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Abstract
The building of population pharmacokinetic models can be described as an iterative process in which given a model and a

dataset, the pharmacometrician introduces some changes to the model specification, then perform an evaluation and based

on the predictions obtained performs further optimization. This process (perform an action, witness a result, optimize your

knowledge) is a perfect scenario for the implementation of Reinforcement Learning algorithms. In this paper we present

the conceptual background and a implementation of one of those algorithms aiming to show pharmacometricians how to

automate (to a certain point) the iterative model building process.We present the selected discretization for the action and

the state space. SARSA (State-Action-Reward-State-Action) was selected as the RL algorithm to use, configured with a

window of 1000 episodes with and a limit of 30 actions per episode. SARSA was configured to control an interface to the

Non-Parametric Optimal Design algorithm, that was actually performing the parameter optimization.The Reinforcement

Learning (RL) based agent managed to obtain the same likelihood and number of support points, with a distribution similar

to the reported in the original paper. The total amount of time used by the train the agent was 5.5 h although we think this

time can be further improved. It is possible to automatically find the structural model that maximizes the final likelihood for

an specific pharmacokinetic dataset by using RL algorithm. The framework provided could allow the integration of even

more actions i.e: add/remove covariates, non-linear compartments or the execution of secondary analysis. Many limitations

were found while performing this study but we hope to address them all in future studies.
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Introduction

Population pharmacokinetic (pop-PK) modeling is a fun-

damental task in drug development and use. The culmi-

nation of the task is to choose the most informative or

trusted model from a set of best-fit models on the dataset.

Finding a set of best-fit models is typically done via trial

and error, guided by both the experience obtained modeling

similar drugs and the most recent trials of the current

modeling task. Although the chosen model must satisfy

both quantitative and qualitative measures of goodness of

fit, the process of fitting any model to the dataset is purely

quantitative. This work explores using only quantitative

measures to develop a small set of best-fit models for

pharmacometric consideration.

In non-parametric pop-PK no assumption is made

regarding the family of statistical distributions from which

model parameters are drawn; thus, the pop-PK modeling

task requires searching for both best-fit model structure and

best-fit model parameter ranges.

Optimization of Pop-PK model often relies on a trial-

and-error phase in which the modeler makes a change on

the model, fits it again and then evaluate the results

obtained and decide if further changes need to be made. By

restricting the decision making during this trial-and-error
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phase to only quantitative elements we intend to allow the

pop-PK task to be rewritten as a reinforcement learning

algorithm.

More than presenting a solution, this article seeks to

conceptually introduce pharmacometrists of all training

levels to the implementation of their own solutions using

this type of algorithm. This is the reason why we expand on

the presentation of the concepts related to the construction

of the reinforcement learning algorithm, we want this

article to also serve as an introduction to the topic for

pharmacometrists who are not yet involved with machine

learning.

Here, we report the initial implementation of an auton-

omous algorithm using Reinforcement Learning that can

guide or independently perform sections of the non-para-

metric pop-PK model selection process. Providing a tool

that relieves the modeler of some of the burden of model

selection, particularly early in the iterative process, allows

more efficient use of time to promote and leverage the

pharmacometrician’s creativity and insight during the pop-

PK task.

Theoretical

Pharmacometricians execute a sequential design process.

Each step has three conceptual parts: the data is compared

to the current model predictions and a hypothesis is

formed, a model is constructed, and an optimization per-

formed. This is repeated until comparison of data and

model prediction is satisfactory. The iterations of this

sequence are an informed exploration of potential models.

In this work, we remove hypothesis formation (which

requires human intelligence) and determine new models at

each iteration step based solely on optimization perfor-

mance of the current model (and without human

intervention).

Since optimization performance is one of many potential

metrics of how informative a model is on the data, the need

for human intelligence is not alleviated, but the initial (and

usually most time-consuming part of the pharmacometri-

cian’s task) is automated: that is, given a small set of

parameterized models, find the best fit on the data.

The task of determining, from a set of ’’best-fit’’ models,

which is the most informative to the specific question asked

of the modeler is one that cannot be answered solely

through automated design because unlike the question of

best fit, which has a true metric, the question of most

informative also relies on qualitative assessment, in the

case of maximum likelihood methods this metric is the

likelihood or one of its transformations (log-likelihood,

Akaike Information Criterion, Bayesian Information

Criterion,...).

Pharmacokinetic models

Pharmacokinetics (PK) is the study of the absorption, dis-

tribution, metabolism, and elimination processes of a drug

in the body and the mathematical equations to model these

processes. In pop-PK, the usual way to represent these

systems is by compartmental models. A compartmental

model is a mathematical construction in which the body is

represented as a set of ’’interconnected tanks’’. Drug flows

between the tanks and is assumed to be instantly and

evenly distributed within each of these tanks.

Tanks which correspond to measured drug concentra-

tions are assigned a volume vi to relate the amount of drug

inside it Xi to the concentration. The connections that

dictate drug mass transfer between the environment and

tanks and between tanks are typically represented by a rate

kij , where i is the originating tank and j is the destination,

and 0 can be used to represent the environment. An alter-

native parameterization of mass transfer is clearance terms

describing drug-containing volumes, e.g., Clij or Qij.

Simple PK models without pharmacodynamic (PD)

outputs usually contain one to three compartments [14],

depending on the need to describe absorption from

extravascular drug administration (e.g. oral) and/or linear

or non-linear decline of log-transformed drug concentra-

tions with respect to time after dosing. It is important to

highlight that pop-PK modeling is usually empiric in that

equations are derived to mathematically fit the shape of the

concentration-time profiles without regard to underlying

mechanistic reasons for the shapes of the profiles. While

understanding of anatomy or physiology can inform choice

of compartments and types of transfers, detailed mathe-

matical equations with large numbers of parameters to

describe such processes are characteristic of a physiologi-

cally based PK (PBPK) approach and not a pop-PK

approach [13]. Little physiology is associated with non-

PBPK models, except for the systemic concentration in the

central compartment [6].

Equations (1) and (2) are the analytic solution for one

and two compartments models respectively, adapted from

[4]:

XðtÞ ¼ Xð0Þe�ke:t þ R

ke
ð1� e�ke:tÞ ð1Þ

XcðtÞ ¼
Xcð0Þ
k1 þ k2

ððk1 � kpcÞe�k1:t

� ðkpc � k2Þe�k2:tÞ þ R

k1 þ k2

ðk1 � kpcÞ
k1

ð1� e�k1:tÞ
�

�ðkpc � k2Þ
k2

ð1� e�k2:tÞ
�

ð2Þ

with
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k1; k2 ¼

ðke þ kcpþ kpcÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðke þ kcpþ kpcÞ2 � 4kekpc

q
2

ð3Þ

Non-parametric maximum likelihood methods

Our laboratory has long favored non-parametric (NP) pop-

PK methods. The mathematical requirements for applying

likelihood as a guiding metric for NP-PK model develop-

ment were first completely expressed by [10]. Mallet’s

paper relates likelihood and optimal design theory in the

context of PK. One conclusion is the maximum likelihood

(ML) solution is a number of discrete, weighted support

points less than or equal to the number of subjects.

Thus, algorithms that rely on likelihood to guide model

development maximize equation

Lðw;/Þ ¼
YN
i¼1

XK
k¼1

wkpðYij/kÞ ð4Þ

with respect to the support points / ¼ ð/1; . . .;/KÞ and

weights w ¼ ðw1; . . .;wKÞ such that /k 2 H;wk � 0 for

k ¼ 1; . . .;K, K �N and
PK

k¼1 wk ¼ 1. Bender’s decom-

position is often invoked to allow the above optimization to

be carried out in two parts, optimization of support point

placement and optimization of their weights [2]. The dis-

tribution that maximizes equation (4) is a consistent esti-

mator of the true mixing distribution; which means that it

will converge to the true distribution if the number of

subjects is large. This was proved by [7].

By construction, NP methods converge to a local opti-

mal solution given the search space boundary, initial esti-

mated support point locations and the error function of the

associated regression model. Over 20 years ago, LAPKB

developed the Non-parametric Adaptive Grid (NPAG)

algorithm [16] and recently the faster Non-parametric

Optimal Design (NPOD) algorithm [8].

In this work, NPOD is initialized using a Sobol sequence

of 51 elements within the input boundary, and the error is

fixed to be constant. An interior point method (IPM) is used

to find the weights of each point such that the likelihood is

maximized. The support points with high probability are

saved as the initial support.

NPAG

NPAG is a iterative grid search algorithm, that uses a grid

expansion/contraction add extra support points to the pool

f/kg, then, by determining pðYijf/k þ /extragÞ, applies a

primal-dual interior point algorithm to choose the best N-

or-less supports from this pool, consistent with equation

(4); f/k þ /extrag ! f/kþ1g. The algorithm ends when no

improvement can be found. NPAG was first introduced by

Leary [8] and details of the algorithm are found in [16].

NPAG and NPOD differ in their method for determining

the extra support points given the current support.

NPOD

The initial set of support points are saved as an ’’anchor’’

set. Each support point is allowed to move in turn, leaving

all other points in the anchor at their position. Usually a

Nelder-Mead algorithm is applied to move the points, and

likelihood is used as the objective during movement. The

resulting ’’optimal’’ points are now added to the anchor set,

the IPM is applied, and the less likely points are removed.

This procedure is repeated to convergence. Details about

the NPOD algorithm are about to be published elsewhere,

but the general idea is presented in this poster by Leary

et al. [8].

Machine learning tools

Markov decision process

Markov Decision Process (MDP) is a framework to define

decision-reward based problems. The decision maker is

called agent, this agent interacts with the environment,

changing the environment’s state and receiving a reward.

The MDP framework proposes than any goal-directed

problem can be reduced to three elements that are being

interchanged between an agent and an environment: the

choice made by the agent action, the environment’s state

and the reward that indicates the agent if it’s reaching its

goal [15]. The sequence of actions is taken until receiving a

termination signal is called an episode.

The agent interacts with the environment in discrete

time steps, on each step the agent has access to pool of

actions a 2 A and can select one to perform. After this the

environment gives the agent a new observation and a

reward associated r 2 R � R. An observation is a (partial)

representation of the environment’s state s 2 S. A MDP

can be defined by the quintupleM ¼ hS;A;P;R; i [9] where
P are the transition probabilities and c is the discount

factor, these concepts are going to be defined later in this

document.

In the pharmacokinetic modeling case the agent would

be the pharmacometrician, the environment is the software

where he is modeling his PK data with, the actions would

be the decisions he makes to fit the model and the reward

would be a quantity he uses to evaluate the fitness of his

model. The termination signal would be the moment when

the pharmacometrician realizes that his criteria is met or
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that the model is good enough an decides to stop the

modeling process. Figure 1 represents the PK optimization

problem defined by a dataset and a pool of models in terms

of the RL framework.

Reinforcement learning

Reinforcement Learning (RL) is one of the three main

branches of machine learning. It is defined by a set of tools

that aim to train different kind of agents over an MDP in

how to take decisions to maximize the total expected

reward on a defined time horizon.

A critical problem that needs to be addressed in RL is

the trade-off between exploration and exploitation. In an

ideal scenario an agent would prefer to exploit actions that

have proven to return a high reward, but in order to obtain

that knowledge the agent has to explore them or similar

actions before . In their introduction to RL [15] expresses

that the equilibrium between exploration an exploitation is

an open problem that for example does not need to be

addressed in supervised or unsupervised learning.

This way of learning is very reminiscent of the way

living beings learn. Taking actions, analyzing the conse-

quences and internalizing the results to make better deci-

sions in the future, while taking into account the balance

between making safe decisions to get an ensured reward or

when to explore new options. And because these RL-driven

agents does not have the time, computational capacity or

memory constraints humans do, they will end up evaluating

sequences of actions that might not be obvious to a modeler

from the very beginning.

Other RL concepts

– The future reward Gt also known as return is the total

sum of discounted rewards in an infinite time horizon

Gt ¼ Rðtþ1Þ þ c � Rðtþ2Þ þ � � � ¼
P1

k¼0 c
k � Rðtþkþ1Þ.

– The discount factor c 2 ½0; 1	 describes how much the

algorithm is going to value future rewards versus

present ones, the closest to 1 the most importance the

algorithm is going to give to future rewards.

– Learning rate a is a hyper parameter that defines how

fast we want the agent to learn, a learning rate of 0

means that the agent is not going to learn any new

information and a learning rate of 1 means that the

agent is going to prioritize the new information over the

old.

– The agent’s policy pðsÞ, that describes the best action to
take in a given state to maximize this total sum of

rewards. This policy can be deterministic pðsÞ ¼ a or

stochastic pðajsÞ ¼ Pp½A ¼ ajS ¼ s	.
– The value of an state VpðsÞ is defined as the total sum of

rewards the agent will get if it is in the state s and then

follows the policy p until termination.

VpðsÞ ¼ Ep½GtjSt ¼ s	.
– The value of an state-action pair Qpðs; aÞ similarly to

VpðsÞ is the total sum of rewards the agent might obtain

if it is in the state s, but in this case it is going to take

action a and then follow the policy p.
Qpðs; aÞ ¼ Ep½GtjSt ¼ s;At ¼ a	.

– On-policy and off-policy distinguish between to differ-

ent kinds of RL algorithms, in the former the agents is

trained by using trajectories that follow the agent’s

policy, in the latter the agent learns a different policy

Fig. 1 PK Optimization

problems in terms of RL. RL
Reinforcement learning, Pk
Pharmacokinetic, St State at

time t, Rt Reward at time t, At
Action at time t
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that the one it is actually following in the training

process.

– Model-based RL is the subset of algorithms the

transition probabilities P and rewards R are known

beforehand. And finally, model-free RL defines the

algorithms in which the learning process is independent

of P and R. The latter is the case in the pharmacokinetic

model building process. Have in mind that P and R are

two of the 5 elements that defines the MDP problem.

The end goal of RL is to train the agent into maximize the

total sum of discounted rewards, for finite MDPs this

means finding the optimal policy p�. This policy is defined

as vp� ðsÞ� vpðsÞ for all s 2 S. In the same way the state-

action pair for an optimal policy can be expressed as fol-

lows, adapted from [15]:

Qp� ðs; aÞ ¼ E½Rtþ1 þ cvp� ðStþ1ÞjSt ¼ s;At ¼ a	 ð5Þ

Because of this relationships, there are two different

approach to maximize this total sum of discounted rewards.

In value learning methods the goal is to train the agent to

learn vpðsÞ or Qpðs; aÞ. Or in policy learning methods when

the agent looks to infer p directly.

Dynamic programming

Dynamic Programming (DP) refers to the set of algorithms

used to solve optimization problems by dividing it up into

multiple sub-problems each of them can be optimized

independently by computing an optimal policy. This is

what Bellman calls the ’principle of optimality’, in his

words: ’’an optimal policy has the property that, whatever

the initial state and initial decisions are, the remaining

decisions must constitute an optimal policy with regard to

the state resulting from the first decision’’ [1].

The central idea of DP is to use value functions to

organize the search of better policies, this is done in three

steps: policy evaluation, policy improvement and policy

iteration to find a vpðsÞ or Qpðs; aÞ that satisfies the Bell-

man’s optimality Eq. (6), for the value version of this

equation and a more in deep explanation of these topics

refer to [15]

Qp� ¼
X
s0;r

pðs0; rjs; aÞ½r þ cmax
a0

Qp� ðs0; a0Þ	 ð6Þ

One property of interest of DP methods is that they update

their estimates of the value-action pairs using the values of

their successor as is evident in (6), this idea is called

bootstrapping. By using this concept RL algorithms are

able to backward propagate the information about good

state-action pairs to the beginning of the episode.

Monte Carlo methods

Monte Carlo (MC) methods in RL are used to estimate the

value functions and by this discovering optimal policies,

unlike DP algorithms MC methods does not need to know

the transition probabilities or reward accurately before-

hand. Monte Carlo methods relies on the exploration of a

real or virtual environment, acquiring experience by sam-

pling sequences of actions, states and rewards on multiple

episodes. A difference between Monte Carlo methods with

DP is that the former only adjust rewards at the end of each

episode, this imposes a set of restrictions: each episode

must terminate no matter the sequence of actions taken and

they average complete returns, it is not possible to learn

from partial results and they not bootstrap.

A benefit MC methods offer over DP that is specially

relevant in the population pharmacokinetic model selection

process is the fact that they can learn how to behave

optimally just by analyzing these exploration steps over the

environment, in other words, it would be possible to cap-

ture the state-action-sequence taken by an expert and

introduce that knowledge to the agent directly.

To guarantee convergence in this random exploring

process, MC methods implements greedy policy, that is the

one that for each s 2 S chooses the action that has the

maximal action-value, theorem presented in (7) is bor-

rowed from [15] and shows how by having a greedy policy

the algorithm can guarantee that in a given step k pkþ1 is

going to be as good or better than pk.

pðsÞ _¼ argmax
a

Qðs; aÞ

Qpkðs; pkþ1ðsÞÞ ¼ Qpkðs; argmax
a

Qpkðs; aÞÞ

¼ max
a

Qpkðs; aÞ

�Qpkðs; pkðsÞÞ

� vpkðsÞ:

ð7Þ

The main problem is the fact that the agent needs to

explore and take random actions in order to acquire

experience but it also needs to take greedy actions to be

able to converge, obtaining equilibrium between these two

divergent behaviors is a key aspect of Reinforcement

Learning algorithms. One way to do it is by using �-greedy

policies, this mean that that the agent is going to balance

exploration and exploitation by taking a greedy action with

a probability 1� �þ �
jAðsÞj and all non greedy actions with a

probability �
jAðsÞj each one.
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Temporal difference reinforcement learning

Temporal Difference (TD) learning is the combination of

Monte Carlo and Dynamic Programming ideas. TD can

learn from raw experience like MC and can also bootstrap

the information like DP. A key difference between MC and

TD methods is that the latter does not need to wait until the

end of the episode to update Qpðs; aÞ, as they update the

state-action pair after each time step.

In summary, the main characteristics of TD algorithms

are:

– They do not require previous knowledge of the model

(model free).

– They can be implemented in an incremental way.

– They do not need to wait until the end of the episode to

learn.

– The exploration is not penalized as bad as other

algorithms.

SARSA

SARSA (State-Action-Reward-State-Action) is an on-pol-

icy TD algorithm, as in other on-policy algorithms its goal

is to estimate the value matrix Qpðs; aÞ for all states s and
actions a, following an �-greedy policy p. This is done by

taking the quintuple ðst; at; rtþ1; stþ1; atþ1Þ and updating

Qpðs; aÞ after every transition from st to stþ1 using Eq. (8) a

modified version of Bellman’s equation .

Qðst; atÞ ¼Qðst; atÞ þ aðrtþ1

þ cQðstþ1; atþ1Þ � Qðst; atÞÞ
ð8Þ

The general idea of the SARSA algorithm is to bootstrap

future information our policy p could provide while

evaluating present rewards, how relevant each of those

elements is going to be, is controlled by the parameters c
and a respectively. The final algorithm used to train the

agent in this paper is an interpretation made by Sutton and

Barto [15] of the original work by G. Rummery and M.

Niranjan [12] and presented in Algorithm 1

Because the final goal of SARSA is to estimate Qpðs; aÞ,
this imposes some limitations, in this case the most rele-

vant is that both the state space S and the action space A

should be finite and discrete. This is because the conditions

of convergence Monte-Carlo methods imposes and the

general assumptions of the algorithm. We explain our

approach to overcome those limitations.

Methods

Data and models

We analyzed the behavior of the SARSA using a previ-

ously published dataset. In this scenario, the simulated

population was initially described by [11] and modeled

using NPAG. The dataset was of interest because it

included a combination of unimodality, bimodality and

outliers to test the RL agent and also because it is a sim-

ulated dataset, we knew the original distribution. For this

exercise we restricted the structural models to one and two

compartments, i.e., Eqs. (1) and (2). The coefficients of the

error polynomial were fixed to the original values. No

covariates were included in this analysis.

Action space

The regular search space for a parameter is defined by its

lower and upper limit. The upper and lower limit for each
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of the limits could be increased or decreased. This means

that the agent would have four actions per parameter plus

one action to switch between models. This means that

when the agent is trying to fit (1) with two parameters, it

would have 9 actions, but if the agent is trying to fit (2)

with four parameters, it would have 17 actions. Lists (3.2)

and (3.2) enumerate both sets of actions.

1. Increase lower bound of ke.

2. Increase upper bound of ke.

3. Increase lower bound of v.

4. Increase upper bound of v.

5. Decrease lower bound of ke.

6. Decrease upper bound of ke.

7. Decrease lower bound of v.

8. Decrease upper bound of v.

9. Switch to 2 compartments.

List 1 Available actions for a one compartment model

To overcome the limitation of a discrete action space

SARSA imposes, we decided to define discrete increase

step size to 1
10
¼ 10% and in order to guarantee consistency

between opposing actions and by this making finite the

action-state space, the decrease step size was fixed to
1
11

 9:1%.

1. Increase lower bound of ke.

2. Increase upper bound of ke.

3. Increase lower bound of v.

4. Increase upper bound of v.

5. Decrease lower bound of ke.

6. Decrease upper bound of ke.

7. Decrease lower bound of v.

8. Decrease upper bound of v.

9. Increase lower bound of kcp.

10. Increase upper bound of kcp.

11. Increase lower bound of kpc.

12. Increase upper bound of kpc.

13. Decrease lower bound of kcp.

14. Decrease upper bound of kcp.

15. Decrease lower bound of kpc.

16. Decrease upper bound of kpc.

17. Switch to 1 compartment.

List 2 Available actions for a two compartments model

State definition

Given the limitation of having a discrete state, the actual

parameters ranges values does not really matter, we just

need a key to differentiate different states based on the

current value of the ranges and the number of compart-

ments used.

The strings defined in 9, describe the state definition in

the one and two compartments scenarios used to index

Qpðs; aÞ. " and # represent the upper and lower bound

respectively.

001 : f# ke; # v; " ke; " vg00

002 : f# ke; # v; # kcp; # kpc; " ke; " v; " kcp; " kpcg00
ð9Þ

Reward

The reward was defined as follows, each Maximum Like-

lihood method return a log-likelihood at the end of each

run, for the first run in each episode the reward is going to

be equal to the likelihood achieved by taking the first

action. Consequent rewards will be calculated as the dif-

ference between the current obtained likelihood and the

previous one DLL. This was done this way to prevent the

total sum of discounted rewards to be dependant on the

number of steps in each episode.

We defined our reward function this way because of

another implementation detail. Given the nature of this this

reward definition, any improvement over the last reward

obtained is going to be coded as a positive reward, the

opposite is also true with negative rewards. Because we

defined the initialization Qðs; aÞ ¼ 0, each time the �-

greedy policy selects to take a greedy action in a poorly

explored state, there is going to be a preference to take non-

previously explored actions (with reward 0) over previ-

ously non-effective actions taken (with a negative reward).

RL parameter configuration

SARSA was configured using the following parameters:

a ¼ 0:9, c ¼ 1, � ¼ 1=episode,#episodes ¼ 1000, and a time

horizon of 30 actions per episode, thus a theoretical max-

imum total of 30.000 calls to NPOD. The initial state for

the environment is: 2 compartments model with

ke ¼ ½0:001; 2	, v=[125, 625], kcp ¼ ½0:001; 10	, kpc ¼
½10; 100	 and an initial reward of 0. That initial condition is

on purpose deviated of the real position of the simulated

subject’s real parameter values: ke ¼ ½0; 1	, v=[50, 200]

using one compartment model.

Evaluation of performance

The results obtained will be evaluated in multiple ways,

being the most important one the final likelihood obtained

(giving that this is the way the reward was encoded). Even so

the final number of support points, the shape of the distri-

bution and more technical elements like the total amount of

time spent in the training will be taken into consideration.
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Results

Implementation

The final implementation is composed of different pieces in

different programming languages, we are using the fortran

implementation for the interior dual point method [16]

included in the Pmetrics R package [11]. That code was

compiled into a shared library used by our new imple-

mentations of the NPOD algorithm using the julia pro-

gramming language [3].

The NPOD package was imported from julia into python

to be used in the environment class, this class contains all

the logic to manage the actions, state and observations

generations and reward calculation when taking the

actions. Finally, SARSA was implemented in python

altogether with some other utilities to keep track on the

changes of the reward, execution times and error catching.

A package diagram of the whole implementation is pre-

sented in Fig. 2

Learning

The total sum of rewards over each episode is presented on

the Fig. 3, it is important to clarify that each step of an

episode is a full run of the proper algorithm it is working

with. It is clear how this total sum of rewards is increasing

over time as the agents were collecting experience and

started taking greedier actions.

Although the program was parameterized to perform 30

steps per episode, this might not be always the case, if in its

exploration phase the agent takes actions in which the

Fig. 2 Package diagram of the

RL implementation. Dotted

arrows notate package

dependencies. Requirements for

a Functional PopPk RL System
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search space doesn’t contain a good density of support

points the programs could basically return an error. In this

case the reward would be hardcoded as -20.000 and the

episode would end.

This is the reason in both figures we see less than 1000

episodes in the x-axis. We found that this behaviour par-

ticularly common when the agent switched from one to two

compartments, given that the increase in the dimensionality

of the space would reduce dramatically the density of

support points. For the NPOD driven RL agent, a total of

55% of all the episodes were aborted.

Evaluation

The total execution time to finish the 1000 episodes with 30

actions per episode was 5.5 h, using a machine with a

AMD Ryzen 5950x.

At the end of those episodes, the final reward obtained

by the agent in its learning process was equal to the

obtained by the pharmacometrician to the second decimal

digit. The optimization routine obtained 45 final support

point and selected a model with two compartments over the

one with only one. The distribution of ke and V obtained by

the RL agent is shown in Fig. 4. For reference 5 shows the

same plot for the original simulated subjects and the sup-

port points obtained in the original paper [11].

Discussion

Limitations

Theoretically, we could use an infinite amount of time and

computational power to memorize Qpðs; aÞ for all state-

action pairs, but this approach rapidly becomes computa-

tionally infeasible whit larger action spaces. Thus, there are

techniques to approximate Q values using Neural Net-

works, they can generalize previous acquired knowledge

into unexplored state-action spaces.

Likelihood was chosen as a measurement of reward

because it is a straightforward implementation, but it also

comes with its own set of downsides, for example: It would

not support changes in the error polynomial coefficients or

Fig. 3 Reward obtained over 1000 episodes using NPOD as the driver of the optimization, aborted episodes were discarded

Fig. 4 Ke and V values for the support points obtained automatically

by the RL agent
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certain changes in the structural model, it also does not

consider another set of external values like execution time

or computational resources used.

Given the limitations of SARSA, here we are using

discrete state and actions representations. This does not

align with reality in the sense that modelers could switch

from one to three compartments, while varying the

parameter ranges by some amount in only one step.

We think that the main limitation this kind of imple-

mentations have is the amount of time needed to train the

agent, especially because of the need to run the full opti-

mization for each step in each episode. We expect that a

distributed implementation, a reduction in the requirements

of convergence for the Maximum Likelihood methods or

using a Deep Reinforcement Learning technique or a

combination of them could be good candidates to over-

come this limitation.

In this paper we present an implementation of a known

RL algorithm as a proof of concept of the utilization of

these concepts in the automation of non-Parametric model

building. And although is not the first time RL is used in

the field, no further advancement have been done since

2013 [5]. As stated before, the current implementation has

a lot of limitations, but we think most of them could be

easily overcome.

It is important to notice that the 5.5 hours is the time it

took to the agent to be trained. After the training is per-

formed, the obtained Q matrix can be used to fit the dataset

multiple times with minimal effort. When switching to a

Deep Reinforcement Learning algorithm, a great portion of

the training process performed over one dataset can be

extrapolated to others, further reducing the needed amount

of time needed to perform the analysis.

Future work

To address the limitations of using the likelihood as an

unique source of reward, it is necessary to develop a new

reward function that takes all the involved elements into

account with a proper balance. This is: fitness, number of

parameters, execution time, complexity, etc. By using this

approach there is a shift in control, everything modelers

could tweak before now resides within the reward function.

For example: by using the Akaike information criterion or

the Bayesian one the agent could address for the number of

parameters, or by splitting the data into training and eval-

uation sets and giving the agent the reward only based on

the evaluation one the agent would learn how not to overfit

the training set.

To generalize the model definition or in the case

covariates are needed it would be necessary to use a Deep

Reinforcement Learning algorithm because the state-action

space would be too large to be explored in a reasonable

amount of time. Other benefit of switching to a Deep

Reinforcement Learning algorithm is that the we would not

have the restriction of discrete state and actions spaces.
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