Table 2.
Molecular property prediction performance on regression benchmarks.
| Datasets | ESOL | FreeSolv | Lipophilicity | QM7 | QM8 | QM9 |
|---|---|---|---|---|---|---|
| Metrics | RMSE | RMSE | RMSE | MAE | MAE | MAE |
| GraphSAGE | 2.575 | 5.051 | 1.212 | 164.062 | 0.0388 | 11.178 |
| GPT_GNN | 1.612 | 5.284 | 0.820 | 229.053 | 0.0204 | 7.976 |
| AttributeMask | 1.439 | 8.062 | 0.784 | 261.588 | 0.0188 | 13.461 |
| ContextPred | 1.430 | 8.616 | 0.838 | 243.551 | 0.0205 | 16.886 |
| InfoGraph | 1.380 | 31.118 | 0.926 | 292.601 | 0.0192 | 12.350 |
| MoCL | 1.425 | 3.233 | 0.998 | 198.215 | 0.0903 | NA |
| GraphLoG | 1.390 | 4.515 | 0.857 | 274.071 | 0.0193 | 11.484 |
| GraphCL | 1.265 | 5.569 | 0.782 | 285.967 | 0.0199 | 9.773 |
| JOAO | 1.355 | 4.280 | 0.771 | 270.839 | 0.0206 | 22.507 |
| MolCLR | 1.333 | 3.285 | 0.720 | 104.184 | 0.0187 | 23.226 |
| G_Motif | 1.286 | 4.432 | 0.779 | 222.957 | 0.0203 | 11.065 |
| MGSSL | 1.346 | 2.980 | 0.751 | 155.913 | 0.0198 | 21.538 |
| HiMol(SMALL)a | 0.938 | 3.215 | 0.709 | 96.776 | 0.0196 | 3.770 |
| HiMol(LARGE)b | 0.833 | 2.283 | 0.708 | 91.501 | 0.0199 | 3.243 |
aSMALL version implements 3-layer GIN as the GNN backbone.
bLARGE version implements 5-layer GIN as the GNN backbone.
The values in bold highlight the best performing results of each benchmark.