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Abstract 

Background:  Bacterial and viral infections may cause or exacerbate various human 
diseases and to detect microbes in tissue, one method of choice is RNA sequencing. 
The detection of specific microbes using RNA sequencing offers good sensitivity and 
specificity, but untargeted approaches suffer from high false positive rates and a lack of 
sensitivity for lowly abundant organisms.

Results:  We introduce Pathonoia, an algorithm that detects viruses and bacteria in 
RNA sequencing data with high precision and recall. Pathonoia first applies an estab‑
lished k-mer based method for species identification and then aggregates this evi‑
dence over all reads in a sample. In addition, we provide an easy-to-use analysis frame‑
work that highlights potential microbe-host interactions by correlating the microbial to 
the host gene expression. Pathonoia outperforms state-of-the-art methods in micro‑
bial detection specificity, both on in silico and real datasets.

Conclusion:  Two case studies in human liver and brain show how Pathonoia can 
support novel hypotheses on microbial infection exacerbating disease. The Python 
package for Pathonoia sample analysis and a guided analysis Jupyter notebook for bulk 
RNAseq datasets are available on GitHub.

Keywords:  Metagenomics, Pathogen detection, RNA sequencing

Background
A common approach to obtain insights into molecular mechanisms of disease is to 
sequence and analyze patients’ transcriptomes and compare them to transcriptomes of 
healthy controls. These experiments capture gene expression changes in human cells 
that might underly the disease process, but they can also capture transcripts of viruses 
or bacteria that infected those cells. In many cases, transcript information that cannot 
be aligned to the human genome or transcriptome is discarded as unspecific or contami-
nant. However, these non-human transcripts might be of microbial origin and provide 
important insights into disease.

Especially in recent years it has become clear that the human body harbors a vast 
amount of non-human cells. Certainly, these cells, mostly bacteria, are predominantly 
found in the gut and skin microbiomes, but other human tissues show abundance of 
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microorganisms as well. For example, the healthy human blood microbiome is dis-
cussed by Castillo et  al. [1] and shown by Martí [2]. Even the healthy brain is sus-
pected to contain bacteria permanently according to Roberts et al. [3] although there 
is disagreement in the community [4].

For understanding the effect of certain agents in human tissues, dual RNA-sequenc-
ing experiments [5] can be conducted in  vitro. Nevertheless, it might be unknown 
that a pathogen relates to a disease in the first place and for discovering it and its co-
morbidity in a disease state, samples and data from patients are needed.

The idea of finding foreign RNA in patient’s sequencing data has been proposed 
before, for example by Sangiovanni et al. [6] and Rahman et al. [7]. The non-human 
part of a sample can be analyzed as a metagenome. Many publicly available datasets 
have been analyzed with this notion by Simon et  al. [8] who created a database for 
a wide search of potential disease related pathogens. Similarly, we created an online 
database of re-analyzed public small RNA experiments [9], that contains a wide range 
of diseases and pathogens.

Metagenomes, as known from the studies of microbiomes and environment, e.g. 
soil, have their own challenges [10] but many tools exist to measure their abundance 
of bacteria and viruses, as proposed by Wood et  al. [11], Kim et  al. [12] and Alawi 
et  al. [13]. The latter propose DAMIAN in which sequencing reads are assembled 
before aligning to a pathogen database which results in high confidence in the anal-
ysis outcome. However, important evidence might be disregarded when only little 
genetic material is available. The first two tools, Kraken 2 and Centrifuge on the other 
hand classify reads based on subsequences of reads that match organisms in their 
corresponding index. Therefore, they can pick up even small evidence for pathogenic 
presence.

Nevertheless, the non-human part of a transcriptomic sample is noisy, which means 
that it contains majorly sequencing reads which do not have a bio-medical background. 
These reads may instead stem from (human) processing contamination, poor sequenc-
ing quality and intentionally added sequences as part of the experimental protocol, e.g. 
primers. Falsely detected organisms (false positives) are a known issue for metagenomic 
data analysis, as discussed by McIntyre et al. [14]. However, the problem is even bigger 
in the metagenomic samples, which we observe as a side-effect of RNA-seq.

Targeting this issue, Recentrifuge [2] was developed for distinguishing the real signal 
from this noise by comparing all samples in a dataset of metagenomic abundance data. 
Most metagenomic analysis tools measure species’ abundance by classifying for each 
sequencing read the organism it may stem from and summing up the reads according to 
their taxonomy. Analogous to the gene-count matrix, an organism count matrix is cre-
ated. The problem in this approach is the handling of sequences that have many copies 
in the sample due to some processing steps. They are often aligning to a random organ-
ism, which is then showing high abundance because of an exceedingly repeated read. In 
contrast, the traces of real pathogens may have a very low abundance and would drop 
out of the analysis. Furthermore, chimera, which are combined sequences of different 
species, cannot be correctly identified [15].

Therefore, we propose a solution which is considering the sample as a whole and 
measuring abundance of microorganisms across sequencing reads. Retaining an 
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improved measure of abundance, common sequencing contamination can be differ-
entiated from biological effects through the group-wise comparisons of their mean 
abundance.

Results
Here, we are describing the Pathonoia algorithm, trying to overcome the problem of 
falsely detected organisms (false positives (FP)) in a metagenomic sample. Our moti-
vation originates in samples which contain a low number of true positives (TP) com-
bined with low-quality RNA sequences or sequences that got artificially enriched 
when processing the sample. For these metagenomic samples, which are often a side 
product of transcriptome sequencing of a host, it is challenging to gain high specific-
ity for the detected organisms.

The Pathonoia algorithm

Currently, Kraken 2’s [11] metagenomic alignment is widely used due to its excellent 
speed and accuracy [14, 16]. Our proposal of Pathonoia is using Kraken  2’s k-mer 
matches to all existing bacterial and viral genomes in the NCBI database and replace 
its read classification step with a sample wide evaluation for organism abundance. 
Figure  1A shows an overview of the algorithm. The abundance metric AO refers to 
the summed length of unique subsequences of an organism. A detailed descrip-
tion is given in the methods section. The code and Python package is available on 
GitHub (Fig.  1B). Furthermore, we propose a downstream analysis for gaining bio-
logical results on a dataset, using Pathonoia for measuring abundance in each sample 
(Fig. 1C). Two case studies are described below in the section “Downstream analysis 
framework”.

unique x-mers

sum(x) > A

list of A in sample

Organism OT

O

Algorithm

unaligned reads
=

metagenome

Pathonoia:
GitHub, python package

Downstream analysis:
GitHub, jupyter notebook

Availability

FastQ

(bulk RNAseq)
aligned to host

Kraken 2

Pathonoia

Reads
Species 1
Species 2
Genus 2
Species 3
Species 3

ATACTTAGAGA
ATCCTCAGGAG
GTATCGCCGAC
TTCGCGCTGCC
TCGCGCTGCCC

k-mer assignments Read classification
6984:5
0:2 25:1 1:2
789:4 1:1
0:1 123:4
123:4 0:1

Transcriptome Alignment
extract unaligned reads + get (host) gene counts

Kraken 2 + Pathonoia
get organism count

Differential Abundance Analysis
identify organisms of interest

Differential Expression Analysis
samples w vs w/o organism

fastQ fastQ

Gene Ontology Analysis
potential effect of

organism in samples
where it was found

RNAseq Study

patients controls

Downstream Analysis

Fig. 1  Pathonoia toolkit. A The algorithm analyzes unaligned RNA-seq reads, based on Kraken 2. Kraken 
generates k-mer assignments and a taxonomic classification for each read (grey box). Pathonoia uses 
all k-mer assignments of a sample and combines them into a non-read-count based abundance metric 
AO . B Pathonoia and the downstream analysis template are available on GitHub. C The analysis workflow 
for a dataset. A transcriptome alignment yields gene counts and unaligned reads which are analyzed by 
Pathonoia (A). A differential abundance analysis reports organisms that are more frequent in one sample 
group compared to another (examples in Fig. 3B, F). An “organism of interest” (OoI) can be selected for 
understanding its role in a sample group. Samples with ( AOoI > 0 ) and without ( AOoI = 0 ) the OoI are 
compared in a differential gene expression analysis using the gene counts. A gene set enrichment analysis of 
de-regulated genes may uncover the pathways affected by the OoI



Page 4 of 16Liebhoff et al. BMC Bioinformatics           (2023) 24:53 

Improved abundance profile per sample

The evaluation of a biological sample with Kraken  2-only and Pathonoia is visualized 
in Fig. 2A. Pathonoia is able to reduce the number of (falsely) detected organisms, but 
also improves the profile of possibly abundant organisms, i.e., the differences in the 
abundance metric are larger for the included species. The sample in Fig. 2A is a Human 
herpes virus-infected in vitro sample [17]. In vitro samples should be comparably clean, 
i.e., contain fewer contaminating organisms. However, Kraken 2 identified 250 species 
with over 100 reads in the non-human reads of the sample, while Pathonoia reduced this 
number to 132. Pathonoia detected three different herpes virus strains in the top hits, 
while Kraken 2 only detected the major one, Human alpha herpes virus 1. Furthermore, 
Proteus phage VB PmiS-Isfahan was the top hit for the Kraken 2 algorithm. Its genome is 
relatively short (3.8 MB), and it was not mentioned to be part of the sample. As an unex-
pected contaminant, it might be a false positive which Pathonoia ranked lower. Kleb-
siella Pneumonaie and Pasteurella multocida were found through both algorithms with 
relatively high abundance and are species who commonly appear in our environment 
[18, 19].

Reduced number of detected species

Figure 2B shows the reduction of detected species in samples of two in vitro datasets 
[17, 20] between Pathonoia, Kraken 2 and a version of Kraken 2 in which only species 

0.00

0.25

0.50

0.75

1.00

2

250 species found with >100 Kraken2 reads

Species found in HHV infected sample GSM1444167

100

1000

10000

GSE59717 GSE61141

Number of species found per sample Metrics Found species in simulated dataPrecision and recall on simulated dataset

Kraken2 Kraken2 >100 reads Pathonoia

1. Proteus phageVB_PmiS−Isfahan
2. Human alphaherpesvirus 1
3. Klebsiella pneumoniae
4. Klebsiella pneumoniae subsp. pneumoniae
5. Pasteurella multocida
6. Pasteurella multocida subsp.multocida
7. Staphylococcus aureus
8. Streptomyces lividans
9. Streptomyces lividans 1326
10. Ralstonia solanacearum
1. Human alphaherpesvirus 1
2. Proteus phageVB_PmiS−Isfahan
3. Human alphaherpesvirus 2
4. Chimpanzee herpesvirus strain 105640
5. Klebsiella pneumoniae subsp. pneumoniae
6. Enterobacter cloacae
7. Escherichia coli
8. Pasteurella multocida subsp.multocida
9. Salmonella enterica subsp. enterica
10. Salmonella enterica

132 species found

Kraken2 ≥5 readsKraken2
Pathonoia

Bracken KrakenUniq
Centrifuge

precision recall F1

Precision

Top found species

TP: correctly identified
"organism in sample"
( not "classified read")

30

50

100

200

400

800

1300
2000
3000

5000

C
en

tri
fu
ge

Kr
ak
en

2
Kr
ak
en

un
iq

Br
ac
ke
n

Kr
ak
en

2
≥5

r.
Pa

th
on

oi
a

Si
m
ul
at
io
n

N
um

be
ro

fd
et
ec

te
d
sp

ec
ie
s

N

Recall

Fig. 2  Pathonoia reduces number of false positives (FP) in noisy metagenomic samples. A The spectrum 
of species is shown, as reported by Kraken 2 and Pathonoia for a cell line sample infected with Human 
Herpes Virus (HHV). The top 10 most abundant species are highlighted. Kraken 2 reported 7262 organisms 
of which 250 are shown that have > 100 reads. Pathonoia lists 132 organisms and Herpes viruses ascend 
in the ranking of reported species. B Number of reported species in two datasets (12 and 24 samples) by 
Kraken 2, Pathonoia and Kraken with threshold (organism detected if > 100 reads counted). A lower number 
of detected organisms is desirable since it reduces the number of FP. C Pathonoia aims to improve the 
precision of detected organisms in a sample. FP (sequencing errors, other sample bias or random alignments, 
especially with poor quality reads) should be removed. D Average precision, recall and F1 for a simulated 
dataset, evaluated for Kraken 2-based algorithms and Centrifuge. Recall is the highest in Kraken 2 and 
Centrifuge. With removing FP from the Kraken results, every algorithm also loses some TP (recall goes down). 
E Number of species detected in simulated dataset. High recall in D is explainable by the high number of 
species that each algorithm finds
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are taken into account that had more than 100 reads assigned. The Kraken 2 filter ( > 100 
reads) reduces the number of detected species. For a simulated dataset, containing 
twelve to 50 organisms per sample, we evaluated several tools reflecting the same reduc-
tion of detected species in Pathonoia over Kraken 2 and Centrifuge [21] (Fig. 2E). We 
observe that other algorithms also reduce the number of detected species significantly, 
such as KrakenUniq [22], Bracken [23] and Kraken 2’s filtered version. However, Patho-
noia’s mechanism to only account for unique sequences within a sample, decreases the 
number of species while also decreasing the ratio of FP (Fig. 2C) effectively, as shown in 
the following section.

Improved precision and F1 score in simulated dataset

Contaminating sequences that originate from sample processing steps tend to result in 
many identical reads. These sequences may not be present in the Kraken 2 index of bac-
teria and viruses, but their k-mers can match organisms in the database by chance. This 
leads to a false classification of the read (by Kraken 2) and with many copies present, this 
false positive gains a high read count (abundance metric). Pathonoia does not evaluate 
individual reads or take their quantity into account. It  intentionally excludes identical 
sequences from the counting because a higher abundance of a natural organism would 
result in more diverse sequences in the sample. Furthermore, Pathonoia rewards longer 
matches to an organism’s genome than shorter ones (compare Methods and Additional 
file 1: Fig. SF1).

As displayed in Fig.  2D, with this approach Pathonoia is achieving greater preci-
sion on the detected organisms than Kraken 2’s read based evaluation alone and other 
Kraken  2-based abundance measuring techniques, like the filtered Kraken  2 approach 
( ≥ 5 reads), Bracken and KrakenUniq. We further evaluated Centrifuge for comparison 
to Kraken 2-based techniques and found that it detects even more FP, resulting in the 
lowest precision close to filtered Kraken 2. We measured this precision on an artificial 
dataset (mentioned above), containing seven samples with organisms found in com-
mon human microbiomes or environmental metagenomes, for having a ground truth of 
organisms present, and especially not present in the samples.

Comparing Fig. 2D and E, it can be noted that the high number of detected species in 
a sample result in a high recall for Kraken 2 and Centrifuge since the recall metric does 
not consider FP (Fig. 2C).

Furthermore, Pathonoia achieves the highest F1 score, which is the harmonic mean of 
precision and recall, as compared to the other abundance measuring techniques. Over-
all, Pathonoia has an F1 score of 0.34 and the pure Kraken 2 algorithm has 0.1, yielding 
an improvement 0.343/0.085 ≈ 404%.

The downstream analysis (Fig.  3) helps to put samples and abundance measures in 
context of a dataset and can remove further sample bias.

Downstream analysis framework

Making use of Pathonoia’s abundance measures of species, we propose a downstream 
analysis for gaining biological results on a dataset (Fig. 1C). Here, we propose to com-
pare case and control samples in a differential abundance analysis to uncover the poten-
tial involvement of a species in a condition. If the metagenomic sample originates from 
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a transcriptome sequencing experiment, we propose to analyze samples with and with-
out pathogen presence in a differential gene expression analysis, followed by a Gene 
Ontology analysis, based on differentially expressed gene sets, with WebGestalt [24] (see 
Methods). We provide a generic Jupyter Notebook to execute this analysis on GitHub 
(Fig. 1B).

Case study: frontotemporal dementia (FTD)

Figure 3A–D show the downstream analysis results for a dataset [25] containing 30 cases 
of FTD and 15 controls (Fig. 3A). Pathonoia reported 431 organisms over all samples, 
of which 12 are significantly (p-adj. < 0.05 ) differentially abundant, ten of them up-reg-
ulated in FTD samples (Fig.  3B). Burkholderia stabilis appears in the highest number 
of samples as compared to other organisms (7 cases, Additional file 1: Fig. SF8) and is 
therefore chosen as organism of interest (OoI) for further analysis. Figure 3C shows its 
abundance in Pathonoia’s metric AO in the different sample groups, stratified by dis-
ease sub-type. A differential expression analysis between FTD patients with and with-
out B. stabilis lead to a gene set of 34 up-regulated and 109 down-regulated genes, in 
total 143. These three gene sets were compared with gene sets describing Molecular 
Functions and Biological Processes in a Gene Ontology analysis. Figure 3D shows the 
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Fig. 3  Case studies: analyzing datasets with Pathonoia. A–D Fronto Temporal Dementia. A The dataset 
contains 30 cases of FTD (sub-groups shown in C) and 15 controls. Pathonoia reported 431 organisms over 
all samples. B The volcano plot shows 12 differentially abundant organisms, ten of them up-regulated in FTD 
samples. The color scale shows the number of samples containing the organism. C B. stabilis was chosen as 
OoI. AO is given across samples. D Three gene sets from a differential expression analysis between patients 
with and without B. stabilis (34 up-regulated genes, 109 down-regulated genes, in total 143) were compared 
in an over-representation analysis with gene sets related to Molecular Functions and Biological Processes. 
(By B. stabilis) up-regulated genes hint towards an immune reaction in the FTD patients. The Biological 
Processes relate to neural pathways. E–F Fibrosis in Liver Diseases. E A dataset with 51 human liver samples 
from patients with different liver diseases and fibrosis levels comprises 653 reported species by Pathonoia. 
F A differential abundance analysis of samples with and without fibrosis lead to 41 organisms of which only 
one was up-regulated in two non-fibrotic samples. Seven organisms were present in more than nine fibrotic 
samples
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pathways’ significant (FDR≤ 0.05 ) enrichment ratios for immunological and neurologi-
cal pathways.

Case study: fibrosis in liver diseases

Figure 3E–F show the downstream analysis results for an in-house dataset containing 11 
samples from patients with Autoimmune Hepatites (AIH), 13 from Non-Alcoholic Fatty 
Liver Disease (NAFLD), 12 from Primary Biliary Cholangitis (PBC) and 14 from Pri-
mary Sclerosing Cholangitis (PSC) with different levels of fibrosis (Fig. 3F). 653 species 
were reported by Pathonoia of which 40 were significantly (p-adj. < 0.05 ) up regulated in 
fibrotic samples over non-fibrotic ones.

Discussion
In an RNA-seq sample, a fraction of sequencing reads does not align to the organ-
ism’s transcriptome that is being studied. Pathonoia was developed for making use of 
this situation and detecting additional organisms in this data. With our method, further 
information can be found about the biological sample, as well as evidence for potential 
infections in the host, e.g., human tissue.

Algorithm performance

Kraken  2 and Kraken  2-based algorithms measure abundance of organisms based on 
read counts. Previously, these algorithms were adopted for the above mentioned task. 
We compared our algorithm against these commonly used Kraken 2-based abundance 
measuring techniques. Pathonoia’s precision exceeds theirs and showed a reduction of 
false positives.

We used a simulated dataset for benchmarking of Kraken 2-based abundance measur-
ing techniques. For all samples, the recall is significantly higher than precision because 
of the high number of organisms found with Kraken 2. Most TP are discovered resulting 
in a high recall, but also a high number of FP are detected, which in turn reduces pre-
cision (Fig. 2C). For improving certainty about Kraken 2-detected organisms, a cut-off 
can be introduced (“Kraken 2 min five reads” in Fig. 2D) for reducing random hits. As 
a result, also  TP are reduced and both, recall and precision are dropping. Looking at 
alternative abundance calculations with Bracken and KrakenUniq, they do perform bet-
ter than Kraken 2 and are closer to Pathonoia’s values.

The performance difference between KrakenUniq and Pathonoia is surprising since 
their approaches are similar. They differ in two small aspects. First, Pathonoia gives a 
higher score when several k-mers of the same species appear in a row (x-mers), which 
makes it less dependent on k. Second, KrakenUniq is estimating the cardinality of dis-
tinct k-mers using the HyperLogLog algorithm while Pathonoia stores x-mers in a 
hashmap.

As Kraken 2 is the base for all benchmarked algorithms except Centrifuge, organisms 
can only be detected if they were detected by Kraken 2 (with some exceptions, see Addi-
tional file 1: Sect. S1.1). With removing FP from the Kraken 2 results, every algorithm 
also loses some TP, which is why the recall goes down. Thresholding alone worsens pre-
cision. For precision and the balanced F1 score, Pathonoia achieves best results.
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During Pathonoia’s algorithm design phase, we considered that larger genomes natu-
rally “attract” more random matches. Hence, we evaluated the effect of a normalization 
of AO regarding the organism’s genome length, using publicly available in vitro samples 
(no figure). However, this biased the results towards shorter genome sizes, because the 
genome lengths vary much more between species than the collected evidence AO . This is 
due to the type of samples that we observe. They contain only few traces of an infection 
and a coverage measure would not be beneficial for detecting these traces.

For the actual read-classification task, which Kraken 2 and other tools were built for, 
precision and other performance measures are usually over 95% [16]. We showed, that 
with measuring performance based on the finding of specific organisms instead of cor-
rect classification of reads, the F1 score drops to less than 20% with common techniques. 
Pathonoia, in comparison, reaches up to 30% , which is much better but still not practical 
if used as stand-alone solution. We hope to start a new direction for the development 
of tools for gaining results with better biological interpretability. Pathonoia shows the 
best performance for the task of organism detection. With it we suggest a methodology, 
that is based on measuring abundance on sample level through adding up distinct sub-
sequences of nucleotides for the aim of specific indication of abundant organisms in a 
noisy metagenomic sample.

Real‑world application

When looking at non-simulated sequencing data, we observe various artifacts (Fig. 2A). 
Some organisms seem to be present in the sample even though their presence was not 
mentioned or explained in the original study. They can be detected with both Pathonoia 
and Kraken 2. The most questionable one is Proteus phage VB PmiS-Isfahan. Phages are 
frequently used in bio-technical applications [26] and may serve for a quality check for 
the sequencing data. However, we could not find evidence for this hypothesis. Further, 
Klebsiella Pneumonaie and Pasteurella multocida were found with relatively high abun-
dance and are species that commonly appear in our environment [18, 19]. They may 
have entered the sample during its collection, transport or manual processing. Salmo-
nella enterica and Staphylococcus aureus on the other hand are extensively researched 
and sequenced organisms which inhabit and infect the human body [27, 28]. Nonethe-
less, it cannot be determined which of these organisms was actually in the sample or 
contaminated it during the handling of a human being, for example in a hospital setting. 
Since this sample was infected in vitro, we expect it to be comparably “clean”. Pathonoia 
could detect the known HHV infection, but also reduced the noise of random computa-
tional hits.

Another artifact in biological data may be chimera or cross-species reads. As Patho-
noia collects evidence for the presence of organisms across reads, the evidence for two 
different organisms can potentially stem from the same read. However, partial reads 
alone would not pass the AOT threshold which assures stability in the algorithm.

Downstream analysis

For increasing certainty about the detected organisms, samples should be considered in 
the reference of a whole dataset. Factors like sampling bias and sequencing noise may 
shadow the observations made on a single sample. We propose a downstream analysis 
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comparing sample groups of a dataset to reduce the amount of sequencing artifacts and 
only find organisms which are unique to a defined condition. Furthermore, we suggest 
analyzing the transcriptome data of the host, from which our data was derived, in the 
light of the results of that comparison. Comparing the transcriptome of samples con-
taining a bacterium versus samples not containing it within the same condition can give 
important indications on which effect the bacteria can have on the host.

Pathonoia and the downstream analysis are provided online on Github: https://​github.​
com/​kepsi/​Patho​noia. It produces several plots for an exploratory analysis. Some deci-
sions must be taken manually, as for example the selection of an organism of inter-
est, once displayed with their differential abundance. Analyzing the results carefully is 
important, since a group difference in pathogenic load can come as well from a badly 
designed or executed experiment. Yet, to understand if the organism of interest has a 
biological origin, the transcriptome data can be used.

Evidence for novel hypotheses

An FTD case study indicates that some patients may have had a B. stabilis infection in 
the brain, as by B. stabilis up-regulated genes in FTD patients are enriched in immune 
reaction related pathways and the enriched Biological Processes relate to neural activity. 
It was shown in literature that members of the Burkholderia cepacia complex, to which 
B. stabilis belongs, were able to infect human brain tissue and cause brain abscesses [29] 
and meningitis [30]. Furthermore, Burkholderia pseudomallei, belonging to the same 
genus, are up-regulated in two independent, publicly available datasets concerning 
neurodegenerative diseases as shown in the Small RNA Expression Atlas [9] platform 
(Additional file 1: Table ST4). Nonetheless, it remains unclear whether B. stabilis plays 
an important role in FTD or could enter the brain for example due to already degener-
ated brain tissue. Outbreaks of B. stabilis in hospitals are reported frequently [31, 32]. 
There was a major outbreak in Swiss hospitals due to contaminated washing gloves in 
2016 [33]. It is not known if patients from this cohort were treated there or in another 
hospital which had an unreported outbreak and if they could have been infected there. 
Further experiments should be conducted, such as dual RNA-seq experiments [5], which 
may help to answer, for example, the question how brain cells get affected by B. stabilis’ 
presence, and if it may be able to cause disease or change its progression.

Fibrotic livers are prone to bacterial infection through translocation from the gut [34] 
and we could observe this in our samples as well. We found 41 species significantly dif-
ferentially abundant where only one of them was highly abundant in 2 non-fibrotic sam-
ples. For the three most significant organisms, we conducted the human transcriptome 
differential expression analysis between fibrotic samples with and without the species, 
but it did not show any differentially expressed genes (for two species, Acidovorax sp.T1 
and Kocuria palustris) and no enriched pathways for 19 differentially expressed genes 
of the third organism (Corynebacterium matruchotii). This may support the hypothesis, 
that liver fibrosis is not a reaction to infection, but rather allows infection to happen and 
that healthy tissue is less prone to host bacteria.

https://github.com/kepsi/Pathonoia
https://github.com/kepsi/Pathonoia
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Conclusion
Our aim was to make use of the non-host part of RNA sequencing experiments and find 
potential infections or microbial abundance in the tissues under study. It is the nature of 
lowly abundant organisms that any algorithm cannot detect them with high certainty. 
Many random hits lead to noise in the data. With our proposed algorithm Pathonoia, 
it is possible to polarize some organisms from the noise. In contrast to the aim of other 
metagenomic algorithms, we focus on the detection of organisms, i.e., answering the 
question if an organism is present in the sample at all. Also, we wanted to overcome the 
commonly high false positive rate, which is especially increased in the kind of data we 
are focusing on. By considering the full sample instead of individual sequencing reads, 
we reach 400% improvement in precision and uncovered pathogenic traces from noisy 
data.

Furthermore, we proposed a downstream analysis for detecting microbiotic abun-
dance in a group of samples within a dataset and for suggesting their influence on the 
host’s transcriptome. Two case studies give examples of the added value of our algorithm 
Pathonoia. They show that the developed algorithm can model biological context and 
may be able to support building new hypotheses and getting insights to disease.

Methods
First, we describe Pathonoia, which has the goal to uncover organic RNA-sequences 
from metagenomic sequencing reads of unknown origin. These reads may stem from the 
unaligned portion of RNA sequencing data from, e.g. human, transcriptome samples. 
Additionally, we describe our benchmarking methods.

Second, we describe an analysis pipeline based on the output of Pathonoia. Here, the 
goal is to distinguish biological signals from experimental contamination. We provide 
two exemplary studies. This pipeline is available as a guided analysis template in a Jupy-
ter Notebook on GitHub.

Pathonoia

Non-host-mapping reads are assumed as input for Pathonoia for detecting biologi-
cal signal in noisy RNA-sequencing data. SAMtools [35] can be used to assemble the 
corresponding fastQ files after using any aligner (see Additional file 1: Sect. S1 for fur-
ther details). This input is processed in two major steps: metagenomic alignment with 
Kraken 2 [11] and Pathonoia’s sample-wide aggregation of k-mers.

Kraken identifies the lowest common ancestor (LCA) for each k-mer in a sample. In 
Kraken 2, the developers optimized the index size and classification speed, using a mini-
mizer scheme. A minimizer is a subsequence of a k-mer with length l. It can be used as a 
representative of the k-mer at the cost of classification accuracy. We use minimizer and 
k-mer lengths l = k = 31 for highest precision settings of Kraken  2 and the Kraken  2 
index for all viral and bacterial genomes in the NCBI nt database. Precision is lower for 
minimizers l with l < k as there could be two k-mers from different species with the 
same minimizer. Pathonoia cannot work correctly with Kraken indexes that use l < k . 
The LCA for a k-mer is the most specific taxonomic description of a set of organisms 
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that share this sequence. We use the taxonomic identifier (taxID) for the implementa-
tion of the algorithm. The outcome of the alignment step is the kraken-align file, which 
contains the classified k-mers for each read of a sample. One example format of a classi-
fied read is:

C  K025:418/1  Shamonda o.virus (taxid 15915)  100 0:20 15915:7 0:15 15915:6 1:5 0:2 230658:1 0:10
The five fields are: 

1.	 C or U if the read was classified or not.
2.	 The read identifier as given in the fastQ file.
3.	 The taxonomic name and taxID with which it was classified according to the Kraken 

algorithm.
4.	 The original read length.
5.	 Sequence of pairs in format taxID:Y, where Y is the number of k-mers in a row which 

are classified with the same taxonomic identifier.

In this example, 20 k-mers could not be identified (taxID = 0), seven k-mers 
belong to the Shamonda orthobunya virus genome, followed by 15 unidentified 
k-mers and so on. When adding up the number of k-mers in a read, in this example 
20+ 7+ 15+ 6+ 5+ 2+ 1+ 10 = 66 , the result is always the read length subtracted 
by k + 1 , here 100− (31+ 1) = 66.

The second and key step of Pathonoia is the interpretation of the Kraken align-
ment output and detaching it from the notion of reads. It is also described in Addi-
tional file 1: Fig. SF1. Using a hashmap, every identified sequence of a sample that 
is unique, is stored as key and its assigned taxID as value. We call these sequences 
(keys) as x-mers, since they have length x = k + Y  (k: k-mer length, Y: number of 
consecutive k-mers identified with the same taxID).

Next, all lengths x of sequences from the same organism (taxID) are summed up: 
AO =

n
i=1

xi , with x ∈ X  , the set of n distinct x-mers of organism O. Only organisms 
surpassing a threshold of (our default) AOT = 100 nucleotides are considered for the 
next step and final output. This threshold can be adjusted by the user. The higher 
the threshold, the less organisms are detected. Additional file 1: Fig. SF2 shows how 
the F1 score can increase with a decrease of detected species in a simulated data-
set. Additional file 1: Fig. SF3 shows how much the number of detected species can 
decrease in an in vitro sample with an increasing threshold. For fair comparisons to 
the other algorithms, we selected a relatively low threshold of AOT = 100 rationally, 
corresponding to at least one fully mapping read or three independent k-mers.

In order to increase certainty about a specific organism, the abundance measure 
AO of every taxID on species level is summed with the abundance of genus and fam-
ily levels additionally: AO = AS + AG + AF  . The intuition behind this is that if an 
organism is indeed part of the sample, several different areas of it are sampled and 
processed by chance. This may include areas which are not specific to the organism’s 
genome. If a species can be detected on species level though, the evidence can be 
increased by adding higher level counts which have to stem from a specific species 
in any case. Finally, the organisms can be ranked by their abundance AO . Neverthe-
less, the full potential unfolds with comparing sample groups with each other.
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Benchmarking Pathonoia

The aim of our algorithm is the reduction of falsely detected organisms in a metagen-
omic sample and therefore achieving as high precision as possible. Precision can be 
measured by evaluating a simulated dataset, where the presence (and absence) of every 
organism is known. Additionally, for testing Pathonoia qualitatively, we evaluated a bio-
logical sample (GEO sample GSM1444167, HVV-infected fibroblasts [17]), where the 
ground truth for false-positives can hardly be known. We benchmark Pathonoia against 
read count-based and Kraken  2-based abundance measuring techniques. We want to 
emphasize on comparing the technique of measuring abundance and not specific tools. 
We compare adaptations of Kraken 2 for the aim of specific indication of lowly abundant 
organisms in a noisy metagenomic sample.

Kraken 2 [11], Centrifuge [12], and Bracken [23] represent the read-count based abun-
dance measures. Kraken 2 and an index of bacterial and viral genomes with minimizer 
size and k-mer length l = k = 31 are the baseline for all algorithms in this benchmark. 
We ran all other abundance measure algorithms (except Centrifuge)  on top of the 
Kraken  2 output, which makes the precision results comparable. No organism can be 
detected, if it wasn’t detected by Kraken 2 with at least one k-mer (i.e., there is a maxi-
mum value for TP and FP). Nevertheless, the way of counting and evaluating species 
differs in the various algorithms. Our benchmark includes “Kraken 2  with cut-off ≥ 5 
reads”, which means that an organism counts as detected  when Kraken 2  identifies at 
least five reads originating from that same organism. The pure Kraken 2 abundance met-
ric counts an organism as detected, if at least one read is classified with it. Bracken is 
another tool based on Kraken which corrects abundance measures, including the statis-
tical distribution of available genomes in the underlying database. Pathonoia may detect 
organisms with which no read was classified since it evaluates on k-mer level.

For evaluating the performance, we used seven simulated samples, which were con-
structed by Ye et al. [16] for benchmarking taxonomy classifiers in metagenomics. They 
are samples containing DNA sequences from twelve to 50 organisms which are found in 
common human microbiomes or environmental metagenomes, for example the human 
gut or household.

We oppose the common precision measurement techniques, which indicate if reads 
were correctly identified or not. Instead, we focus on the (in)correct presence of species 
(Fig.  2C) and define false positives (FP), true positives (TP) and false negatives (FN) 
accordingly. Bringing attention to this class, we measure precision ( = TP

TP+FP ), recall 
( = TP

TP+FN  ) and their harmonic mean, the F1 score ( = 2 ·
precision·recall
precision+recall

 ). Figure 2D shows 
the average precision, recall and F1 score over all seven samples (detailed values in Addi-
tional file 1: Tables ST1 and ST2).

Downstream analysis

Applying Pathonoia on several samples in a dataset results into a data matrix containing 
for each sample the abundance measures AO of all organisms found in at least one of the 
samples. This abundance data, as well as some metadata about the samples, is the input 
for the downstream analysis. The goal is to identify differences of pathogenic abundance 
between sample groups, for example between diseased and control samples. We provide 
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a template analysis script online to which we refer as “guided analysis” Jupyter notebook. 
In the following we demonstrate the workflow of this analysis exemplary on two datasets 
(compare Fig. 3).

The datasets used for case study are comprising 48 and 63 samples. The first one is 
from an in-house study of Frontotemporal Dementia (FTD) [25], looking at brain tissue 
samples split into disease and control according to Fig. 3A. The second dataset (Fig. 3E) 
contains liver samples from patients in different fibrotic liver stages due to one of four 
diseases: Autoimmune Hepatitis (AIH), Non-Alcoholic Fatty Liver Disease (NAFLD), 
Primary Biliary Cholangitis (PBC) and Primary Sclerosing Cholangitis (PSC).

A Principal Component Analysis (PCA) is executed as a first step of the analysis pipe-
line. It serves as an “outlier check”, where samples can be identified which may be overly 
contaminated. Furthermore, the PCA plot is colored by various available metadata 
(Additional file 1: Fig. SF6) for identifying if a certain experimental setting may result 
into major contamination. At this step, outlier samples are to be removed from the anal-
ysis (manually). In the FTD study we removed 3 samples and in the fibrosis study 12 
samples were excluded. (Additional file 1: Fig. SF5) After re-executing the PCA for FTD 
and coloring according to age, gender, flow cell and RIN score, no bias could be pin-
pointed based on this metadata.

The group-wise comparison step includes the calculation of the mean abundance per 
organism for all samples in a group, for example all control samples. DESeq2 [36] is used 
for this differential abundance analysis. Originally, this tool was developed for differen-
tial gene expression analysis. However, it can be used for our purposes since the same 
statistical model, a Negative Binomial distribution, can be assumed for our data. As 
argued previously by Simon et al. [8] and Rahman et al. [7] the underlying data source, 
RNA-seq data, is the same in our case and the gene counts. Metagenomic features, such 
as our AO , are like gene counts commonly characterized by a high number of zeros and 
few low count hits. Additional file 1: Fig. SF4 shows this distribution in one of our exam-
ple datasets.

For increasing the stability of DESeq2, organisms which have zero abundance in most 
samples are excluded from the analysis. This is usually done for transcriptome analysis 
as well [37]. The output of this step is a list of organisms alongside their log2 fold change 
value between the sample groups and a p-value (Wald test) adjusted for multiple test-
ing (with Benjamini-Hochberg). A volcano plot colored by number of samples that an 
organism is present in, gives an overview of these results. (Results for FTD and fibrosis 
dataset in Fig. 3 B, F and Additional file 1: Tables ST3 and ST7)

Abundance visualization is the next step. The abundance is plotted per sample group 
for the most significant organisms. Here, it can be identified, if an organism plays a role 
in the whole sample group, or if the mean was only elevated due to one extreme case. 
The latter case should happen less often if more outliers were removed in the first step. 
In both studies, we observe that most organisms show consistent increase in the dis-
eased samples but not in the controls (Additional file 1: Figs. SF8 and SF10). The out-
come of this step is the selection of an organism of interest. In the FTD study, we selected 
Burkholderia stabilis, as it was the most prevalent organism of the differentially abun-
dant ones. Its occurrence in the samples is visualized in the PCA plot in Additional file 1: 
Fig. SF7.
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A differential gene expression analysis can help understanding if the organism of 
interest has a biological origin. Here, the primary transcriptome data is used for 
comparing samples that contain the organism and samples which do not contain 
the organism. These sample groups might be subgroup of another sample group. For 
instance, in the FTD dataset, we only select patient samples for this comparison, to 
understand which difference B. stabilis might make in the diseased case (and since it 
is not present in any control, also). Using DESeq2 again, on the original read counts, 
we retrieve a set of up- and down-regulated genes. Ideally, this set concludes as an 
effect of the presence of the organism of interest. In the FTD study, this step resulted 
in a set of 143 significantly (p-adj. value < 0.05 ) differentially expressed genes. (More 
details in Additional file 1: Sect. S3)

We performed a Gene Ontology analysis for understanding the effect of the organ-
ism of interest, using an over-representation enrichment analysis (ORA) of the gene 
sets with WebGestaltR [24]. (For the exact setting, see Additional file 1: Sect. S2.1). 
For the FTD study, all 34 upregulated genes were compared to the gene sets in the 
Biological Processes database (Additional file 1: Table ST6).
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