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prognostic value
Hege F. Berg 1,2,7, Hilde Engerud1,2,7, Madeleine Myrvold1,2, Hilde E. Lien1,2, Marta Espevold Hjelmeland1,2, Mari K. Halle 1,2,
Kathrine Woie2, Erling A. Hoivik 1,2,3,4, Ingfrid S. Haldorsen3,4, Olav Vintermyr5,6, Jone Trovik1,2 and Camilla Krakstad 1,2✉

© The Author(s) 2022

BACKGROUND: The endometrial cancer mismatch repair (MMR) deficient subgroup is defined by loss of MSH6, MSH2, PMS2 or
MLH1. We compare MMR status in paired preoperative and operative samples and investigate the prognostic impact of differential
MMR protein expression levels.
METHODS: Tumour lesions from 1058 endometrial cancer patients were immunohistochemically stained for MSH6, MSH2, PMS2
and MLH1. MMR protein expression was evaluated as loss or intact to determine MMR status, or by staining index to evaluate the
prognostic potential of differential expression. Gene expression data from a local (n= 235) and the TCGA (n= 524) endometrial
cancer cohorts was used for validation.
RESULTS: We identified a substantial agreement in MMR status between paired curettage and hysterectomy samples. Individual high
expression of all four MMRmarkers associated with non-endometrioid subtype, and high MSH6 or MSH2 strongly associated with several
aggressive disease characteristics including high tumour grade and FIGO stage, and for MSH6, with lymph nodemetastasis. In multivariate
Cox analysis, MSH6 remained an independent prognostic marker, also within the endometrioid low-grade subgroup (P< 0.001).
CONCLUSION: We demonstrate that in addition to determine MMR status, MMR protein expression levels, particularly MSH6, may add
prognostic information in endometrial cancer.

British Journal of Cancer (2023) 128:647–655; https://doi.org/10.1038/s41416-022-02063-3

INTRODUCTION
Endometrial cancer is the most common gynaecological cancer in
countries with high human developmental index and the
incidence of endometrial cancer is increasing [1]. Preoperative
risk stratification of patients relies largely on the assessment of
tumour histology with the addition of imaging in many hospitals
and is reliable but not optimal for all patients [2]. Inaccurate risk
allocation may result in both over- and under-treatment of
patients, associated with more side effects or a higher risk of
recurrence as outcome. Improved methods for patient stratifica-
tion are therefore needed. Molecular subclassification of endo-
metrial tumours, as defined by The Cancer Genome Atlas
(TCGA) [3], improves prognostication and is included in the
recent ESGO/ESTRO/ESP guidelines for the management of
endometrial cancer [4]. These subtypes include the POLE
ultramutated, microsatellite instability (MSI) hypermutated, copy
number high (or p53 abnormal) and copy number low (or no
specific molecular profile).

Patients with MSI-hypermutated tumours have an intermediate
prognosis [5] and may be eligible for treatment with immune
checkpoint inhibitors [6], although this is seldom used in clinical
routine. The MSI-hypermutated subgroup can be detected by
immunohistochemical (IHC) staining of the DNA mismatch repair
(MMR)markers MSH6, MSH2, PMS2 andMLH1, where the loss of any
of these defines MMR deficiency (MMR-D), a surrogate marker for
MSI. MSH2 and MSH6 form the heterodimer MutSα, whereas PMS2
andMLH1 dimerise to formMutLα [7, 8]. Both dimers are key players
in MMR-associated genome maintenance. During normal DNA
replication and recombination, the MMR system recognises and
corrects base–base mismatches and insertion/deletion mispairs.
MMR can also prevent homologous recombination [8]. Deficient
MMR reduces the ability to identify errors during DNA replication
and results in MSI [9, 10], a hypermutated phenotype, genomic
instability and resistance to alkylating chemotherapeutic agents [8].
Following the new guidelines for endometrial cancer, detection

of MMR-D/MSI in preoperative biopsy is entering clinical workup.
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The most common methods for detection are IHC staining of the
MMR proteins to define MMR status or PCR-based methods to
define microsatellite stability (MSI versus MSS). IHC is frequently
used and recommended for endometrial cancer [4, 11, 12], as this
is a reliable method with low cost, provides information on the
altered gene/protein and is easily performed using small
preoperative formalin-fixed biopsies. However, concordance in
expression pattern between preoperative and operative biopsies
should be determined. In addition, when implementing use in the
clinic, the potential prognostic value of the markers should also be
investigated. In prostate cancer, overexpression of MSH6, MLH1
and PMS2 proteins associates with poor disease outcome and
genetic instability in a cohort of 11,152 prostate cancer patients
[13]. Overexpression of MMR proteins is also linked to poor
survival in oral squamous carcinoma (MSH2, MSH6) [14], bladder
cancer (MLH1) [15], Stage I–II colon cancer (MLH1) [16] and Stage
I–III melanoma (MSH6) [17]. In contrast, increased mRNA expres-
sion of PMS2 is associated with improved overall survival in
ovarian cancer [18], MSH2 fails to predict progression-free survival
in bladder cancer and high MSH2 predicts improved overall
survival in Stage I–II colon cancer [16]. To our knowledge, only one
study has explored differential MMR protein expression in relation
to prognosis in endometrial cancer, where high MSH6 (RNA and
protein) associated with poor disease-free survival in a cohort of
243 patients with mostly endometrioid histologies [19].
Here, we aim to evaluate the concordance of MMR status in

preoperative and operative samples and explore the prognostic
value of MMR protein expression in a large prospectively collected
population-based endometrial cancer cohort.

MATERIALS AND METHODS
Patient series
A population-based patient series have been prospectively collected at
Haukeland University Hospital, Norway from 2001–2015 and includes both
curettage and hysterectomy biopsies from women diagnosed with
endometrial cancer. In total, 1694 lesions from 1058 patients, including
preoperative curettage (n= 761) and hysterectomy (n= 933) specimens,
were included in the present study. Patients were surgically staged
according to the International Federation of Gynecology and Obstetrics
(FIGO) 2009 criteria [20]. Clinical data were collected as previously
described [21]. When available, fresh frozen tissue was collected in parallel
with formalin-fixed paraffin-embedded (FFPE) tissue and used for mRNA
extraction. Hormone receptor status from curettage specimens was
available from a previous study [22].

Immunohistochemistry
Tissue microarrays (TMAs) were constructed from FFPE curettage and
hysterectomy biopsies as previously described [23, 24]. The TMA slides
(5 µm) were dewaxed in xylene and rehydrated in ethanol before antigen
retrieval in target retrieval solution at pH 9 or pH 6 for 15min in microwave
followed by peroxidase block (S2023, Dako, Glostrup, Denmark) for 8 min
at room temperature. Sections were incubated for 60min at room
temperature with anti-MSH6 monoclonal mouse antibody (1:25, NCL-L-
MSH6, NovocastraTM, Leica Biosystems Newcastle, United Kingdom) or
anti-PMS2 monoclonal mouse antibody (1:25, PMS2-L-CE; NovocastraTM,
Leica Biosystems Wetzlar, Germany) or incubated for 30min at room
temperature with anti-MLH1 monoclonal mouse antibody (1:100; NCL-L-
MLH1; NovocastraTM, Leica Biosystems Newcastle, UK) or anti-MSH2
monoclonal mouse antibody (1:50; NCL-l-MSH2–612; NovocastraTM, Leica
Biosystems Newcastle, UK). All sections were incubated for 30min with a
secondary anti-mouse antibody (Agilent Technologies, Santa Clara, USA).
Staining was visualised with diaminobenzidine peroxidase (DAB) (EnVision
detection system, K3468, Dako, Glostrup, Denmark). Sections were
counterstained with hematoxylin (S3301, Dako, Glostrup, Denmark) before
dehydration and mounting.

Evaluation of staining
To determine MMR status, sections were scored visually for loss or intact
expression of the MMR proteins: MSH6, MSH2, MLH1 and PMS2. MMR-D

was defined as the complete or subclonal loss of one or more MMR
proteins [25, 26]. Full sections were used in cases with a lack of positive
internal stromal control, and cases were excluded from the study if both
the TMA cores and the full section lacked stromal expression (n= 16
patients in curettage series, n= 49 patients in hysterectomy series).
For the evaluation of individual MMR proteins as prognostic markers,

protein expression was evaluated using the semi-quantitative staining index
(SI) method. SI was calculated as a product of intensity (0= negative,
1=weak, 2=moderate, 3= strong) and area (0= 0%, 1= less than 10%,
2= 10–50%, 3=more than 50% of tissue had positive staining). Evaluation
of staining was performed blinded for clinical characteristics and outcome. In
statistical analyses, a Youden index was performed to identify best
prognostic cut-offs. For MSH6 and MSH2, the low expression group included
samples with SI 0, 1, 2, 3 and 4 and the high expression group with SI 6 and 9
both in curettage and hysterectomy specimens. Same cutoff was used for
PMS2 in curettage samples, whereas in hysterectomy samples, the high
expression group included SI 4, 6 and 9. For MLH1, the high expression group
included index 9 in both hysterectomy and curettage specimens. A subset of
~100 samples was scored by two independent observers and Kappa values
were calculated to investigate inter-observer reproducibility. Kappa values in
curettage were 0.78, 0.75, 0.86 and 0.71 and in hysterectomy 0.84, 0.68, 0.61
and 0.67 for MSH6, PMS2, MLH1 and MLH2, respectively.

MSI assay
Tumour DNA from snap frozen hysterectomy tissues (n= 60 patients) was
extracted using AllPrep DNA/RNA mini kit (QIAGEN). DNA was analysed by
multiplex PCR using the five mononucleotide repeat markers, NR-21, NR-24,
MONO-27, BAT25 and BAT26 (MD1641, Promega Corporation, Madison, WI,
USA). Tumours with two or more markers that were positive for shifts in
the allelic bands were classified as MSI, whereas tumours with one or
without unstable marker were classified as MSI-L and MSS, respectively.
MSI-L was considered MSS in subsequent analysis.

Transcriptomic datasets
mRNA expression data of MLH1, MSH2, MSH6 and PMS2 was available from a
subset of 256 patients [27]. When more than one probe was available for one
gene, max probe expression was chosen. The Cancer Genome Atlas (TCGA)
transcriptomic dataset (Uterine Corpus Carcinoma, PanCancer Atlas, n= 524)
[28] was downloaded from the cBioPortal: https://www.cbioportal.org/datasets.

Statistical analysis
Statistical analyses were performed using IBM SPSS Statistics for Macintosh
(version 25.0, IBM Corp., Armonk, NY, USA) or RStudio (version 1.4., RStudio,
Boston, MA, USA). A level of significance was set at P < 0.05 and all P values
were two-sided. Agreement between two methods or tissue types were
evaluated by Cohen’s Kappa statistics. Pearson Chi-square test and
Mann–Whitney U test was used for comparison between groups of
categorical and continuous variables, respectively. Survival analyses for
disease-specific survival (DSS) were generated using the Kaplan–Meier
method, and differences between groups were compared using the log-
rank (Mantel–Cox) test. The entry date was defined as the time of primary
surgery. Endpoint was defined as the time of death due to endometrial
cancer. Patients who died from other causes or were lost to follow-up were
censored. Cox proportional hazard modelling was used to estimate the
effect of covariates on the hazard rate. The proportional hazard
assumption was evaluated by a graphical assessment of risk factors over
time. Due to the high correlation between oestrogen receptor (ER) and
progesterone receptor (PR) expression, these two variables were combined
into one covariate. Low ER/PR expression includes loss/low expression of
both receptors, and high includes the remaining combinations (low/high,
high/low, high/high).

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

RESULTS
Substantial agreement in MMR status between preoperative
curettage and hysterectomy specimens
Tumours were considered MMR-D if one or more MMR protein(s)
showed loss of expression (Fig. 1a). When considering all available
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samples with status on all four MMR proteins, loss of MSH6 or
MSH2 was detected in few curettages (loss in 5.3% or 2.4%,
respectively) and hysterectomy (loss in 5.2% or 2.4%, respectively)
samples. PMS2 or MLH1 expression was lost in a higher fraction of
the tumours, both in curettage (20.6% or 15.6%, respectively) and
in hysterectomy samples (21.3% or 17.6%, respectively) (Table 1).
Biomarkers that inform primary treatment are usually investigated
in the preoperative sample and seldom re-evaluated in the
operative sample. However, molecular class reported in research is
often defined from operative samples [5, 11, 29, 30]. Paired
samples from a subset of 424 patients were investigated to
evaluate the consistency in defined MMR status. MSH2, PMS2 and
MLH1 showed substantial agreement between samples with
Cohen’s κ of 0.72, 0.78 and 0.73 (P < 0.001), respectively, while
MSH6 expression showed moderate agreement with a Cohen’s κ
of 0.60 (P < 0.001) (Fig. 1b). Notably, of the discordant PMS2 and
MLH1 cases, MMR status was more frequently detected as intact in
curettage and lost in hysterectomy, than lost in curettage and
intact in hysterectomy (Fig. 1b). Thus, PMS2 and MLH1 were more
frequently detected as loss after re-evaluation of the hysterectomy
sample.

MMR status was determined in both preoperative and
operative patient series. For the full cohort, MMR-D was detected
in 25.8% of preoperative curettage samples and 28.0% of
hysterectomy samples, based on the loss of one or more MMR
proteins. For a subset of 60 operative samples, MSS/MSI status
was available from PCR assay. A high level of concordance was
seen between the two methods, with Cohen’s κ= 0.80 (P < 0.001).
To assess whether preoperative MMR status captures all patients
with MMR-D tumours, we compared MMR status from the
curettage sample with MMR status from the hysterectomy sample
(Fig. 1c). In this paired sample set, MMR-D was detected in 25.8%
of preoperative samples and 28.3% of operative samples.
Concordant MMR status between sample pairs was found in
392/424 (92.4%) patients. Discordant sample pairs were observed
in 32/424 (7.6%) patients, of which 10/424 (2.7%) were MMR-D in
preoperative samples and MMR-proficient (MMR-P) in operative
samples and 22/424 (5.2%) were MMR-P in preoperative samples
and MMR-D in operative samples (Cohen’s κ: 0.81, P < 0.001). As
expected, MMR status was not prognostic with a 5-year DSS of
82% for preoperative MMR-D and 83% for MMR-P patients
(P= 0.913) (Supplementary Fig. 1).
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Table 1. MMR protein loss/intact expression detected at similar frequencies in curettage and hysterectomy series.

MutSα MutLα

MSH6 MSH2 PMS2 MLH1

Intact (%) Loss (%) Intact (%) Loss (%) Intact (%) Loss (%) Intact (%) Loss (%)

Curettage (n= 582) 550 (94.7) 31 (5.3) 567 (97.5) 14 (2.4) 450 (79.4) 117 (20.6) 491 (84.4) 91 (15.6)

Hysterectomy (n= 753) 709 (94.8) 39 (5.2) 730 (97.6) 18 (2.4) 566 (78.7) 153 (21.3) 609 (82.4) 130 (17.6)

Missing information on curettage due to negative stromal straining of MSH6 and MSH2 for one patient and PMS2 for 15 patients. Data missing on
hysterectomy due to negative stromal straining of MSH6 and MSH2 for five patients, PMS2 for 24 patients, MLH1 14 patients.
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Fig. 2 Expression of MSH6, MSH2, PMS2 and MLH1 is prognostic in preoperative lesions. High individual expression of MSH6, MSH2, PMS2
and MLH1 in curettage was associated with poor disease-specific survival (a–d). Cut-offs determined by Youden Index. P values are given by
log-rank (Mantel–Cox) analysis. Number in brackets indicates the total number of patients/number of events. Abbreviations: MutS Homolog 6
(MSH6), MutS Homolog 2 (MSH2), PMS2 Homolog 2 (PMS2), MutL Homolog 1 (MLH1).

Table 3. Prediction of poor disease-specific survival based on age, curettage histology, ER/PR and MMR protein expression in curettage specimens in
endometrial cancer patients.

Risk factor N Univariate HR (95% CI) P Multivariate HR (95% CI) P

Age 394 1.1 (1.1–1.1) <0.001 1.0 (1.02–1.1) <0.001

Curettage histologya

Low grade 324 1 1

High grade 70 8.5 (5.1–14.1) <0.001 3.6 (1.97–6.7) <0.001

ER/PR expressionb

High 335 1 1

Low 59 5.7 (3.4–9.4) <0.001 1.9 (1.02–3.4) <0.001

MSH6

Low 206 1 1

High 188 4.5 (2.5–8.1) <0.001 2.8 (1.46–5.3) 0.002

MSH2

Low 136 1 1

High 258 1.9 (1.1–3.5) 0.020 1.1 (0.61–2.1) 0.694

PMS2

Low 221 1 1

High 173 1.9 (1.2–3.1) 0.009 1.2 (0.7–2.1) 0.512

MSH6 MutS Homolog 6, MSH2 MutS Homolog 2, PMS2 PMS2 Homolog 2.
Statistically significant P-values (<0.05) are bold.
aCurettage histological classification, low-grade (endometrioid grade 1 or 2) or high-grade (endometrioid grade 3 or non-endometrioid).
bLow ER/PR expression, loss of or low expression of ER and loss of PR expression.
Events: 64; Global P value (log-rank): <0.001.
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High expression of MSH6, MSH2 or PMS2 in preoperative
curettage associates with aggressive disease and poor
outcome
To determine if a more thorough evaluation of MMR protein
expression may add relevant information to the diagnostic
workup for endometrial cancer, we evaluated the differential
expression of MSH6, MSH2, PMS2 and MLH1 using staining
index (Fig. 1a) in both curettage and hysterectomy specimens.
High MSH6 or MSH2 strongly associated with aggressive
tumour characteristics, including high-grade endometrioid and
non-endometrioid histological types, advanced FIGO stage,
aneuploidy, as well as lymph node metastasis for high MSH6
(P < 0.05 for all) (Table 2). High PMS2 and MLH1 significantly
associated with non-endometrioid subtype (P < 0.001) but did
not significantly associate with other clinicopathological fea-
tures. Similar findings were observed for MMR protein expres-
sion in hysterectomy specimens (Supplementary Table 1), with
the strongest association between high MSH6 and aggressive
disease features.
In curettages, individual high MSH6, MSH2, PMS2 and

MLH1 significantly associated with poor prognosis, with a 5-year
DSS of 73%, 79%, 81% and 79%, compared to 90%, 88%, 87% and
84% for low expression, respectively (P ≤ 0.03 for all; Fig. 2). Except
for MLH1, these findings were validated in hysterectomy speci-
mens (Supplementary Fig. 2). In a subset of hysterectomy samples
with available transcriptomic data (n= 256), protein expression
significantly correlated with mRNA expression levels (P= 0.029,
0.003 and <0.001, respectively) for MSH6, MSH2 and MLH1 but not

for PMS2 (Supplementary Fig. 3A). High mRNA expression of
MSH6, MSH2 and PMS2 significantly associated with poor 5-year
DSS (P ≤ 0.02 for all; Supplementary Fig. 3B).

MSH6 is an independent preoperative prognostic marker, also
in low-grade endometrial cancer
The independent prognostic value of MSH6, MSH2 or PMS2 was
evaluated using multivariate Cox analysis, after adjusting for
variables currently in use for preoperative risk stratification.
Contrasting MSH2 and PMS2, MSH6 demonstrated independent
prognostic impact in curettage samples, when adjusting for age,
curettage histology and hormone receptor status, with a multi-
variate HR of 2.8 (95% CI 1.5–5.3, P= 0.002) (Table 3). As more
robust markers for the outcome are particularly relevant in
patients with a preoperative low-grade histology, we evaluated
the prognostic value of MSH6 in curettage tissue with endome-
trioid grade 1–2 subtype. High expression of MSH6 predicted
reduced survival with a 5-year DSS of 83%, compared to 94% for
patients with low MSH6 expression (P < 0.001) (Fig. 3a). In
multivariate cox analysis, MSH6 demonstrated independent
prognostic impact within the low-grade patient group, after
adjusting for age and hormone receptor status, with a multivariate
HR of 2.9 (95% CI 1.6–5.4, P < 0.001) (Table 4).
Given the strong prognostic potential of MSH6, a series of

whole curettage sections (n= 106) overlapping with TMA cases
was stained and scored using the same protocol. A substantial
agreement in scoring results were seen between TMAs and whole
sections (Cohen’s κ= 0.67, P < 0.001). In line with data from TMA
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Fig. 3 MSH6 predicts poor outcome within the low-grade endometrioid subgroup and validates as a prognostic marker in whole
curettage sections. High MSH6 predicts poor prognosis in preoperative low-grade endometrioid tumours (a). Evaluating MSH6 expression
using whole sections validates the prognostic effect (b). MSH6 MutS Homolog 6.

Table 4. Prediction of poor disease-specific survival based on age, ER/PR and MSH6 protein expression in low-grade curettage specimens in
endometrial cancer patients.

Risk factor N Univariate HR (95% CI) P Multivariate HR (95% CI) P

Age 432 1.1 (1.1–1.1) <0.001 1.1 (1.0–1.1) <0.001

ER/PR expressiona

High 388 1 1

Low 44 4.7 (2.6–9.0) <0.001 4.4 (2.3–8.4) <0.001

MSH6

Low 264 1 1

High 168 3.1 (1.7–5.7) <0.001 2.9 (1.6–5.4) <0.001

MSH6 MutS Homolog 6.
Statistically significant P-values (<0.05) are bold.
aLow ER/PR expression, loss of or low expression of ER and loss of PR expression.
Events; 46; Global P value (log-rank): <0.001.
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scorings, high MSH6 evaluated on whole sections significantly
associated with poor DSS (P= 0.013) (Fig. 3b).

High MSH6 associates with copy number high tumours and
predicts poor outcome within the MMR-D subgroup
The TCGA endometrial cancer (PanCancer Atlas) gene expression
dataset was used to investigate the prognostic value of MSH6 in
independent datasets. Mirroring results from protein expression,
high MSH6 associated with high-grade endometrioid and non-
endometrioid types (P < 0.001 for both) (Table 5). High MSH6
further associated with the TCGA molecular subgroup of copy
number high tumours (P < 0.001) and predicted reduced survival
with a 5-year DSS of 84% in the high expression group and 94% in
the low expression group (P < 0.001, Fig. 4a).
Interestingly, in our local cohort, within MMR-D cancers, we

found high MSH6 protein expression in 38/104 patients. This
subgroup had a significantly worse outcome than MMR-D patients
with low MSH6 expression (5-year DSS of 71% and 91%,
respectively; P= 0.009) (Fig. 4b). The high MSH6 expression group
had loss of MLH1/PMS2 (MutLα), whereas the MSH6 low

expression group had loss of either MLH1/PMS2 (MutLα) or MutSα
(Fig. 4c).

DISCUSSION
Immunohistochemical staining of MMR proteins is entering the
preoperative workup as part of the molecular classification of
endometrial tumours [4]. Identification of patients with MMR-D
tumours provides prognostic information and helps stratify
patients for treatment with immune checkpoint inhibitors. Here
we report a substantial agreement in MMR detection between
preoperative and operative samples and demonstrate the added
value of identifying patients with high MSH6 expression, a
subgroup associated with more aggressive disease and signifi-
cantly worse outcome.
About 20–30% of endometrial cancer patients have tumours

with deficient MMR [5, 12, 31–33]. MMR deficiency is largely
determined from hysterectomy samples in research settings, while
in the clinical workup, preoperative biopsies are used for
diagnostics. Previous reports only evaluated MMR status agree-
ment in 14 and 15 patients, respectively [12, 32]. This is, to our
knowledge, the first study that uses a large prospectively collected
population-based endometrial cancer cohort to evaluate MMR
status agreement between paired preoperative and operative
samples. We identify a substantial agreement between paired
samples, supporting the use of preoperative biopsy for MMR
status detection in endometrial cancer. Still, it should be noted
that MMR status was discordant in 7.6% of our paired samples.
Tumours with subclonal loss of mismatch repair protein(s), or loss
in only one available sample, are considered MMR-D [26]. Among
the tumours detected as MMR-D in our study cohort, 17% (22/130)
were defined as MMR-D only after evaluating the hysterectomy
sample. Discrepancies may be due to methodological issues but is
more likely to reflect subclonal MMR protein expression. This is
commonly observed in a subset of endometrial tumours [26] and
reported to occur in 7.2% of samples [34]. Thus, in a small fraction
of MMR-D patients, the tumours may be falsely classified as MMR-
P using the preoperative biopsy. These tumours are, except for
rare cases, POLE and TP53 wild-type [5, 30] and thus allocated
(incorrectly) to the copy number low subgroup. According to the
ESGO/ESTRO/ESP guidelines, this will not affect the primary
treatment of patients [4]. However, in the recurrent setting, re-
evaluation of MMR status in the operative biopsy should be
considered as this may qualify for treatment with immune
checkpoint inhibitor.
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Fig. 4 High expression of MSH6 is prognostic in the TCGA cohort and may risk-stratify patients with MMR-D tumours. In the TCGA cohort,
high (mRNA >median) MSH6 associated with poor disease-specific survival (a). In the local cohort, high IHC expression of MSH6 associated
with poor outcome in patients with mismatch repair deficient (MMR-D) tumours (b). Patients with high MSH6 expression have loss of the
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Table 5. High MSH6 mRNA expression associates with histological
subtype and molecular subgroup in the TCGA cohort.

Variable Low, n (%) High, n (%) P value

Histological subtype <0.001

Endometrioid 239 (60) 158 (40)

Serous 18 (17) 91 (83)

Mixed 6 (29) 15 (71)

Histological grade* <0.001

Grades 1–2 164 (77) 49 (23)

Grade 3 75 (41) 109 (59)

Molecular subclass <0.001

POLE 26 (53) 23 (47)

MSI 92 (62) 56 (38)

CN low 109 (74) 38 (26)

CN high 27 (17) 136 (83)

POLE DNA polymerase epsilon, MSImicrosatellite instable, CN copy number.
Statistically significant P-values (<0.05) are bold.
*Only endometrioid histology.
Data missing on the histological subtype for 2 patients, the histological
grade for 2 patients, and molecular subclass for 22 patients.
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Studies have previously suggested MSH6 as a potential
prognostic marker in endometrial cancer, where high MSH6 in
hysterectomy tissue is associated with poor outcome and non-
endometrioid subtype [19, 35]. Our data validate these findings
and demonstrates a strong prognostic value in preoperative
samples in this large prospective endometrial cancer cohort.
Prognostic value of MSH6 was further validated in hysterectomy
tissue, at both protein and mRNA levels, and in the external TCGA
endometrial cancer cohort. In addition, within the subgroup of
patients with endometrioid low-grade histology, we identify MSH6
as an independent predictor of poor survival. According to most
guidelines, these patients are not offered more invasive surgery
nor adjuvant therapy, overlooking a small subset of patients (at
least 7%) [36] that has increased likelihood of disease recurrence.
Furthermore, MSH6 associated with prognosis within the MMR-D
subgroup, i.e., patients with loss of the MutLα complex combined
with high MSH6 expression had poorer survival (DSS= 71%) than
the remaining MMR-D patients with low or loss of MSH6
expression (DSS > 90%), similar to that reported for the POLE
subgroup [5, 12, 37]. These patients are considered to have very
low risk with no need for adjuvant treatment. Collectively, if MSH6
is thoroughly evaluated, this marker may aid in prognostication of
endometrial cancer patients preoperatively, thus refining patient
stratification for invasive surgery and adjuvant therapy, and in
addition function as an MMR-D classifier [12, 31]. Also, the added
benefit of MSH6 intensity scoring argues for the use of IHC over
MSI assay for MSI subgroup classification, which is supported by
the recent approval of VENTANA MMR RxDx Panel (Roche) for IHC
MMR-D detection in solid tumours.
HighMSH6 also yields prognostic value across other cancer types,

suggesting that MSH6 may function to promote aggressive tumour
behaviour [13–17, 19]. However, the mechanism underlying over-
expression of MSH6 is largely unknown. Upregulation may be
induced by higher proliferation rates to ensure sufficient repair of
mismatches [38], but studies investigating its function suggest that
upregulation of MSH6 or other MMR proteins induces genomic
instability [39, 40]. Interestingly, we found an enrichment of high
MSH6 tumours in the CN-high subgroup. MMR-induced genomic
instability may promote tumour progression by accelerating tumour
evolution and thus accumulating more aggressive subclones.
However, it is proposed in glioblastoma that high MSH6 promotes
aggressive cell phenotypes more directly by acting through a
MSH6-CXCR4-TGFβ1 feedback loop that regulates p-STAT3/Slug
and p-Smad2/3/ZEB2 signalling pathways [41]. Collectively, these
studies suggest high MSH6 as a driver of aggressive disease, which
should also be investigated in endometrial cancer.
In conclusion, we here demonstrate that MSH6 can be used

preoperatively as an independent prognostic marker in addition
to its value as MMR-D classifier in endometrial cancer. This
information can be provided at low costs and may be important
for treatment decisions. However, additional studies and in
particular prospective randomised trials would be important to
validate the prognostic value and effect of implementing
preoperative MSH6 scoring in clinical routine.
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