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Abstract

The discovery of slow-cycling cells at the corneal periphery three decades ago established 

the limbus as the putative corneal stem cell niche. Since then, studies have underscored the 

importance of the limbal stem cells in maintaining the health and function of the ocular surface. 

Advancements in our understanding of stem cell biology have been successfully translated 

into stem cell therapies for corneal diseases. However, recent developments in mouse genetics, 

intravital imaging, and single cell genomics have revealed the complexity of the limbal stem 

cells, from their molecular identity, function, and interactions with their niche environment. 

Continued efforts to elucidate stem cell dynamics of this extraordinary tissue are critical for not 

only understanding stem cell biology but advancing therapeutic innovation and development.
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Introduction

A highly specialized tissue, the cornea is comprised of three distinct cellular layers, a 

stratified epithelium, a collagenous stroma containing specialized fibroblasts, and a single 

layer of endothelial cells. The cornea protects the intraocular contents from external insults 

and transmits and refracts light due to its transparency and curvature. Decades of research 

have revealed how critical the corneal epithelium is for maintaining the health and function 

of the ocular surface. These functions are aided by the extraordinary regenerative capacity of 

the corneal epithelium.

Like other stratified epithelia, the process of renewal is driven by the coordinated 

proliferation of cells in the basal layer and terminal differentiation and shedding of cells 
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in the suprabasal layers. As a result, a continuous vertical flux of cells is generated as new 

cells are produced in the basal layer to replace those shed from the surface (1,2). However, 

in striking contrast to the cutaneous epidermis or esophagus, the corneal epithelium exhibits 

a secondary flux of cells within the basal layer, where cells are mobilized from the periphery 

to the center of the cornea (1,3–9). For many decades, the prevailing view was that this 

behavior was driven by an imbalance in the potency of the basal cells. Short-lived transient 

amplified cells (TACs) in the central cornea were assumed to be replenished by slow-

cycling, long-lived stem cells from a niche in the corneal periphery called the limbus. The 

appearance of distinct radial clonal stripes in lineage tracing experiments provided critical 

evidence to espouse this theory (10–13). Innovative mouse genetics, intravital imaging, 

and single cells genomics have subsequently uncovered significant cellular heterogeneity 

of the corneal stem cells and have shed new light on their molecular identity, function, 

and regulation. New experimental evidence is challenging the current dogma and support a 

revised model for corneal maintenance and regeneration that accounts for greater cellular 

diversity and complexity at the limbus than previously assumed. Collectively, these studies 

reveal the complex dynamics that drive the behaviors of these captivating cells. In this 

review, we provide an update on recent developments on our understanding of the limbal 

stem cells and their therapeutic relevance.

Compartmentalization of heterogeneous stem cell populations support corneal 
regeneration

The corneal epithelium consists of a single layer of basal cells and 4–6 superficial layers 

of stratified squamous cells. It has been estimated that complete turnover of the corneal 

epithelium takes about 2 weeks in both humans and mice, continuously replenished and 

maintained by the limbal stem cells (14–16). While early studies suggested a homogenous 

population of stem cells, recent evidence from various organs support the concept of 

inherent heterogeneity within the resident stem cell populations (17–19). A large host 

of concurrent genomic studies, both in human and mouse corneas, previously revealed 

specific gene expression signatures that distinguished more quiescent, long lived limbal stem 

cells from their more active transiently amplified progeny. From these studies, conserved 

marker genes have emerged, such as GPHA2, which encodes a surface marker protein that 

is specifically expressed in both human and mouse limbal stem cells (20–24). Evidence 

from in vitro and in vivo experiments suggest that expression of GPHA2 is critical for 

self-renewal of limbal stem cells and is furthermore dependent on cytokine mediated 

crosstalk with immune cells in the niche (20,21,23,24). This, as well as other, unique 

markers emerging from these studies are potentially not only important for the prospect of 

developing more effective protocols for isolating limbal stem cells for research and clinical 

use but also for elucidating general mechanisms of stem cell regulation across different 

tissues. For example, in the skin, GPHA2 as well as IFTM3 were found to be distinctly 

expressed in epidermal stem cells in the G0 phase (25).

However, recent single-cell gene expression analysis data also appear to challenge some 

previously accepted limbal stem cell markers (20–24,26–29). Abcg2 and Abcb5, for 

instance, were not found to be abundantly or exclusively expressed in the targeted 

populations though they were implicated beforehand as limbal stem cell markers (21–23,26–
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29). As such, discrepancies between RNAseq data have impeded the identification of 

definitive stem cell marker(s). Contributing to the conflicting findings are several issues 

that include the inherent dynamism exhibited by the limbal stem cells (29); ill-defined 

topography of the limbal stem cell niche; varying approaches to isolating limbal stem cells 

(30); and contrasting transcriptome analysis methods. Advancements in genomic methods 

that include direct visualization of transcripts in intact tissue, such as spatial transcriptomics, 

will hopefully help to resolve some of these differing results.

Distinctive clonal dynamics and spatial organization within the mouse limbus have disclosed 

a second level of heterogeneity in the limbal stem cells. Unlike the human limbus where 

the limbal stem cells are organized in radiating columns referred to as palisades of Vogt, 

the mouse limbus is an undefined, narrow area of cells encircling the cornea (Figure 

1). Recent studies have identified in the mouse limbus subpopulations that primarily 

support homeostatic maintenance and subpopulations primarily involved in injury repair 

and regeneration (17–19). Using lineage tracing, quantitative clonal analyses, and intravital 

imaging, three independent studies dissected the activity of limbal stem cells in the mouse 

cornea and found at least two populations with discrete localization and growth patterns 

(Figure 1 a, b) (24,31,32). These subpopulations are organized circumferentially, dividing 

the limbus into two compartments (Figure 1 c). Stem cells in the inner limbus are active 

and undergo mostly symmetric cell divisions to replenish their pool and generate more 

differentiated progeny. These transient amplified progenitors then exit the niche and expand 

centripetally with increased probability to commit to terminal differentiation. When these 

cells differentiate, they move away from the basal layer towards the corneal surface to 

maintain the epithelial barrier before being shed from the corneal surface.

Stem cells identified in the compartment corresponding to the outer limbus appear to 

be more quiescent and by lineage tracing analysis display only local clonal dynamics. 

Under normal physiologic conditions, the outer limbal stem cells do not contribute to 

the corneal epithelium nor the conjunctival epithelium that lies on the other side of 

the limbus. Instead, these outer limbal stem cells can be induced to mobilize after a 

large epithelial injury to repair and regenerate the corneal epithelium. The functional and 

spatial stem cell organization in the limbus mirror those found in other tissues, including 

the hair follicle, intestinal and hematopoietic niches, but the significance in these other 

organ systems is less clear (17–19,33–35). In the eye, the limbal stem cells may be 

critical for maintaining the distinct compartmentalization of the corneal epithelium from 

the conjunctival epithelium. Alternatively, or in concert, the separation of active and 

quiescent stem cells may ensure the presence of a reserve population in times of urgent 

need, like after an acute injury. The most recent studies have expanded the toolbox of 

available markers that distinguish the subpopulations within the limbus, such as TP63, 

K14, K15, Lrig1, GPHA2 and Slc1a3. However, given the discrepancies that often arise 

when comparing different experimental approaches used to characterize stem cells (RNA 

sequencing, immunohistochemistry, knock-in in vivo reporters, Cre-LoxP based lineage 

tracing, etc.), caution should be exercised for the absolute specificity of these markers, 

especially for identifying and isolating the different stem cell populations present in the 

limbus (5,12,24,31,32).
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Clinical implications of emerging corneal single cell biology

The cornea is one of the few tissues where stem cell therapy has been successfully employed 

in humans. For decades, corneal epithelial stem cells have been used to for various ocular 

surface and corneal disorders including limbal stem cell deficiency (LSCD). LSCD is 

a condition characterized by the loss of limbal stem cells resulting in dysfunction of 

the ocular surface. Etiology may be genetic, acquired, or idiopathic, ranging from PAX6 

gene mutations, aniridia, inflammatory/immunogenic disorders to trauma, chemical/thermal 

burns, and iatrogenic from ocular surgery (36,37). Diagnosis is primarily based on clinical 

findings and cytologic evidence, which include confirming the presence of goblet cells or 

absence of corneal epithelial markers on the corneal surface (38). While mild cases of LSCD 

may be managed with medical therapy, severe cases can only be treated surgically with 

either grafting of tissue or transplantation of cultivated cells (36,39).

Since the first transplantation performed by Jose Barraquer, limbal stem cell therapies 

have evolved with our growing understanding of the limbal stem cells (40). Current 

approaches include direct transplantation of autologous or allogenic limbal tissue, as well 

as transplantation of cultivated autologous or allogenic limbal stem cells. These advances 

have led to successful clinical outcomes that include improvement in visual acuity, corneal 

reepithelialization, and reduced inflammation (36,40,41). In a meta-analysis by Le et al., the 

authors found an overall improvement in ocular surface disease by 74.5% after limbal stem 

cell transplantation (39). Of the four common stem cell therapies analyzed, direct autologous 

limbal transplantation resulted in the greatest improvement in visual acuity by 76% (39) 

Nevertheless, there remains tremendous opportunity and potential to further develop limbal 

stem cell therapies. For example, despite its success, direct autologous limbal transplantation 

can only be employed in unilateral cases of LSCD because it requires tissue to be harvested 

from the healthy, contralateral eye. Additionally, LSCD in the healthy donor eye have been 

reported after this procedure since a large segment of tissue is harvested from the patient’s 

healthy eye (39,42,43). If direct allogeneic limbal transplantation is necessary, as in the case 

of bilateral disease, Le et al. found only a 52.3% improvement in visual acuity with a 27.6% 

rejection rate (39).

Therefore, attention has turned to alternative approaches, such as limbal epithelial grafts. 

These procedures require only small amounts of tissue to be harvested from a donor eye, 

minimizing the risk of inducing LSCD in a healthy eye (36). Cultivated limbal epithelial 

transplantation (CLET) and, more recently, simple limbal epithelial transplantation (SLET) 

involve the excision of a small limbal area from a healthy donor and transplanting either 

cultivated corneal epithelial sheets or fragmented donor tissue, respectively, to the ocular 

surface (36,42). Success rates for both procedures have been shown to be similar to direct 

autologous limbal transplants (36,42). Underlying this progress is the discovery of limbal 

stem cell markers, which have included Np63 (44), ABCB5 (45), and Keratin 15 (12). 

It has been shown that cases transplanted with >3% p63+ limbal stem cells yield higher 

success rates (46). Norrick et al. recently assessed the feasibility of using an alternative 

marker, ABCB5+ to isolate p63+ limbal stem cells since using p63 as a marker poses 

unique clinical challenges given its nuclear localization while ABCB5 is expressed on the 

cell surface (41). Though the researchers found that 50% of ABCB5+ cells co-express 
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p63, the efficacy of ABCB5+ limbal stem cells in restoring the ocular surface remains 

to be seen from the recently completed interventional, open-label, multicenter Phase I/IIa 

clinical trial on allogeneic transplantation with ABCB5+ limbal stem cells (Clinicaltrials.gov 

NCT03549299) (41). Nevertheless, many of the established markers do not distinguish 

active stem cells from quiescent ones, which continues to impede the isolation of the limited 

stem cells from the limbus. Identification of new potential markers from recent single-cell 

studies (Table 1) may potentially overcome this obstacle (20–24,26–29).

Another area of great interest in limbal stem cell therapy is the reconstitution of the stem 

cell niche, driven by our greater understanding of limbal stem cell dynamics and niche 

interactions. LSCD due to injuries such as severe chemical/thermal burns or ocular surgeries 

is not only characterized by limbal stem cell loss but destruction of the limbal niche. Recent 

studies have investigated the contributions of the limbal niche extracellular matrix (ECM) to 

limbal stem cell survival and cellular programming. Unlike the central corneal stroma, the 

limbal ECM is enriched with fibronectin, α2 and β2-laminin, Tenascin C, and Wnt ligands, 

as well as mesenchymal stem cells (MSCs) (36,47,48). MSCs, in particular, are of clinical 

interest since they have been shown to affect the innate and acquired immune response via 

anti-inflammatory and growth factors, which could mitigate the loss of limbal stem cells 

and stem cell markers from prolonged inflammation (49,50). While epithelial cells from the 

host have been detected on the corneal surface after LSCD transplantation, suggesting the 

limbal niche may be revitalized (51), other evidence indicate limbal stem cell transplantation 

and a healthy stroma are not sufficient in restoring the stem cell niche (52,53). In vivo 

confocal microscopy has shown that CLET alone, for example, fails to recreate the limbal 

niche (52,53). As such, early phase clinical trials are underway to examine the efficacy 

of transplanting MSCs with limbal stem cells to reconstruct the limbal niche (54–57). 

Additional effort in understanding the underlying cellular programming of LSCs is also 

ongoing to develop therapies using transformed human induced pluripotent stem cells and 

various biocompatible scaffolding to replenish the stem cell population and replicate the 

niche (58,59).

Concluding remarks

Easy accessibility to the limbal stem cells and niche has facilitated not only our 

understanding of limbal stem cell biology but also the development of limbal stem cell-

based therapies. Current data paint a vibrant picture of the complex and often intersecting 

molecular processes that underlie the identity, functions, and fates of the limbal stem 

cells. However, the intrinsic and extrinsic regulatory mechanisms that determine the state 

of differentiation of stem cells in the cornea remain unresolved and are unlikely to be 

determined by a single factor. Thus far, intrinsic mechanisms have included epigenetic 

regulatory elements, transcription factors, autocrine and paracrine molecular signals, and 

circadian clock oscillations (60–71). However, it is becoming increasingly clear that stem 

cells rely on cues from the tissue microenvironment to control their fate. These extrinsic 

factors not only comprise static factors, such as the ECM, but modifiable niche factors as 

well, such as immune cells, that are capable of modulating corneal stem cell behavior in 

response to various stimuli (24,72–78). While present-day concepts suggest each of these 

regulatory mechanisms are appointed specific roles, it remains to be seen how they are all 
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integrated at the cellular level to maintain tissue homeostasis. These recent studies highlight 

the dynamism of stem cell regulation and heterogeneity, which also reflect their complexity. 

Advancements in understanding limbal stem cell programming will not only expand our 

understanding of stem cells in general but could have immediate translational therapeutic 

impact. Therefore, the study of limbal stem cells can help preserve vision in individuals and 

shed light on the broader field of stem cell research.
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Figure 1. Compartmentalized organization of stem cells in the ocular surface epithelium.
(a) Schematic of the anatomy of the mammalian eye. Inset shows a magnification of the 

ocular anterior segment and the location of the cornea and limbus. (b) Cross section diagram 

of the mouse cornea illustrating the components of the limbal stem cell niche. The limbus 

is located at the intersection between the conjunctival and corneal epithelia, which share a 

common surface. Stem cells and progenitors are located in the basal layer of the stratified 

epithelium. At least two distinct stem cell populations exist in the limbal niche. Mostly 

quiescent stem cells are located in the outer limbus. These stem cells do not contribute 

directly to the homeostasis of either the conjunctiva or the cornea but can be activated after 

large scale injury to the corneal epithelium. Stem cells in the inner limbus are active and 

undergo mostly symmetric cell divisions to generate transient amplified progenitors. These 

exit the limbus and drift centripetally while continuing to proliferate. Cells in the basal layer 

can commit to terminal differentiation by intrinsic or extrinsic cues, to replenish the cells 

that are shed form the epithelial surface. The probability of basal progenitors committing 

to terminal differentiation increases towards the center of the cornea. The stroma consists 

of cellular and non-cellular components that can regulate and influence the activity and 

fate of stem cells. (c) 3D model of the cornea showing 11 the organization of the limbal 

compartments and the clonal behavior of the stem cells within.

Lee and Rompolas Page 11

Curr Opin Genet Dev. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee and Rompolas Page 12

Table 1

Gene Function Species Reference

Limbal Stem Cells SCRG1 Secreted ligand Human Ligocki et al. [16]

FRZB Wnt-binding protein Human Ligocki et al. [16]

GPHA2 Subunit of the dimeric glycoprotein 
hormone family

Human, 
Mouse

Collin et al. [19], Altshuler et al. [24], 
Ligocki et al. [16]

CAV1 Scaffolding protein within caveolar 
membranes

Human Catala et al. [17]

TSPAN7 Cell-surface, signal transduction 
protein

Human Collin et al. [19], Li et al. [18]

SOX17 Transcription factor Human Li et al. [18]

IFITM3 Antiviral membrane protein Mouse, 
Human

Altshuler et al. [24], Dou et al. [20]

TXNIP Metabolic protein involved in 
redox regulation

Mouse, 
Human

Kaplan et al. [34], Collin et al. [19]

Corneal Transient 
Amplified Progenitors

CKS2 Protein subunit of cyclindependent 
kinases

Human Ligocki et al. [16], Catala et al. [17]

UBE2C Ubiquitin-conjugating enzyme Human Ligocki et al. [16], Catala et al. [17], Li et 
al. [18]

CDC20 Cell cycle regulatory protein Human Li et al. [18]

STMN1 Microtubule regulatory protein Human Catala et al. [17]
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