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BACKGROUND: Malignant phyllodes tumour (MPT) is a rare breast malignancy with epithelial and mesenchymal features.
Currently, there are no appropriate research models or effective targeted therapeutic approaches for MPT.
METHODS: We collected fresh frozen tissues from nine patients with MPT and performed whole-exome and RNA sequencing.
Additionally, we established patient-derived xenograft (PDX) models from patients with MPT and tested the efficacy of targeting
dysregulated pathways in MPT using the PDX model from one MPT.
RESULTS: MPT has unique molecular characteristics when compared to breast cancers of epithelial origin and can be classified into
two groups. The PDX model derived from one patient with MPT showed that the mouse epithelial component increased during
tumour growth. Moreover, targeted inhibition of platelet-derived growth factor receptor (PDGFR) and phosphoinositide 3-kinase
(PI3K)/mammalian target of rapamycin (mTOR) by imatinib mesylate and PKI-587 showed in vivo tumour suppression effects.
CONCLUSIONS: This study revealed the molecular profiles of MPT that can lead to molecular classification and potential targeted
therapy, and suggested that the MPT PDX model can be a useful tool for studying the pathogenesis of fibroepithelial neoplasms
and for preclinical drug screening to find new therapeutic strategies for MPT.
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BACKGROUND
Breast fibroepithelial tumours, including fibroadenomas and
phyllodes tumours, are biphasic neoplasms characterised by
proliferation of epithelial and stromal cells of the mammary
glands [1]. Phyllodes tumours comprise <1% of all primary breast
neoplasms, and up to one-third of phyllodes tumours are
classified as malignant phyllodes tumours (MPTs) based on
histologic findings, such as degree of mitosis and extent of
stromal growth [1]. Up to 67% of patients with MPT develop local
recurrences, and 21% experience distant metastasis [2].
The current standard treatment for MPT is surgical excision of

the tumour with sufficient resection margins. The addition of
postsurgical radiation therapy did not result in substantial
improvement in overall survival, and the benefit of adjuvant
systemic therapy has not been tested in randomised clinical trials
[3, 4]. Owing to the rare nature of the neoplasm and our
incomplete understanding of the molecular characteristics of the

disease, there are no effective systemic or targeted treatment
options for MPT despite high rates of recurrence.
Recent studies have improved our understanding of the

molecular characteristics of MPT [4, 5]. Scientists have identified
recurrent chromosomal alterations [6, 7], gene expression
characteristics [7, 8], and somatic mutations [9, 10]. However,
many have primarily focused on genomic profiling of a wide range
of phyllodes neoplasms, and thus included large proportions of
benign and borderline phyllodes tumours. Furthermore, few
studies have addressed the potential in vivo application of
targeted therapies in MPT, owing to the lack of available cell
lines or animal models.
Here, we presented the genomic and transcriptomic character-

istics of MPT using various tumour tissues and suggested gene
expression-based molecular subtypes of MPT. Additionally, we
elucidated the driver and microenvironment relationship in this
biphasic neoplasm using a patient-derived xenograft (PDX) model
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derived from MPT. Finally, we proposed novel therapeutic
approaches for MPT by targeting the platelet-derived growth
factor receptor (PDGFR) and phosphoinositide 3-kinase (PI3K)/
mammalian target of rapamycin (mTOR) pathways.

METHODS
Patients and biospecimens
Frozen tumour tissues of MPTs were obtained from the Institutional Review
Board (IRB)-approved breast cancer biospecimen repository at Seoul
National University Hospital (IRB no. 1509-032-702). Tissues were obtained
from surgical specimens during curative surgeries. Matched germline DNA
was obtained from the peripheral blood of the patient. Formalin-fixed,
paraffin-embedded (FFPE) MPT tissues were obtained from the Depart-
ment of Pathology, Seoul National University Hospital (IRB no. 1402-054-
555).

Patient-derived xenograft models
To develop the PDX models, surgically resected tumour tissues were
minced into approximately 2 mm pieces and transplanted into the fourth
mammary fat pad of 8-week-old female NOD/SCID/IL-2γ-receptor null
(NSG, Jackson Lab, USA) mice. When the MPT PDX tumour exceeded
500mm3 after transplantation into the mouse mammary fat pad, it was
excised and cut into 2–3 mm3 pieces. Subsequently, a hole was made in
the mammary fat pad of the mouse to be transplanted, and a piece of PDX
tumour was placed in the hole. Thus, MPT PDX models were established in
several passages (P1 and P2). Tumour volumes and body weight of mice
were measured once or twice a week.

Whole-exome sequencing (WES) and data processing
Exome libraries captured using the SureSelect Human All Exon V4 or V5 kit
(Agilent, Santa Clara, CA, USA) for WES were sequenced on an Illumina
platform. Most bioinformatic analyses of sequencing data were performed
using the computing server at the Genomic Medicine Institute Research
Service Center. We aligned the DNA sequence reads to the human
reference genome (GRCh37) or a combined reference genome of human
(GRCh37) and mouse (mm10) using Burrows–Wheeler Aligner (BWA) [11].
Sorting of reads and marking of PCR-duplicated reads were performed
using Picard (http://broadinstitute.github.io/picard/). For samples using a
combined reference genome of human and mouse, we removed mouse
sequence reads according to additional processing procedures [12].
Thereafter, we performed preprocessing procedures for bam files,
including local realignment around insertions/deletions (indels) and base
recalibration, according to the Genome Analysis Toolkit (GATK) best
practices document [13, 14].

Mutational landscape analysis using WES data
We discovered somatic mutations using MuTect [15] for single-nucleotide
variants (SNVs) and GATK IndelGenotyper V2 [14] for indels. ANNOVAR [16]
was used to annotate the somatic mutations. We used the following
criteria to identify true positive variants in the exome data: alt allele depth
≥4 and “MuTect=PASS”. For indels, total depth ≥8, alt allele depth ≥6, and
alt allele frequency ≥0.1. Only coding or splice-site variants were
maintained.
The number of variants that passed the above criteria was described as

the number of “Total” variants in Supplementary Table S1. Somatic
mutation burden was calculated by the number of “Total” variants per
megabase for exome. We performed an analysis to identify mutational
processes using deconstructSigs [17] based on mutational signatures in
COSMIC [18] with default settings or with additional normalisation. SigMA
can be used to detect mutational signatures in sequencing data with a
small number of mutations [19]. We used this tool to more accurately
detect signature 3, which is frequently found in breast cancer, using a web-
based interface (http://compbio.med.harvard.edu/sigma/). As it is difficult
to filter germline mutations in one sample without a matched normal
sample, the “mpt-06” sample was excluded from the somatic mutation
burden and mutational signature analysis.
Additional filters were applied to identify more noteworthy variants.

Following removal of variants annotated as “synonymous” or “unknown”
by ANNOVAR [16], we only retained variants that rarely exhibited or did not
report in the general population database, including the 1000 Genomes
Project, Exome Aggregation Consortium, and Exome Sequencing Project.

The number of variants that passed the additional filter was described as
the number of “Noteworthy” variants in Supplementary Table S1. To
identify somatic mutations in one tumour sample without a matched
blood sample (mpt-06), the variants considered germline variants by the
Korean germline variant database [20] were removed from the variants
identified using the MuTect tumour-only mode.
MutationMapper [21, 22] was used for lollipop plot visualisation of

specific mutations. Additional interpretation of mutations was performed
by MutationMapper and Oncotator [23]. Cancer-related genes were
defined on the basis of the COSMIC Cancer Gene Census [24]. We
surveyed clinically relevant variants to discover potential therapeutic
targets based on the TARGET database v3 from the Broad Institute (https://
software.broadinstitute.org/cancer/cga/target).

Somatic copy number alterations (SCNAs) analysis
We discovered SCNAs from exome sequencing data using EXCAVATOR
[25], the R package DNAcopy, and CNVkit [26]. After generation of read
coverage for all samples using CoNIFER [27], we calculated the log2 ratio of
tumour and matched blood samples, and used these values as input for
DNAcopy analysis. For one sample without a matched blood sample, we
utilised a pool of blood samples that used the same exome capture kit as
the baseline for DNAcopy and CNVkit analysis. The SCNAs identified from
the DNAcopy are shown in Supplementary Fig. S2a. To identify important
SCNAs, we detected genes in regions with copy numbers >4 or genes
where mutations appeared among cancer-related genes, or recurrently
variable regions from results by EXCAVATOR.

RNA sequencing (RNA-seq) and data processing
Library construction for RNA-seq was performed using the TruSeq RNA
Sample Prep Kit v2 for most samples, TruSeq RNA Access Library Prep kit
for FFPE, or TruSeq Stranded mRNA Prep kit (Illumina, San Diego, CA, USA)
for several MPT PDX samples. Sequencing of cDNA libraries was performed
using the Illumina platform. We used a human genome reference and a
combined reference for human and mouse to align sequence reads by
spliced transcripts alignment to a reference (STAR) aligner [28]. The
following procedures were conducted referring to the best practices
workflow for RNA-seq of GATK. The number of reads for each Ensembl
annotated gene was quantified from pre-processed data using HTSeq-
count [29]. We applied parameters that were considered appropriate for
each sequencing data. Raw read counts from HTSeq-count were converted
to fragments per kilobase of exon per million reads mapped (FPKM) values
using the rpkm() function of the R package edgeR [30].
To find MED12 mutations from RNA-seq data of FFPE, we manually

examined only known mutation sites in MED12 exon 2, previously found in
phyllodes tumour [10] from the bam files using the Integrative Genomics
Viewer (IGV).

Differential gene expression analysis
Differentially expressed genes (DEGs) were identified using the R package
DESeq2 [31]. We only retained genes with an adjusted p value < 0.05, log2
fold-change ≥1, and average of expression (FPKM) across all samples ≥1 to
identify more important DEGs from the results of differential gene
expression analysis. To identify noteworthy enriched pathways from DEGs,
we used the DAVID Bioinformatics Database functional annotation tool
(http://david.abcc.ncifcrf.gov/). Statistical significance was set at p < 0.05.
The ClueGO [32] Cytoscape plugin was used to visualise the enriched
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [33].
Significance in ClueGO was determined by the p-value corrected with
Bonferroni step-down.

Visualisation of transcriptome profiles
After adding 1 to the FPKM of each gene, these values were log
transformed and mean-centred. The adjusted expression values were
hierarchically clustered based on uncentered correlation and average
linkage by cluster 3.0 [34]. Visualisation of the heatmap was performed
using Java Treeview [35].
Read counts of each gene from HTSeq-count were transformed by the

variance stabilising transformation (vst) function using the R package
DESeq2 [31]. After determining the variance for each gene, the 1000 most
variable genes were used for principal component analysis (PCA). We
generated a PCA plot based on the first two principal components (PC1
and PC2) using R package’s ggplot2 or Prism (GraphPad).
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Molecular classification of MPT samples
To identify classifier genes which divide MPT samples into the “Epithelial”
and “Fibrous” subtypes, we applied the criteria below and selected
32 genes among noteworthy DEGs identified in differential gene
expression analysis between the two subtypes of nine MPT fresh frozen
(FF) tissues: (1) protein-coding gene, (2) log2 of fold-change among genes
overexpressed in “Epithelial” ≥8, log2 of fold-change among genes
overexpressed in “Fibrous” ≥2, (3) minimum difference of expression
(FPKM) between the two groups of MPT FF tissues ≥1, and (4) mean
expression (FPKM) in 28 MPT FFPE tissues ≥2.

Histological analysis
MPT PDX tumours were resected once the tumour volume reached 200,
500, and 1000mm3, and paraffin-embedded blocks were prepared and
mounted on microscope slides. To quantify the ratio of epithelial cells in
these MPT PDX tumours, an image analysis program “QuPath” was used.
To discriminate between human mesenchymal cells and mouse epithelial
cells histologically, PDX tissue slides were rehydrated, and immunostaining
was performed with anti-human HLA class 1 (Abcam, 1:800). For human
and mouse pan-centromeric FISH followed by anti-FITC staining, we used
Star*FISH human and mouse pan-centromeric probes-FITC (Cambio)
according to the manufacturer’s protocol. Briefly, after rehydration, slides
were incubated with pepsin solution and quenched with glycine solution.
Following washing with PBS, slides were post-fixed in paraformaldehyde
solution. Thereafter, tissue slides were dehydrated, stained with chromo-
some paint overnight, and subsequently washed with formamide,
stringency, detergent wash solution, and PBS sequentially, followed by
HRP-conjugated anti-FITC (Abcam, 1:50) immunostaining for 1 h at room
temperature. After mounting, slides were observed under a light
microscope.

Single-cell RNA sequencing (scRNA-seq) data processing and
analysis
Raw 3′ scRNA-seq data were aligned using Cell Ranger [36] to generate a
count matrix. Sequencing reads were aligned to the human mouse
(GRCh38-mm10) chimeric reference genome. For the analysis of tumour
cells treated with imatinib, PKI-587, and vehicle, we removed doublets in
each group using DoubletFinder [37]. SoupX [38] was used to remove
technical ambient RNA. Expression matrices were further processed in R
using Seurat [39]. The “Subset” function was applied to separate mouse
and human cells. After removing unwanted cells, the “NormalizeData”
function with the “LogNormalize” method was used to normalise filtered
gene-barcode matrices, and the top 2,000 features were found using the
“FindVariableFeatures” function with the “vst” method. Scaling was
performed on the gene expression matrices using the “ScaleData” function.
Thereafter, we performed PCA on scaled data and used the first 30 principal
components (PCs) for further analysis. Harmony was used to integrate the
data. The top 30 PCs were used as input to the UMAP dimension reduction.
Nearest-neighbour graphs were calculated using “FindNeighbors” with the
top 30 PCs and “FindClusters” function applied with a resolution of mouse
= 0.8 and human = 0.8, respectively. Harmony [40] was run on the PCA
matrix using the default parameters with a library batch. Human cells
containing at least 1% mouse reads were removed, and filtered human
cells were considered the tumour cell population. The Seurat “AddModule-
Score” was used to calculate the PI3K pathway score. Gene sets with
PIK3CA, PIK3CB, AKT1, MTOR, and RPS6KB1 were used to calculate module
scores.

Human and mouse cells separation in MPT PDX
To separate human and mouse cells from MPT PDX tumours, we used the
MACS mouse cell depletion kit (Miltenyi Biotec) designed for isolating
human cell populations in xenograft tumours using magnetically labelled
beads targeting mouse cells. To dissociate the MPT PDX tumour, we
resected the PDX tumour at 1000mm3 and dissociated it using a tumour
dissociation kit with a gentle MACS dissociator (Miltenyi Biotec) according
to the manufacturer’s protocol. Dissociated cells were labelled with mouse-
specific magnetic beads and separated using LS columns to obtain
unlabelled flowing human cells. Following human cell isolation, bead-
labelled mouse cells were detached from the LS column.
To verify whether cells were successfully separated by the host species,

RNA was extracted from cells collected from each human and mouse
using TRIzol reagent. Using a cDNA synthesis kit (Takara), cDNA was
synthesised, and qRT-PCR was performed using the human GAPDH primer

(F:5’-GAG TCC ACT GGC GTC TTC-3’ R:5’-GGA GGC ATT GCT GAT GAT C-3’)
and mouse GAPDH primer (F:5’-GCC TTC CGT GTT CCT ACC-3’ R:5’-GCC TGC
TTC ACC ACC TTC-3’).

Drug efficacy test in the MPT PDX
Drug treatment was initiated after the tumours reached approximately
200mm3. Mice were randomly divided into three treatment groups
consisting of five mice in each group: (1) vehicle (0.5% methylcellulose,
daily per oral), (2) imatinib mesylate (100mg/kg, 0.5% methylcellulose,
daily per oral), and (3) PKI-587 (25mg/kg, dissolved in 5% dextrose, 0.3%
lactic acid, weekly intravenous injection) for 3 weeks. The tumour volume
and body weight of the mice were measured once or twice a week.
Volume was calculated as (length × width2)/2.

Western blotting
For protein extraction, a piece of tumour tissue (approximately 1 mm3) was
homogenised in ice-cold M-PER containing a protease and phosphatase
inhibitor cocktail (Thermo Scientific) using a disposable homogeniser
(BioMasher II tissue homogeniser, Nippi), briefly sonicated, and centrifuged
at 14,000 × g for 20 min at 4 °C. Total proteins were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto a
polyvinylidene difluoride membrane. Following blocking, membranes were
probed with specific antibodies against phospho-Akt (Ser473), Akt,
phospho-mTOR (Ser2448), mTOR, phospho-MAPK (Thr202/Tyr204), MAPK,
phospho-PDGFRa (Tyr849)/PDGFRb (Tyr857), PDGFRb (Cell Signaling
Technology), and β-actin (Santa Cruz Biotechnology), followed by
treatment with horseradish peroxidase-conjugated secondary antibodies.
Target proteins were detected using Amersham Imager 600 (GE
Healthcare) developed with an enhanced chemiluminescent substrate
(Thermo Scientific).

Utilisation of in-house data
We utilised WES data on 18 invasive ductal carcinoma (IDC) samples and
transcriptome data from 32 non-tumour breast tissues, 41 IDC tissues, 46
PDX tissues derived from IDC, and 6 normal mouse fat pads. The
sequencing data of samples were generated similar to the samples used in
this study for a separate project, to characterise genomic profiles of
primary breast tumour and PDX tumour tissues, which will be presented
separately (IRB no. 1402-054-555).

Statistical analyses
Most statistical calculations were performed using Prism version 8.0 for
Windows (GraphPad software, La Jolla, CA, USA, www.graphpad.com). To
identify statistically significant differences, the Mann–Whitney test was
used for most statistical analyses. Fisher’s exact test was used for
comparison of the frequency of signature 3 between MPT and IDC and the
frequency of MED12 mutation according to molecular subtype. The chi-
square test was used for comparison of degree of stromal overgrowth
according to the molecular subtype and comparison of cellular composi-
tion upon drug treatment. The Kruskal–Wallis test was used for
comparison of expression level of cell-type markers based on mouse
transcriptome from MPT, IDC PDX, and normal fat pads. The Wilcoxon test
was used for tumour growth comparison of drug-treated “MX-99”
xenograft model. The Student’s t test was used for comparison of PI3K
activity upon drug treatment. Survival curves were created using the
Kaplan–Meier method and compared using the log-rank test. All data
are presented as the mean ± standard deviation (SD). p values < 0.05 were
considered significant and indicated by *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

RESULTS
Genomic and transcriptomic characteristics of MPT of the
breast
We obtained fresh frozen (FF) tissues from nine MPT patients in
our biorepository and performed exome and transcriptome
sequencing (Supplementary Table S1). Compared to exome
sequencing data generated from an independent cohort of 18
IDC tissues, the MPT showed a significantly lower incidence of
somatic mutations (0.7/Mb for MPT and 2.79/Mb for IDC) (Fig. 1a
and Supplementary Fig. S1a). The most prevalent somatic
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mutation signature, as proposed by Alexandrov et al. [41], of MPT
was the C ∙ G→ T ∙ A substitutions resulting from endogenous DNA
damage (Supplementary Fig. S1b–d). The low incidence of the
BRCA-related mutational signature (signature 3) and APOBEC
editing-related signatures (signatures 2 and 13) suggested that
the mutational process of MPT is distinct from that of IDC of the
breast [42] (Fig. 1b and Supplementary Fig. S1d). The incidence of
structural variations and somatic mutations in cancer-related

genes in nine MPT is shown in Fig. 1c (Supplementary Data 1).
Consistent with previous reports [4, 9, 43–45], we observed a high
rate of MED12 mutations in our series (4/9, 44.4%). Additionally,
somatic mutations in PIK3CA, PIK3R1, PDGFRB, SETD2, and TP53
were observed among the nine MPT. Regarding structural
variations, we observed heterogeneous structural alterations,
including 1q gain in four cases (44.4%) and EGFR amplifications
in four cases (44.4%) (Fig. 1c and Supplementary Fig. S2a).
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The transcriptome sequencing data of the nine MPT were
compared with 32 normal breast tissues and 41 IDC tissues to
determine the gene expression characteristics of the MPT. PCA
using gene expression profiles revealed that MPT have unique
characteristics compared to IDC or normal breast tissues (Fig. 1d).
Pathway enrichment analysis using DEGs showed that, in addition
to the cell cycle and pathways in cancer, genes involved in
extracellular matrix (ECM) interactions and the PI3K signalling
pathway were upregulated in MPT compared to normal breast
tissues. The genes involved in ECM interactions and PI3K signalling
were also upregulated in MPT compared to IDC (Fig. 1e).
Alternatively, when compared to normal breast tissues, gene sets
related to metabolism and the PPAR signalling pathway were
downregulated in MPT, and when compared to IDC, genes
involved in cell adhesion molecules and tight junctions were
downregulated in MPT (Supplementary Fig. S2b). Interaction
network analysis using Cytoscape [46] further revealed that
ECM-related pathways and PI3K-Akt signalling pathways were
significantly enriched in MPT (Fig. 1f). These findings suggested
that MPT has unique genomic and transcriptomic characteristics
that differ from those of the IDC of the breast.

Epithelial and mesenchymal features determine the clinically-
relevant molecular subtypes of MPT
Unsupervised clustering using gene expression data suggested
that MPT can be classified into two distinct molecular subtypes
(Fig. 2a and Supplementary Fig. S3a). We identified DEGs between
the two molecular subtypes of MPT (Supplementary Data 2 and
Supplementary Fig. S3b). One subtype was enriched with genes
involved in protein digestion and absorption, ECM-receptor
interaction, focal adhesions, and axon guidance (Fig. 2b). Many
mesenchyme-related genes, such as various types of collagens
[47], were significantly upregulated (Fig. 2b). The other subtype
showed upregulation of genes involved in tight junctions, cell
metabolism, cell adhesion molecules, and various immune-related
processes (Fig. 2c). This subtype showed upregulation of epithelial
markers such as CDH1, CLDN3, CLDN4, CLDN7, and OCLN (Fig. 2c)
[48–50]. In addition to examining expression levels of individual
genes, we determined global expression patterns of genes
associated with cell adhesion molecules (KEGG ID: hsa04514),
ECM–receptor interaction (KEGG ID: hsa04512) from the KEGG
database (http://www.genome.jp/kegg/) [33], and the epithelial-
to-mesenchymal transition (EMT) [51], as the above gene sets
could represent the epithelial or stromal spectrum of the MPT.
Unsupervised clustering based on expression profiles of genes in
the three gene sets resulted in the same classification of the nine
tumours (Fig. 2d). These findings indicated that human MPT can
be classified into two distinct molecular subtypes based on their
mesenchymal and epithelial gene expression characteristics. We
named the observed subtypes as “Epithelial” and “Fibrous”,
respectively which reflect the biphasic nature of fibroepithelial
neoplasms.
We identified that mutations in MED12 were found only in the

“Epithelial” subtype (4/6 for “Epithelial,” 0/3 for “Fibrous”; Fisher’s
exact test, p= 0.1667; Fig. 1c). Notably, MPT samples belonging to

the “Fibrous” subtype showed higher expression levels of PDGFRB
compared to those of MPT samples belonging to the “Epithelial”
subtype, although the difference was not significant (Supplemen-
tary Fig. S3c). As it is known that the expression level of PDGFRB
increases with increasing grade and that the frequency of MED12
mutation decreases with increasing grade in the spectrum from
benign to malignant phyllodes tumour [44, 52], we speculated
that “Fibrous” would be a more advanced group compared to
“Epithelial” within the malignant histologic category of phyllodes
tumours. We performed RNA-seq using additional 28 MPT FFPE
tissues to investigate the impact of gene expression features of
molecular subtypes of MPT on clinical parameters of patients
with MPT. We developed a gene expression signature consisting
of 32 genes that could be used to classify MPT samples into two
distinct groups and applied it to classify MPT FFPE samples
(Supplementary Data 2 and Fig. 3a). We confirmed that the MPT
FFPE samples were classified into two clusters based on the 32-
gene expression signature (Fig. 3a). MPT FFPE samples also tended
to form clusters in the PCA plot according to the group classified
by the 32-gene expression signature (Supplementary Fig. S3d). To
determine the degree of epithelial gene expression in tumours in
each subgroup, we used xCell [53], a gene signature-based
analytical tool that has been developed to identify specific cellular
types from bulk RNA-seq data sets. As shown in Fig. 3b, xCell-
based epithelial gene expression was significantly associated with
molecular subtypes in MPT FF and FFPE tissues. The subgroup
enriched with mesenchymal-related pathways showed signifi-
cantly lower levels of xCell-based epithelial genes (Fig. 3b). We
confirmed that mutations in MED12 exon 2, which are frequently
mutated in phyllodes tumours, including mutations in codon 44
(p.G44) of MED12, appear only in the “Epithelial” group in FFPE
tissues as in FF tissues (3/15 for “Epithelial,” 0/13 for “Fibrous”;
Fisher’s exact test, p= 0.2262; Supplementary Fig. S3e). Thus, we
propose that the presence of the MED12 mutation is associated
with the molecular subtype of MPT (7/21 for “Epithelial,” 0/16 for
“Fibrous”; Fisher’s exact test, p= 0.0124). The patients with
“Epithelial” tumours showed significantly smaller tumour size
compared to that of the patients with “Fibrous” tumours (Fig. 3c).
These molecular subtypes were also significantly associated with
the degree of stromal overgrowth, another well-known prognostic
factor for MPT [54] (Fig. 3d). Although these molecular subtypes
were markedly associated with histologic stromal overgrowth
patterns, the histologic and molecular classifications showed
similar metastasis patterns in both groups (Supplementary Fig. S3f
and Supplementary Table S2).

Cancerous mesenchymal component and microenvironmental
epithelial component of MPT
Among the nine MPT tumours used above, we obtained fresh
tumour tissue from one patient (“mpt-07”) during the curative
surgery and develop a PDX model using NSG mice (“MX-99”).
Previous studies have shown that murine cells replace the
microenvironmental cells around human tumours after patient-
derived tumours are engrafted into mice [55, 56]. Accordingly, we
discriminated between the transcriptome of the tumour and the

Fig. 1 Unique molecular characteristics of malignant phyllodes tumours (MPTs). a Prevalence of somatic mutations, measured by the
number of somatic mutations per Mb of covered target sequence, in MPT compared to that in invasive ductal carcinoma (IDC) (MPT, n= 8;
IDC, n= 18; Mann–Whitney test). b Comparison of the prevalence of signatures between MPT and IDC identified by SigMA (MPT, n= 8; IDC,
n= 18; Fisher’s exact test). “Sig3 hc” means signature 3 with high confidence, and “Sig3 lc” means signature 3 with low confidence. c Somatic
mutations and copy number alterations in cancer-related genes and specific regions in the nine MPT. Genes associated with clinical action are
denoted in bold font, based on TARGET v3 from the Broad Institute. Genes marked with “copy amp” indicate genes with a copy number ≥5.
d PCA plot showing unique gene expression profiles of MPT compared to normal breast and IDC tissues. e KEGG pathways enriched with
upregulated genes in MPT compared to normal breast tissues (top) or IDC tissues (bottom). f Cytoscape network analysis showing significantly
altered pathways in MPT compared to normal breast tissues (left) or IDC tissues (right). The colour-filing nodes reflect statistical significance of
the term (pathway). Node size refers to the number of genes associated with the term among the differentially expressed genes. Terms with
high significance were clearly labelled. **p < 0.01, ****p < 0.0001.
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microenvironment using species-specific genome sequences
[12, 57]. Notably, when compared to those of PDX tumours
derived from IDC, which are of epithelial origin, the RNA-seq data
of PDX tumours derived from MPT tumours had a significantly
higher proportion of mouse mRNA reads (Fig. 4a). Furthermore,
when MPT PDX tumours were transplanted into multiple NSG
mice and tumour tissues were collected at various tumour sizes,
we observed that the proportion of mouse mRNA reads increased
along with tumour size (Fig. 4b). These findings indicated that
murine cells within the mouse microenvironment increase in
number as the tumour grows. Histological examination of the MPT

PDX tumours at different tumour sizes revealed that the
mesenchymal component constitutes most of the tumour area
during the early period, while the epithelial components gradually
increased as the tumours grew (Fig. 4c, d).
The mouse reads obtained from MPT PDX tumours showed

distinct gene expression patterns compared to those of normal
mouse mammary fat pads, including upregulation of the cell
cycle-related gene sets (Supplementary Fig. S4). To determine
whether the epithelial-like morphology of separated murine cells
was supported by gene expression profiles, we compared the
expression levels of well-known epithelial and mesenchymal
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genes. When compared with the mouse reads from PDX tumours
derived from IDC and normal mouse fat pads, mouse reads from
the MPT PDX tumours showed upregulation of epithelial markers
and downregulation of mesenchymal markers (Fig. 4e).
Thereafter, we performed scRNA-seq of the MPT PDX to confirm

the identity of human MPT cells at single-cell resolution
(Supplementary Fig. S5a). As shown in Fig. 4f, the expression of
epithelial genes was low, whereas the expression of fibroblast
genes was high in the cancerous human cells of the MPT PDX. We
further isolated human and mouse cells from MPT PDX tumour
tissues using the magnetic cell separation technique (Supplemen-
tary Fig. S5b) [58]. The isolated human tumour cells displayed a
spindle-shaped, fibroblast-like appearance, while murine cells
formed adherent structures similar to epithelial cells (Supplemen-
tary Fig S5c). To determine the origin of the cells more directly, we
stained the MPT PDX tumour with a human-specific antibody and
observed that only mesenchymal cells were positively stained
with an anti-human HLA class 1 antibody (Fig. 4g). Furthermore,
the epithelial cells stained positive for mouse-specific centromeric

probes, while mesenchymal cells stained positive for human-
specific probes by the species-specific FISH experiment [59]
(Fig. 4g and Supplementary Fig. S5d). In addition, we developed a
PDX model (“PDX78”) using tissues obtained from another MPT
patient and performed bulk RNA-seq analysis. Unlike the previous
MPT PDX (“MX-99”), we did not find conclusive evidence showing
an increase of the murine microenvironmental component in this
MPT PDX (“PDX78”) (Supplementary Fig. S5e). However, we
confirmed that the expression of fibroblast genes, not epithelial
genes, was also enriched in cancerous human cells of the “PDX78”
as in the “MX-99” (Supplementary Fig. S5f).
Collectively, our results indicated that the mesenchymal cells of

the MPT, and not the epithelial cells, have the capacity to survive
and form PDX tumours within the mouse microenvironment.
Furthermore, the murine epithelial component increased as it
formed glandular structures within PDX tumours. These data
suggested that, unlike carcinomas of epithelial origin, MPT consist
of cancerous cells that have fibroblast-like features and a tumour
microenvironment with proliferating epithelial cells.
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Targeting mesenchymal component provides potential
therapeutic approaches in MPT
Microscopic examination showed that the PDX tumour repro-
duced the histologic features of the patient’s original tumour
(Fig. 5a). The PDX tumour showed genomic and transcriptomic
profiles similar to those of the primary tumour (Fig. 5b and

Supplementary Fig. S6). The primary and PDX tumours had
somatic mutations in PDGFRB (NM_002609: p.N666K) (Fig. 5b, c).
PDGFRB N666K has been reported as an oncogenic mutation in
rare mesenchymal disorders, infantile myofibromatosis, and cells
that harbour the mutation respond to imatinib mesylate [60].
Recently, this mutation was also found in phyllodes tumours and
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was reported to respond to pazopanib, which is primarily used for
soft tissue sarcomas [61]. PDGFRB is typically expressed in
mesenchymal cells and not in epithelial cells [62]. Examination
of RNA-seq data further revealed that when compared to IDC or
normal breast tissues, PDGFRB mRNA expression was significantly
upregulated in MPT samples, suggesting that PDGFRB levels may
correlate with the degree of mesenchymal features (Fig. 5d and
Supplementary Fig. S3c).
The “MX-99” tumour also harboured somatic mutation in PIK3R1

(NM_181504: p.Y2fs), which is a regulatory subunit for PIK3CA with
tumour-suppressor properties [63]. Somatic mutations in PIK3R1
are often associated with increased PI3K/Akt signalling in cancer
[64]. Our data also showed that MPT tissues had significant
dysregulation of genes involved in the PI3K/Akt/mTOR pathway
compared with IDC tissues (Fig. 5e). Additionally, IGF1 and IGF2,
which activate PI3K signalling in tumours in an autocrine manner,
were also significantly upregulated in MPT tumours compared to
IDC (Fig. 5f).
To test whether the genetic characteristics of the PDX model

can be exploited to develop therapeutic approaches, we treated
the PDX model with imatinib mesylate and PKI-587 [65] to target
the PDGFR and PI3K/mTOR pathways, respectively. Both targeted
agents significantly suppressed in vivo tumour growth of MPT in
the PDX models, with higher efficacy for PKI-587 (Fig. 5g).
Treatment with PKI-587 and imatinib mesylate effectively inhib-
ited the phosphorylation of Akt and mTOR in PDX tumours, and
imatinib inhibited PDGFRB phosphorylation (Fig. 5h, i). We
additionally performed scRNA-seq analysis of drug-treated PDXs
to identify changes in tumour cells upon drug treatment. Before
comparative analysis between vehicle- and drug-treated PDXs, we
first confirmed that human tumour cells in vehicle- and drug-
treated MPT PDX had high expression of fibroblast genes, which is
consistent with previous findings (Supplementary Fig. S7a).
Through comparative analysis, we observed a decrease in the
activity of the PI3K pathway and a decrease in the proportion of
proliferating cells in the tumour cell population in drug-treated
MPT PDX when compared with vehicle-treated MPT PDX
(Supplementary Fig. S7b, c). These data demonstrated the
potential efficacy of targeted approaches for MPT treatment.

DISCUSSION
In the present study, we characterised the genomic and
transcriptomic features of a rare breast malignancy, MPT. The
molecular features of MPT presented here provide novel insights
into the pathogenesis of this biphasic neoplasm showing both
mesenchymal and epithelial components. Furthermore, by using a
PDX model derived from the MPT, we demonstrated the
possibility of driver and microenvironment roles for each
component. Finally, we showed that targeting the PDGFR and
PI3K/mTOR pathways can be an effective treatment option for
patients with MPT.
Previous studies of gene expression profiles of phyllodes

tumours have mostly focused on the molecular characterisation
of MPT within a wide range of fibroepithelial neoplasm [6–8]. For
example, Vidal et al. [66] profiled gene expression data of 75

fibroepithelial tumours, including 11 MPT, and demonstrated
that the dysregulation of epithelial- or luminal-related genes
such as CLDN3, CLDN7, or apoptosis- and angiogenesis-related
genes such as VIM or PIK3CA can be key molecular characteristics
of MPT. In contrast, the present study included only pathologi-
cally proven MPT to identify the molecular features that can
classify malignant tumours with different clinical characteristics.
Our data suggested that the expression patterns of genes
involved in ECM interactions, EMT, and cell adhesion could
classify MPT into two subtypes. The fact that the two subtypes of
MPT are characterised by genes related to epithelial and
mesenchymal differentiation indicated that the biphasic patho-
logical features of fibroepithelial neoplasms are also reflected at
the molecular level. Moreover, we showed that the molecular
subtype of MPT is significantly associated with the degree of
epithelial cell proportion, tumour size, and stromal overgrowth.
We further inferred that the presence of mutations in MED12 may
be related to the molecular subtype of MPT. Notably, the MED12
mutation, found in the stroma [10, 67], appears frequently in the
group in which the epithelial component is relatively high. As
this study had a small number of samples, further studies using
sufficient MPT samples to prove this will need to be carried out in
the future.
Sawhney et al. previously suggested that stromal growth in

fibroepithelial tumours may be affected by the epithelium,
showing that stromal mitosis is more prevalent in stroma close
to the epithelium [68]. Tse et al. suggested the stromal-epithelial
interaction and the crucial role of the epithelium in tumour
progression of phyllodes tumours, showing that epithelial ER
expression was inversely related to stromal mitotic count [69].
Since then, few studies have been conducted on the relationship
between the epithelial and stromal components in fibroepithelial
neoplasms. In most previous studies, each component was
separated and analysed using methods such as laser capture
microdissection to unveil the molecular characteristics of the
epithelial and stromal components [10, 67]. In the present study,
we showed the molecular characteristics and roles of each of the
epithelial and stromal components through bioinformatic decon-
volution using bulk RNA-seq data for the MPT PDX model,
suggesting that this method can enhance the understanding of
the pathogenesis of fibroepithelial neoplasms consisting of two
components.
The genomic and transcriptomic findings in our study identified

two druggable pathways in MPT: the PDGFR and PI3K/mTOR
pathways. PDGFRα and PDGFRβ proteins are upregulated in
stromal cells of human cancers [70] and are expressed in 10–70%
of borderline or MPTs [71]. The stromal activity of PDGFR is
associated with histologic grades and treatment outcomes of
phyllodes tumours [52]. Moreover, the PI3K/mTOR pathway has
been identified as a critical regulatory pathway in MPT [72, 73]. We
showed that pharmacological inhibition of the PDGFR and PI3K/
mTOR pathways with imatinib mesylate and PKI-587 effectively
suppressed tumour growth in vivo. Our study shows targeted
approaches that are viable therapeutic tools for the treatment of
MPT. The proposed therapeutic approach should be tested in
future clinical trials.

Fig. 4 Role of epithelial cells and stromal cells in malignant phyllodes tumours (MPTs). a Proportion of RNA-seq reads originating from
murine cells in PDX derived from invasive ductal carcinoma (IDC) and MPT (Mann–Whitney test). b Correlation between MPT tumour volume
and the proportion of RNA-seq reads originating from murine cells in the MPT PDX. c Haematoxylin and eosin staining results of MPT PDX
tumour resected at volumes 200mm3 (left), 500mm3 (middle), and 1000mm3 (right). d Proportion of epithelial cells according to tumour
volume (Mann–Whitney test). e Expression levels of epithelial cell markers (top line) and mesenchymal stromal cell markers (bottom line)
based on mouse transcriptome in normal mouse fat pads and PDX derived from MPT and IDC (Kruskal–Wallis test). f UMAP embeddings of
epithelial markers expressing grafted human tumour cells (top) and fibroblast markers expressing grafted human tumour cells (bottom)
(n= 8105). g Identification of human mesenchymal cells and mouse epithelial cells by anti-human HLA class 1 staining (left), anti-FITC staining
after human-specific centromeric FISH (middle), and mouse-specific centromeric FISH (right). **p < 0.01, ****p < 0.0001.
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