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Abstract 

Background  The study of gene essentiality, which measures the importance of a gene for cell division and survival, is 
used for the identification of cancer drug targets and understanding of tissue-specific manifestation of genetic condi-
tions. In this work, we analyze essentiality and gene expression data from over 900 cancer lines from the DepMap 
project to create predictive models of gene essentiality.

Methods  We developed machine learning algorithms to identify those genes whose essentiality levels are explained 
by the expression of a small set of “modifier genes”. To identify these gene sets, we developed an ensemble of statisti-
cal tests capturing linear and non-linear dependencies. We trained several regression models predicting the essen-
tiality of each target gene, and used an automated model selection procedure to identify the optimal model and 
hyperparameters. Overall, we examined linear models, gradient boosted trees, Gaussian process regression models, 
and deep learning networks.

Results  We identified nearly 3000 genes for which we accurately predict essentiality using gene expression data of a 
small set of modifier genes. We show that both in the number of genes we successfully make predictions for, as well 
as in the prediction accuracy, our model outperforms current state-of-the-art works.

Conclusions  Our modeling framework avoids overfitting by identifying the small set of modifier genes, which are 
of clinical and genetic importance, and ignores the expression of noisy and irrelevant genes. Doing so improves the 
accuracy of essentiality prediction in various conditions and provides interpretable models. Overall, we present an 
accurate computational approach, as well as interpretable modeling of essentiality in a wide range of cellular condi-
tions, thus contributing to a better understanding of the molecular mechanisms that govern tissue-specific effects of 
genetic disease and cancer.

Keywords  Gene essentiality, Computational biology, Machine learning

Background
Gene essentiality refers to the importance of a gene for 
survival and proliferation. Specifically, it refers to the fit-
ness consequences of knocking out a gene, using loss-of-
function (LoF) screening in cancer cell lines. Using data 
from CRISPR-Cas9 based approaches for genome-wide 
LoF screening, essentiality is estimated by comparing the 
abundances of single-guide RNAs (sgRNAs) targeting a 
gene at the start of the experiment to the abundances of 
the same sgRNAs after a few weeks of growth [1, 2].

By studying the contexts in which a gene is essential 
or redundant, it is possible to find candidates for drug 
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therapies; that is, identifying those genes essential in 
cancer and redundant in adjacent healthy tissue [1, 2]. 
Moreover, by analyzing essentiality data with RNA-seq 
expression data of the cell lines, we can infer genetic 
expression profiles that cause a gene to be essential or 
not, thus better understanding the molecular mecha-
nisms underlying tissue-specific essentiality and tissue-
specific manifestation of genetic disease [3]. For example, 
the PARP1 gene has been shown to be essential in tumors 
where BRCA1 or BRCA2 are lowly expressed, thus mak-
ing PARP inhibitors a candidate for treating subtypes of 
breast and ovarian cancers [4–7]. Therefore there is a 
need for accurate predictions of gene essentiality using 
gene expression as features as well as the need to under-
stand the mechanisms which drive the context-specific 
behavior. An accurate model could receive as input 
sequencing data from a biopsy and predict whether drug 
target genes are essential for this individual.

Recently, project Achilles used a large set of human can-
cer cell lines that represent many cancer tissues to create 
a catalog of essential genes [2]. As part of project Achilles, 
there are over 900 cell lines for which both essentiality data 
was measured and RNA-seq was performed. In general, 
this data has been instrumental in the discovery of poten-
tial drug targets for cancer as well as furthering the under-
standing of the interaction between genes which govern 
how important a gene is for cell fitness. In an initial work, 
516 cell lines were published by Tsherniak et al. [2], includ-
ing essentiality measurements and additional molecu-
lar features, such as expression, copy number effect, and 
methylation. They identified 769 genes whose essential-
ity scores (in one or more cell lines) are several standard 
deviations away from the mean. Of these, 269 genes were 
modeled and showed statistically significant accurate pre-
dictions [2]. Machine learning techniques used to predict 
essentiality were developed when Gönen et  al. analyzed 
the results of a competition to build predictive models of 
gene essentiality [4]. They found that the most informa-
tive features were gene expression. The final models, how-
ever, lacked predictive power since they relied solely on 
149 cell lines for training [4]. Besides predictive modeling, 
the Achilles project has been instrumental in identifying 
ZEB2 as a novel dependency of Acute myeloid leukemia 
(AML), as well as 352 other genes which are essential spe-
cifically in AML [8]. In addition to cancer dependencies, 
the essentiality data was used to create a catalog of copy-
number associated gene dependencies which includes 50 
genes whose essentiality is dependent on copy-number [9]. 
The essentiality data from DepMap has not only been used 
to identify cancer dependencies for drug targets and pre-
dictive modeling. Kim et al. [10] developed REVEALER, a 
computational iterative approach that identifies groups of 
genomic features that together associate with a functional 

activation, context-specific essentiality, or drug response 
profile in order to understand the mechanisms which drive 
essentiality. More recently, Itzhacky et al. [11] used a deep 
learning approach to simultaneously predict the essenti-
ality of all genes, using transcriptomes from various cell 
lines. This full-blown approach suffers from a lack of inter-
pretability, and cannot be used to define the set of modi-
fier genes affecting condition-specific essentially, which 
was one of the main goals of the DepMap project, and is 
less accurate overall compared to the model presented 
here. Since its publication, multiple projects utilized the 
data and insights provided from the DepMap project [2, 4, 
8–11]. These efforts, using open access genomic and epig-
enomic sequencing data, have been instrumental in char-
acterizing gene essentiality, the contexts in which genes 
are essential, and the interaction with the expression of 
other genes.

Here, we study the latest CRISPR-Cas9 based gene 
knockout screens and RNA-Sequencing data from the 
DepMap Achilles project [12] to predict gene essentiality 
based on expression features. We describe these genes, 
on which the essentiality of a target gene is dependent 
on, as modifier genes [12]. These are genes whose varia-
tion in expression, as a group, determines the essentiality 
of some target gene. We then develop machine learning 
models which predict for each target gene its essentiality 
score, using RNA sequencing data. For statistical robust-
ness and interpretability, the model learned for each 
gene is based on a small set, typically between 5 and 20, 
of modifier genes. The genes are selected using machine 
learning to include only genes whose expression is asso-
ciated with the essentiality of the target gene, at any cell 
type. These modifier genes are then integrated, for each 
target gene, into several types of machine learning algo-
rithms including linear regression, decision tree and ran-
dom forest models, as well as deep neural networks, in 
order to predict the essentiality of each target gene. As 
we show, this allows us to accurately predict essentiality 
in additional, held-out conditions, based solely on gene 
expression data. These results provide a benchmark for 
modeling essentiality using expression data from the 
Achilles project and identify biologically relevant sets 
of modifier genes which shed light on the mechanisms 
underlying essentiality, with far reaching applications in 
human genetics studies and personalized medicine.

Methods
Data
Gene essentiality and expression data were obtained from 
the DepMap project (https://​depmap.​org/​portal/​downl​
oad/​all/). Only cell lines which exist in both expression 
and essentiality data were retained. For train/test data, we 
randomly selected 25% of cell lines for the test set using 

https://depmap.org/portal/download/all/
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sci-kit learn train_test_split method (Additional file  1: 
Table  S1). For cross validation, we used five  folds where 
each fold had cell lines selected randomly using sci-kit 
learn KFold method (Additional file  1: Table  S2). For 
train/test and cross validation schemes, only train data 
was used for feature selection, parameter tuning, and 
model selection.

Missing data removal
Cell lines with missing expression values (at modi-
fier genes) or essentiality scores (for a target gene) were 
excluded from the training process.

Feature selection
For feature selection, three scoring methods were used 
for each gene.

Pearson’s correlation We used the Scipy method pear-
sonr to calculate the Pearson correlation between the 
potential feature of gene expression and the essentiality 
of the target gene.

Spearman’s correlation We use the Scipy method spear-
manr to calculate the Spearman correlation between the 
potential feature of gene expression and the essentiality 
of the target gene.

Chi-squared statistic For the target gene we discre-
tized the essentiality by six  quantiles: 0–0.166, 0.166–
0.333, 0.333–0.5, 0.5–0.666, 0.666–0.833, 0.833–1.0. The 
expression of all genes was discretized using the median 
(either lower than or greater than or equal to, that 
is < or ≥). Then a contingency table was built counting the 
occurrence of each expression/essentiality bin value. We 
calculated the Chi-squared statistic of the resulting con-
tingency table using the Scipy chisquare method.

For each gene, a score and an FDR-corrected p-value was 
calculated using the statsmodels multipletests method with 
parameters alpha = 0.05 and method = fdr_bh. Corrected 
p-values less than 0.05 were kept and then the top 20 genes 
were selected for each scoring method. The union of genes 
from each scoring metric were used as features [13].
Feature Selection Protocol(y, gene_expression, max_num_genes = 15):
            let gene_expression be the expression of the set of all genes
            let Genes be the names of all genes
            let y be the target essentiality values
            p_vals_pearson = p-vals of pearson test with all genes’ expres-
sion and target
            p_vals_spearman = p-vals of spearman test with all genes’ 
expression and target
            p_vals_chisquared = p-vals of chi-squared test with genes’ 
expression and target
            selected_pearson = genes with false discovery rate below 0.05
            selected_spearman = genes with false discovery rate below 0.05
            selected_chi_square = genes with false discovery rate below 
0.05
            for each selected set of genes take the top max_num_genes
            selected = union(selected_pearson, selected_spearman, 
selected_chi_square)
            return selected

The potential set of modifier genes is strictly controlled 
through the use of multiple hypothesis testing and only 
genes whose expression is significantly correlated with 
gene essentiality are allowed, using an FDR threshold of 
5% across the entire transcriptome.

Enrichment analysis
Paralog analysis
Human paralogs were defined using the TreeFam data-
base (http://​www.​treef​am.​org/), classifying genes from 
different organisms to families based on homology. Par-
alogs were defined as any two human genes that belong 
to the same family and therefore are homologous. We 
investigated the top 100 performing genes according 
to the prediction versus true Pearson Correlation. For 
every gene, we identified the set of modifier genes and 
then checked whether a known paralog of the target 
was found in the modifier genes or not. We found that 
of the 83 genes in the top 100 with a known paralog, 37 
had modifier gene sets that contained a known paralog. 
To compute a p-value we ran a permutation test to simu-
late the null hypothesis. We ran 1000 iterations where in 
every iteration for each of the 83 genes we used randomly 
selected gene sets (of the same size as the set of modifier 
genes identified) and counted the number of times the 
random set included a known paralog.

Pathway enrichment analysis
For the top 100 performing genes according to prediction 
Pearson Correlation, we tested enrichment of modifier 
genes by EnrichR [14] on the Kegg 2021 human pathway 
database [15,  16]. We used the adjusted p-values (Ben-
jamini–Hochberg correction method) to determine sig-
nificance. Genes whose modifier sets were enriched in 
at least one pathway with an adjusted p-value below 0.05 
were considered significant.

Machine learning models
Linear regression
For linear regression, expression data were first nor-
malized to have zero mean and unit variance, using 
sklearn StandardScaler. Parameters of this linear trans-
formation were fitted to training data and applied to 
both train and test data prior to prediction. For lasso 
regression, the sci-kit learn LassoCV method was used 
with default parameters and cv = 3. For Ordinary Least 
Squares linear regression, the LinearRegression method 
was used.

http://www.treefam.org/
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XGBoost
Gradient boosted trees were trained using the sklearn 
XGBRegressor method. The training data was split into 
a train and validation set (10% of train cell line IDs) 
with randomly selected cell line IDs being used for the 
validation set to optimize parameters. The learning rate 
was chosen as either 0.1, 0.2, 0.05 depending on the 
best performance on the validation set. The max_depth 
parameter was set to 5, n_estimators was set to 500, 
and early_stopping_rounds was set to 40.

Deep learning
Deep learning models were trained using Tensor-
Flow, following data normalization using tensorflow.
preprocessing.Normalization. Four hidden ReLU lay-
ers were used, with sizes of 50, 20, 15, and 12, respec-
tively, and dropout parameters of 0.4, 0.2, and 0.1 for 
the first three layers. The final layer has output size 
one with a linear activation function. Every ReLU layer 
has an l2 regularization parameter of 0.0001. For the 
optimization of network weights, we used the Adam 
optimizer with the default learning rate of 0.001 using 
mean_squared_error as the loss function. For early 
stopping, we used tf.keras.callbacks. EarlyStopping 
(monitor = ’loss’, patience = 100) where validation data 
was a randomly selected 10% of cell lines from the train 
data and using a maximum of 1500 epochs.

Gaussian process regression
For a Gaussian process regression model, a transfor-
mation was fitted so that train data would have zero 
mean and unit standard deviation. We used the sklearn 
GaussianProcessRegressor with an RBF kernel for 
model creation.

KNN
For a k-nearest neighbors regression model we used 
KNeighborsRegressor with n_neighbors set to 50 and 
weights set to be ‘distance’.

Decision tree
To learn decision trees we used the sklearn Decision-
TreeRegressor method with max_depth set to 4.

Model selection
For choosing the best model the train data was split into 
train and validation (10% of cell lines) (note that if a spe-
cific model further splits train data to train and validation 
this is done with the train data defined here and not using 
any validation data). The model which achieved the best 
performance metric (root mean squared error) on the 
validation set was selected.

For all models, the learning stage included both param-
eter and hyperparameter optimization (when relevant). 
For this, we split the samples to held-out test data 
(20/25% of samples depending on whether using cross 
validation or not, that were not used for either optimiza-
tion steps), and training samples (75%) which were fur-
ther split to train (90%) and validation (10%). Parameter 
optimization was performed on the train set samples 
through the learning algorithm, and hyperparameter 
optimization was assessed using the validation samples. 
All parameters were either a fixed constant specified 
above in the corresponding model subsection, or were 
chosen as the combination of values which performed 
best on the validation set. If no value or list of values was 
specified in the methods section, then the default value of 
the parameter was used.

Since the feature sets output by the selection protocol 
might contain multiple paralog genes with similar signals, 
this might introduce redundancy. Here we use various 
model types which handle redundancy. Lasso regression 
is a common feature selection and feature association 
statistical testing framework [17, 18] that is commonly 
used to determine feature importance and will give lower 
weights to redundant features. Similarly, our deep learn-
ing models contain dropout regularizations [19] in each 
layer, as well as L2 regularization over weights, so again 
“simpler” models are preferred. Finally, tree-based mod-
els including decision trees, and gradient-boosted forests 
(XGBoost) are inherently sparse and regularized, and 
we explicitly limited the tree depth to allow for simpler 
models. By running various models, each with its own 
methods for removing redundancy, and choosing the 
best-performing one on a validation set, we ensure that 
feature redundancy is handled as efficiently as possible.

Performance metrics
We calculated both the root mean squared error (RMSE) 
and Pearson’s correlation between predicted and actuals 
to evaluate performance of the final models used. We used 
two evaluation methods. One used a random split of cell 
line IDs into train and test (75%/25%) and in the other, we 
used 5-fold cross validation. Additional file 1: Tables S1 and 
S2 contain the IDs used in the train/test split and 5-fold 
cross validation folds.

Algorithmic framework
Here we summarize the entire algorithmic framework with 
the following pseudocode which uses a random split for 
test/train data. The algorithm which evaluates performance 
using cross validation is identical except it is repeated once 
per cross validation fold.
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Computational framework overview:
            let g be the name of the target gene
            let expression be a table with all genes’ expression data
            let g_essent be a vector of corresponding essentiality scores of 
target g
            let cell_ids be the corresponding cell line ids
            # cell_ids are in the same row order as expression and g_essent
            train_ids, test_ids = randomSplit(cell_ids)
            let train_express, test_express, train_target, test_target be cor-
responding train/test values of expression and target essentiality scores
            selected_genes = Feature Selection Protocol(train_target, 
train_express)
            validation_ids, non_validation_train_ids = randomSplit(train_ids)
            let validation_express, train_express, validation_target, train_
target be corresponding train/test values of expression and target 
essentiality scores
            let model_selected be the best performing model/hyperparam-
eters on validation_target/validation_express
            model_selected.fit(train_express, train_target)
            model_selected.evaluate_performance(test_express, test_target)

Results
Finding the set of modifier genes
Feature selection was used to identify a set of “modifier” 
genes whose expression is informative of the essentiality of 
a target gene. Previous approaches, such as those presented 
on the DepMap portal, have suggested using Pearson or 
Spearman correlation to find the single most informative 
gene and present graphs of correlation between the expres-
sion of the most informative gene and the essentiality of a 
target gene. To investigate whether there is an added ben-
efit to using multiple modifier genes for predictive per-
formance, we plot, in Fig. 1A, the histogram of genes that 
achieve different levels of predictive performance using one 
modifier and using the modifier genes found by our feature 
selection protocol.

To measure the Pearson correlation in this setup, we 
used a train/test split with the correlation measured on 
the test set. Using one modifier gene results in 1829 genes 
with a Pearson correlation over 0.2 while for using multi-
ple modifiers there are 2315 such genes. Besides that, we 
counted for how many genes a model using one modifier 
beats a model unconstrained to one modifier. We use the 
same model type, in this case, XGBoost. Out of 9633 genes, 
there are 5982 genes for which using many modifier genes 
outperforms using just one. Overall, while using one modi-
fier gene does provide accurate predictions for many tar-
get genes, using our feature selection protocol significantly 
improves predictive power.

Besides identifying whether there is added predic-
tive accuracy in modeling gene essentiality using the 

expression of multiple modifier genes, we wanted to inves-
tigate whether the identified modifier genes are biologically 
related. Figure 2 shows how using our feature selection pro-
tocol for the target gene RPP25L we discover a strong inter-
action with RPP25, a known paralog of RPP25L. All three 
feature association methods find a significant relationship 
between the expression of RPP25 and the essentiality of 
RPP25L. Moreover, using XGBoost feature importance, we 
see that RPP25 covers over 60% of the feature importance 
weights, while the next feature has close to 1%. We noticed 
known paralogs being selected as top features for other 
genes as well. It is known that there are genes for which 
the essentiality can be explained by the expression of a par-
alog gene, whereby when the functionally similar gene is 
expressed the target gene is non-essential [3]. To investigate 
whether the feature selection protocol commonly identifies 
paralogs we counted the number of times a known paralog 
was identified. We did this for the 100 genes with the most 
predictive models, according to Pearson correlation of pre-
dictions, where a known paralog existed (total of 83 genes). 
For the list of known paralogs, we used the TreeFam data-
base and considered two genes as paralogs if they are in 
the same family. For 37 of these 83 genes, the feature selec-
tion protocol identified known paralogs (p-value 0.00; see 
“Methods” for test details).

We also wanted to test if for these same 100 genes the 
modifier gene sets were enriched in common molecular 
pathways. We used the EnrichR tool using gget [14, 15] 
for enrichment analysis. Of these 100 genes, 64 had modi-
fier gene sets identified that are enriched in KEGG human 
molecular pathway annotations [16] with an FDR corrected 
p-value below 0.05. We plot the p-values of enriched path-
way gene sets for one such gene, WRAP73, in Fig. 1B.

Thus, overall, the feature selection protocol identifies 
sets of modifier genes whose expression is associated 
with gene essentiality and these genes improve predictive 
power. Moreover, these gene sets are biologically related 
in that they are both enriched in genes that are function-
ally similar as well as are in common molecular pathways.

Predictive models
We use a train/test scheme and measure the Pearson 
correlation across predictions on the test set for each 
gene and calculate the corresponding p-value and use 
the Benjamini–Hochberg false discovery rate correction 
with a significance threshold of 0.05. Using this setup 
we discover 2886 genes for which we have statistically 

Fig. 1  Modifier genes in models and molecular pathways. A A histogram of the number of target genes (Y-axis) whose predicted essentiality 
(X-axis) is correlated with its actual essentiality, in the test set. Blue and red bars correspond to using an unrestricted number of modifier genes 
(in the predictive model, blue), or when restricting the predictions to a single modifier gene (mostly correlated, red). As can be seen, single-gene 
models offer lower accuracy compared to larger sets of modifier genes. B A bar plot of − log10 transformed p-values of the five most significant 
pathway annotations in KEGG human database [16] for the modifier genes/selected feature of WRAP73 gene

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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significant accurate predictions. The model type used 
for each gene is selected using the automatic model type 
selection protocol (see “Methods” for details). We also 
measure the 5-fold cross validation estimation of the 
Pearson correlation for all genes.

Model type comparison
Besides noting the overall performance after automatic 
model type selection, in Fig. 3A we present a histogram 
of the number of genes having a specific predictive 

Pearson score for each model type. Overall, linear models 
offer highly accurate predictions for most target genes, 
suggesting that linear associations between the expres-
sion of modifier genes and the essentiality of their targets 
are sufficient in most cases. We do include however other 
frameworks, for target genes with more complex pat-
terns. Figure  3C–F contrasts the predicted essentiality 
of RPP25L using linear models with 1, 5, and 38 modi-
fier genes (Fig.  3C–E) against the predicted essentiality 

Fig. 2  RPP25L feature selection and correlation analysis (A) Venn diagram of the top genes selected by association type (Chi squared, Spearman’s, 
and Pearson’s) for RPP25L. B Scatter plot showing a weak correlation between the (log2-transformed) gene expression levels of RPP25 (X-axis) and 
RPP25L (Y-axis) across cell lines. C Strong non-linear monotonic correlation between the expression of RPP25 (X-axis) and the essentiality Achilles 
score of RPP25L (Y-axis) across cell lines
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achieved using a non-linear model (Fig. 3F), based on an 
ensemble of XGBoost and a deep learning model.

Comparison
We compare our performance to that of the model pre-
sented in Itzhacky et al. which is the only work that pre-
dicted gene essentiality using only expression data on the 
recent DepMap CRISPR Cas-9 cell line data. In Itzhacky 
et al. [11] they use a PCA/CCA approach for dimension-
ality reduction, rather than a feature selection proto-
col such as presented in this work. While in many cases 
PCA/CCA approaches offer better overall performance, 
in this case it does not since it is done in a gene-neutral 
fashion. In their work they identify a transformation on 
the expression of all genes to be most correlated with the 
essentiality of all genes rather than in our work: for each 

gene, we find the set of genes whose expression is most 
correlated with the essentiality of the one target gene.

In their work, they report 1639 genes with a 5-fold 
cross validation Pearson correlation coefficient above 
0.2 after filtering for genes with a standard deviation in 
essentiality above 0.1. In our work, we find 2550 such 
genes. Besides that, we ran both our learning algorithm 
and that of Itzhacky et al. on a curated list of genes that 
are known to exhibit tissue-specific phenotypic effects. 
Namely, the genes are known to have tissue-specific 
symptoms when there are deleterious mutations to the 
gene [21]. Genes such as these are likely to be essential in 
the tissue in which there are symptoms. The comparison, 
in Additional file 1: Table S5 and Fig. 3B, shows that over-
all the approach presented here outperforms the neural 
network approach of Itzhacky et al. Out of the 86 genes in 

Fig. 3  Machine learning models capture various expression-essentiality relationships. A Histogram of the number of genes having the specified 
(X-axis) Pearson correlation. Blue bars represent using a linear model, red bars use XGBoost, green bars use deep learning, and purple bars use 
a Gaussian Process. B Comparison of Pearson correlation predictions of model predictions in work presented here (Y-axis) vs. using the model 
of Itzhacky et al. [11] (x-axis) on a curated list of disease-associated genes ([20]. C–F Comparison of measured RPP25L essentiality score (X-axis) 
vs predicted (Y-axis). In all cases, data was split to train/validation set (blue), and held-out test set (red). Shown are: C Linear model based on the 
expression of RPP25 (test-set prediction r = 0.76, p < 2.5e−38). D Multiple linear regression model based on the expression of RPP25 and additional 
5 covariates genes (r = 0.78, p < 2.8e−41). E Linear model using 32 covariate genes (r = 0.76, p < 1.7e−38). F Same 32 covariate genes, using a deep 
learning regression model combined with gradient boosting regression trees (test correlation r = 0.81, p < 8.5e−48)
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the list, for 70 of them we outperform the neural network 
approach. The average difference between the correlation 
coefficient output by our model and that of Itzhacky et al. 
is ~ 0.117.

Making predictions on unseen cell types
One goal of modifier gene set models is to predict the 
essentiality score of a gene in novel conditions (where it 
cannot be directly measured—including healthy tissues). 
To test the viability of using our models on new unseen 
cell types we used an extensive cross-validation analysis, 
where all Achilles cell lines of a given type (e.g. “central 
nervous system”) were excluded from training a model 
for a given gene, and then the RMSE score was estimated 
on them. This approach is actually stricter than a simpler 

leave-one-out approach, where cell lines of a similar ori-
gin are included in the train and sets, which can be over-
optimistic. We focused on major cell types (top 10) each 
containing ≥ 40 different cell lines (that were held-out), 
and trained XGBoost models for the disease-associated 
genes [21] used for comparison in the previous section. 
Overall, the RMSE of held-out cell lines was within 0.3% 
of the value obtained when training on all cell lines, on 
average. Interestingly, RMSE on held-out cell types was 
not significantly greater than control (using training sam-
ples of similar types; t-test p-value ≤ 0.755). This further 
supports the applicability of our approach to new cell 
types, not present in the training set data. These results 
are now shown in Fig. 4 and described in the main text. 
We present the RMSE of held out cell lines in Fig. 4 for 
several genes.

Fig. 4  RMSE on unseen cell types in train data. A–D Violin plots displaying the distribution of absolute deviation (Y-axis) of predictions 
(abs(prediction − actual)) when using the specified cell type (X-axis) as held-out test data for four different genes (VRK1, RPP25L, PRKAR1A, and 
SNAI2). The red dots show the RMSE of the held-out cell type. The “Global” column represents having no cell-type be held out. Lower deviation 
suggests improvement while higher deviation indicates worse performance. The average percent difference in RMSE performance on a held out 
cell type compared to the random train/test split was: in A − 2.74%, in B 1.33%, in C − 1.25%, and in D − 0.85%
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Discussion
In this work, we analyze CRISPR-Cas9 essentiality 
screens from DepMap’s project Achilles. We introduce 
a feature selection protocol to identify modifier genes 
and use various model types to predict essentiality from 
expression data. Our feature selection protocol is sim-
ple and easily interpretable, which is useful for identify-
ing sets of genes whose expression affects a target gene’s 
essentiality. While we do not consider transformations 
such as PCA, CCA, an auto-encoder, or others that 
might optimize predictive power, albeit obfuscating gene 
expression contributions, this is a direction that we think 
is useful for improving performance and should be con-
sidered in future work.

One standard approach to feature selection is to use 
linear regression with Lasso regularization and setting 
the regularization parameter via hyperparameter optimi-
zation techniques. Lasso regularization tends to give zero 
weight to non-essential features, thus it can be a popular 
feature selection method that is not greedy and investi-
gates all features as a group, rather than each one’s per-
formance. While this method is appealing, we saw much 
worse performance results using this method since many 
of the relationships between gene expression and a tar-
get’s essentiality are non-linear.

We compare predictive power over several different 
kinds of models and with one other work. This work is 
the only model known to have been developed to pre-
dict the essentiality of CRISPR-Cas9 screens. We show 
significant improvement over this model. This improve-
ment seems to stem from the fact that we select features 
and build one model for every gene individually. Their 
approach seems to suffer from the fact that for many 
genes the essentiality scores are very noisy, or are only 
noise. Thus any approach which tries to incorporate 
features that are correlated with these noisy essentiality 
scores will perform less well. While our approach does 
have the advantage of better performance, the training 
time is significantly longer when making predictions 
for all genes. However, there is an advantage in faster 
training and prediction times for a single gene of inter-
est or any small number of genes. In general, we believe 
a potential use case for modeling essentiality using 
expression data is to identify whether a specific gene is 
essential in some tumor for which we have expression 
data. In this case, we do not need to make predictions 

for all genes, but rather only for some genes of interest. 
Besides faster prediction time, in general, training time 
is usually not optimized since it is performed one time.

As mentioned, a potential use case for modeling gene 
essentiality using expression data is that we can use 
the models to make predictions in unseen contexts. 
For example, we can predict essentiality using expres-
sion data of tumors or perhaps on healthy tissue and 
predicting in which contexts or tissue types a deleteri-
ous mutation will have the greatest effect. Any tissue 
sample with a prediction significantly different than 
the mean prediction (student’s t-test corrected using 
FDR) will be classified as being affected by mutations. 
An analysis using the developmental single-cell gene 
expression data from the Descartes atlas [22], demon-
strates how our previously trained models correctly 
predict the affected developmental tissues for several 
genes, including ABHD5 (associated with Chanarin-
Dorfman syndrome, and predicted to affect the stom-
ach and intestine), CACNA1S (predicted to affect 
muscles), FBN1 (Fibrillin-1, developing heart), FGFR2 
(developing lungs), ITM2B (Cerebrum), TNNI3 (Tro-
ponin, in the developing heart). We believe this direc-
tion is promising and as more data are collected on 
gene essentiality and methods are developed, we will be 
able to accurately predict the phenotypes of deleterious 
mutations for many genes.

Besides using machine learning models to make pre-
dictions in clinical settings, modeling gene essentiality 
uncovers insights into the mechanisms of interaction 
between genes. We showed that the modifier genes iden-
tified commonly contain functionally similar genes as 
well as genes in common molecular pathways. We can 
also use machine learning techniques to understand the 
contexts in which these interactions hold. It is known 
that in different cell types, a gene might be involved in 
different pathways [23], and therefore, the essentiality 
will be different and the genes which affect the essenti-
ality will be different. We use a simple linear regression 
model in order to visualize the effect that the expression 
of each modifier gene has on the essentiality of the target 
segregated by tissue type so that we can visualize the dif-
ferent interactions.

The top feature for predicting the essentiality of 
FAM50A is the expression of FAM50B, a known paralog, 
yet it is not the only informative feature. In Fig.  5A–F 

Fig. 5  Interpretable machine learning models uncover context-dependent interactions. A–F The weights of a linear regression model predicting 
the essentiality of FAM50A trained on cell lines from the specified tissues. Red bars represent positive weights while blue bars represent negative 
weights. G The features of a decision tree learned using the sci-kit learn package for predicting FAM50A with a maximum depth 4. The decision tree 
predictions work by traversing the tree either left or right depending on whether the expression of the gene in the node is less than or equal to the 
value in the node (left) or not (right). The leaves represent predictions, or the average essentiality of FAM50A in the train data for cell lines that satisfy 
the conditions of reaching that leaf node

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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we plot the weights of features (expression of modifier 
genes) in red (for positive weights) and blue (for negative 
weights) and learn one linear regression model for every 
tissue type. Using the linear regression weights we can 
map associations and the direction of the effect segre-
gated by tissue type. While in most tissue types FAM50B 
is the strongest feature, there are other tissue types where 
this is not the case, for example in the prostate samples. 
Moreover, there are various other genes that affect the 
essentiality of FAM50A in varying degrees of intensity.

Decision trees are a non-linear alternative to linear 
regression for interpretable modeling. In Fig. 5G we pre-
sent the decision tree learned for predicting the essential-
ity of the FAM50A gene. As opposed to the case in linear 
regression where we segregate cell lines based on tissue 
type, here the decision tree segregates cell lines auto-
matically. It begins by segregating cell lines on the most 
informative feature, FAM50B, numerous times. Then 
depending on the expression of FAM50B different modi-
fier genes are used to determine the predicted value for 
the essentiality of FAM50A.

Both of these model types provide insights into the 
mechanisms which are associated with gene essentiality, in 
which contexts different genes are important for predict-
ing essentiality. This provides further methods of advance-
ment in understanding the interactions between genes.

Conclusion
In this work, we demonstrate the effectiveness of using 
greedy feature selection protocols to create informative 
and accurate models for essentiality with gene expres-
sion data as input. We also show that the criteria used for 
feature selection both improve model predictions as well 
as provides informative sets of modifier genes that are 
enriched in common molecular pathways. Besides inter-
pretable modeling, we show that our approach performs 
better than the previous state of the art in global perfor-
mance metrics as well as performance on a list of genes 
with known genetic diseases. We introduce the transfer 
learning problem of predicting essentiality on healthy 
tissues using cancer cell line data for training. Besides 
making predictions on healthy tissue to predict the phe-
notype of genetic disease, these models serve as potential 
methods for discovering cancer drug targets, in identify-
ing genes that are essential in a tumor context and not in 
adjacent healthy cells.
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