cells (HSC) (perisinusoidal cells) are type 
of cells that serve as the foundation for GFAP immunohis-
tochemical detection. Expression of GFAP was reported in 
quiescent stellate cells in vivo, with an increased expression 
in the acute response to injury in rats and a downregulation 
in chronic cases (Morini et al. 2005). This study’s ATR-
treated group had much higher immunological expression 
of the HSC marker GFAP than the control and protected 
groups. According to some researchers, GFAP development 
in the liver is associated with hepatic fibrosis and inflam-
matory cellular invasion, since stimulated HSC release 
cytokines which drive inflammatory cells. Additionally, sev-
eral authors have found that HSC stimulation is linked to the 
involvement of ROS and oxidative stress in promoting the 
development of proinflammatory and profibrotic molecules 
(Hassan et al. 2018).

L-carnitine (LC) is a conditionally required amino acid 
that is synthesized in kidneys, the brain, and hepatocytes 
from the amino acids methionine and lysine but is mostly 
obtained through food (Cave et  al. 2008). It transports 
long-chain fatty acids across the mitochondrial membrane, 
permitting the discharge of oxidative energy (Hassan et al. 
2015; Gao et al. 2017). Since it is produced in the liver and 
has a role in the transfer of fatty acids, it has been employed 
frequently in investigations of liver fibrosis (Demiroren et al. 
2014). This study showed that LC has both protective and 
therapeutic effects on AST and ALT, as the results showed 
a decrease in ALT and AST levels in the protected group 
compared with the ATR-treated group. This was in agree-
ment with Karabulut et al. (2021), who recommended the 
use of LC to prevent the process of irreversible liver damage.

Additionally, LC guards against oxygen-free radical dam-
age to DNA and cell membranes (Makker et al. 2009). The 
study also found that the group protected by LC had higher 
Bcl-2 expression and lower Bax expression. This finding 
implies that LC can decrease the harmful effects of ATR 
and decrease the production of genes that promote apoptosis, 
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such as Bax. This finding concurs with Cankorkmaz et al. 
(2009), who hypothesized that LC would speed up the heal-
ing of testicular damage in mice by lowering apoptosis. 
Additionally, LC prevented the apoptosis of germ cells dur-
ing radiation therapy, according to Altun et al. (2014), who 
studied the antiapoptotic impact of the compound on the 
testicular tissue of mice exposed to gamma radiation.

Finally, this study discovered that LC contributed to the 
restoration of normal histological structure in the liver, with 
minor dilation of the central and portal veins, hepatic sinu-
soids, and hepatocyte degeneration, and enhanced antioxi-
dant enzymes. These findings concurred with Koohpeyma 
et al. (2021), who found that LC decreased oxidative stress, 
kidney morphological alterations, and the probability of 
apoptosis generated by monosodium glutamate.

Conclusion

Exposure to ATR resulted in detrimental functional and 
structural alterations in the livers of albino rats. Significant 
elevation of liver enzymes and oxidative parameters, altered 
expression of apoptotic and antiapoptotic genes, hepatic 
degenerative changes, and strong immunoreactivity to 
GFAP were all indicative of the oxidative, inflammatory, and 
apoptotic mechanisms mediated by ATR. LC demonstrated 
a noticeable ameliorative effect on ATR-induced hepatotox-
icity, mostly via potent antioxidant, anti-inflammatory, and 
antiapoptotic properties.
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