Skip to main content
. 2023 Feb 17;6:34. doi: 10.1038/s42004-023-00825-5

Table 2.

Molecular property prediction performance on regression benchmarks.

Datasets ESOL FreeSolv Lipophilicity QM7 QM8 QM9
Metrics RMSE RMSE RMSE MAE MAE MAE
GraphSAGE 2.575 5.051 1.212 164.062 0.0388 11.178
GPT_GNN 1.612 5.284 0.820 229.053 0.0204 7.976
AttributeMask 1.439 8.062 0.784 261.588 0.0188 13.461
ContextPred 1.430 8.616 0.838 243.551 0.0205 16.886
InfoGraph 1.380 31.118 0.926 292.601 0.0192 12.350
MoCL 1.425 3.233 0.998 198.215 0.0903 NA
GraphLoG 1.390 4.515 0.857 274.071 0.0193 11.484
GraphCL 1.265 5.569 0.782 285.967 0.0199 9.773
JOAO 1.355 4.280 0.771 270.839 0.0206 22.507
MolCLR 1.333 3.285 0.720 104.184 0.0187 23.226
G_Motif 1.286 4.432 0.779 222.957 0.0203 11.065
MGSSL 1.346 2.980 0.751 155.913 0.0198 21.538
HiMol(SMALL)a 0.938 3.215 0.709 96.776 0.0196 3.770
HiMol(LARGE)b 0.833 2.283 0.708 91.501 0.0199 3.243

aSMALL version implements 3-layer GIN as the GNN backbone.

bLARGE version implements 5-layer GIN as the GNN backbone.

The values in bold highlight the best performing results of each benchmark.