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Background. Mesenchymal stem cell- (MSC-) based cell and gene therapies have made remarkable progress in alleviating acute
lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the benefits of Forkhead box protein M1 (FoxM1)
gene-modified MSCs in the treatment of ALI have not been studied. Methods. We evaluated the therapeutic effects of FoxM1-
modified MSCs in ALI mice induced by lipopolysaccharide (LPS) by quantifying the survival rate, lung weight ratio (wet/dry),
and contents of bronchoalveolar lavage fluid. In addition, microcomputed tomography, histopathology, Evans Blue assay, and
quantification of apoptosis were performed. We also explored the underlying mechanism by assessing Wnt/β-catenin signaling
following the treatment of mice with FoxM1-modified MSCs utilizing the Wnt/β-catenin inhibitor XAV-939. Results.
Compared with unmodified MSCs, transplantation of FoxM1-modified MSCs improved survival and vascular permeability;
reduced total cell counts, leukocyte counts, total protein concentrations, and inflammatory cytokines in BALF; attenuated lung
pathological impairments and fibrosis; and inhibited apoptosis in LPS-induced ALI/ARDS mice. Furthermore, FoxM1-modified
MSCs maintained vascular integrity during ALI/ARDS by upregulating Wnt/β-catenin signaling, which was partly reversed via
a pathway inhibitor. Conclusion. Overexpression of FoxM1 optimizes the treatment action of MSCs on ALI/ARDS by
inhibiting inflammation and apoptosis and restoring vascular integrity partially through Wnt/β-catenin signaling pathway
stimulation.

1. Introduction

Acute lung injury/acute respiratory distress syndrome (ALI/
ARDS) is distinguished by increased lung permeability, pul-
monary edema, and infiltration of inflammatory cells [1],
with mortality rates ranging from 35% to 46% [2]. Damage
of alveolar epithelial-endothelial barriers is an important
aspect of ARDS pathophysiology [3, 4]. Currently, no spe-
cific drug therapy is effective for patients with ARDS, and
all available treatments involve supportive measures [2].

Therefore, further investigation of promising therapeutic
strategies that target these pathophysiological features of
ALI/ARDS is urgently needed.

Transplantation of mesenchymal stem cells (MSCs), a
multifunctional cell type, is considered a promising
approach for the treatment of ARDS due to their immuno-
modulatory and anti-inflammatory properties [5, 6].
Administration of MSCs reduces alveolar-capillary barrier
damage and mortality in preclinical models of ALI [7–11].
Although the mechanism by which MSCs exert benefit is
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unclear, increasing evidence suggests that it is related to their
secretory functions. Indeed, through paracrine effects, MSCs
regulate important pathologic pathways of ARDS and sepsis
such as inflammation, damage of endothelial and epithelial
cells, clearance of alveolar fluid, antimicrobial action, and
apoptosis [12]. Several paracrine mediators of MSCs have
been identified, including interleukin 10 (IL-10) [13], anti-
microbial peptide lipocalin 2 [14], angiopoietin 1 [8, 15,
16], keratinocyte growth factor [17, 18], hepatocyte growth
factor [19], and the antimicrobial peptide LL-37 [20]. More-
over, recent evidence indicates that gene-modified MSCs can
further enhance their effects in the treatment of ALI [21].

Forkhead box (FOX) proteins, such as Forkhead box
protein M1 (FoxM1), represent a broad family of transcrip-
tional regulators that regulate cell cycle progression, prolifer-
ation, differentiation, metabolism, aging, survival, and
apoptosis [22]. FoxM1 activity ensures proper epithelial
and mesenchymal tissue development during embryonic
and fetal development [23] and takes part in repairing organ
damage like the lung, liver, heart, and spinal cord during dis-
ease [24–27]. In addition, we found that the therapeutic effi-
cacy of bone marrow-derived MSCs (BMSCs) was enhanced
by overexpression of FoxM1 in preliminary experiments
evaluating lipopolysaccharide- (LPS-) induced endothelial
cell (EC) injury. Thus, FoxM1 genetically engineered MSCs
are a possible treatment choice for ALI. Moreover, whether
FoxM1 enhances the therapeutic effect of MSCs on ALI/
ARDS in vivo is still uncertain. Therefore, the present
research sought to examine the pathway by which BMSCs
overexpressing FoxM1 alleviate ALI/ARDS.

2. Materials and Methods

2.1. BMSC Transduction and Culture. Lentiviral transfection
of Sprague-Dawley rat BMSCs was performed as previously
reported [21]. Successfully transfected cells were grown in
Dulbecco’s modified Eagle medium mixed with 10% fetal
bovine serum as well as 1% streptomycin/penicillin in a car-
bon dioxide incubator. Three to ten passages of cells were
employed in further tests.

2.2. Preparing Experimental Animals. Sun Yat-sen Univer-
sity (Guangzhou, China) supplied all animals. Each proce-
dure was authorized by the Animal Care and Use
Committee of the First Hospital of Sun Yat-sen University.
To establish the ALI mouse model, mice were given LPS
(10mg/kg, Escherichia coli 055:B5; Sigma-Aldrich; USA)
via injection intraperitoneally [28, 29]. Mice were originally
split into four groups (12 mice per group): control, LPS,
LPS+BMSCs-Vector, and LPS+BMSCs-FoxM1. After 4 h of
LPS exposure, BMSCs-Vector or BMSCs-FoxM1 (1 × 106
cells/200μL saline) were supplemented by injection into
the mice’s tail veins in the respective groups, whereas LPS
and control group mice received 200μL of saline. Twenty-
four hours later, mice were sacrificed, and their lung tissues
were collected for follow-up experiments.

In addition, we explored the underlying mechanism by
assessing Wnt/β-catenin signaling following the treatment

of mice with FoxM1-modified BMSCs utilizing the Wnt/β-
catenin suppressor XAV-939 (APExBIO, USA).

2.3. Lung Wet/Dry Weight Ratio. The right upper lungs of
each animal were extracted and weighed instantly to assess
the wet weight. To assess the dry weight, lung tissues were
dehydrated for 48 h in a drying oven at 60°C. Then, the lung
wet/dry ratio (W/D) was detected as follows: W/D = dry
weight/wet weight × 100%.

2.4. Evans Blue (EB) Assay. To evaluate pulmonary barrier
permeability, EB dye (Sigma-Aldrich) was given through
injecting the tail vein (20mg/kg) of each mouse 1 h before
sacrifice [30]. Subsequently, mice were injected intracardi-
ally with sterile saline, and their lungs were rapidly removed.
After weighing, lung tissues were homogenized in N-
dimethylformamide, incubated for 72h at 60°C, and then
centrifuged at 5000 × g for 30min to isolate EB dye. Finally,
the EB dye absorption was determined at 630nm with a
spectrophotometer.

2.5. Histology. Lung tissue samples were fixed in paraffin and
had hematoxylin and eosin (H&E) as well as Masson’s tri-
chrome staining. Finally, Smith [31] and Ashcroft [32]
scores were used to evaluate pathological changes and the
degree of pulmonary fibrosis, respectively.

2.6. Microcomputed Tomography (Micro-CT) Experiment. At
24 h post-LPS exposure, lung images were acquired by a
micro-CT device (Bruker, Billerica, MA) to assess the extent
of lung infiltration.

2.7. Immunofluorescence Staining. Lung sections were incu-
bated overnight at 4°C with an antibody against vascular
endothelial- (VE-) cadherin (Abcam, Cambridge, UK) and
β-catenin (Cell Signaling Technology, Danvers, MA), rinsed
thrice with PBS (10min each), and then incubated for 1 h
with second antibodies at room temperature in darkness.
Afterwards, sections were incubated for 10min with DAPI
at room temperature. Lastly, a fluorescence microscope
(Olympus, Tokyo, Japan) was utilized to image tissue
samples.

2.8. Evaluation of Leukocyte Influx and Protein Level in
Bronchoalveolar Lavage Fluid (BALF). BALF was collected
in accordance with a previously published protocol [33].
Total cells in BALF were detected with a hemocytometer,
and total protein was evaluated with a bicinchoninic acid
(BCA) assay kit (Beyotime, Haimen, China). Additionally,
numbers of leukocytes were counted after staining with
Wright-Giemsa dye.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). Corre-
sponding ELISA kits (eLGbio, Guangzhou, China) were uti-
lized to recognize contents of tumor necrosis factor α (TNF-
α) as well as IL-1β, IL-6, IL-4, and IL-10 inflammatory fac-
tors in BALF.

2.10. Western Blot. Total proteins were isolated utilizing
RIPA buffer with 1% protease inhibitor and then quantified
utilizing the BCA assay. After loading and electrophoresis
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Figure 1: Continued.
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Figure 1: BMSCs-FoxM1 alleviate LPS-induced ALI mice: (a) Kaplan-Meier survival curves (n = 10); (b, c) severity and score of lung injury,
magnification 100x and 400x (n = 6); (d) lung wet/dry assay (n = 6); (e) Evans Blue dye evaluates pulmonary barrier permeability (n = 6).
The detection of total protein concentration (f), total cell count (g), and leukocyte count (h) in BALF (n = 6). Values are reported as the
mean ± SEM. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗∗p < 0:0001 whereas for control group; #p < 0:05, ##p < 0:01, ###p < 0:001, ####p < 0:0001 vs. LPS group.

(a) (b)

(c) (d)

Figure 2: Extent of lung infiltration assessed by microcomputed tomography: (a) control group; (b) LPS group; (c) LPS+BMSCs-Vector
group; (d) LPS+BMSCs-FoxM1.
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of equal amounts of protein in 10% sodium dodecyl sulfate-
polyacrylamide gels, the proteins were subsequently trans-
mitted onto polyvinylidene fluoride membranes. The mem-
branes were blocked with 5% dry skimmed milk for 1 h at
room temperature and after were incubated at 4°C overnight
with the next primary antibodies: anti-β-actin (DEWEIBIO,
Guangdong, China), anti-β-catenin, anti-VE-cadherin, anti-
Bcl-2, and anti-Bax. Following three washes with Tris-
buffered saline comprising Tween 20, blots with the respec-
tive enzyme-linked secondary antibody were incubated for
1 h at room temperature. Next, protein bands were deter-
mined by improved chemiluminescence staining utilizing a
kit (Merck Millipore, USA) and ImageJ software v1.4.0
(http://imagej.nih.gov), with β-actin as the loading control.

2.11. Statistical Methods. Measurement data were displayed
as the mean ± SEM. One-way ANOVA and Tukey’s test
were utilized to compare multiple groups, whereas two
groups were compared utilizing Student’s t-test. p values
below 0.05 were assessed as statistically significant.

3. Results

3.1. Injection of BMSCs Overexpressing FoxM1 Enhanced
Survival and Ameliorated LPS-Induced ALI Mice. For the

survival study, the survival of mice was monitored after
LPS exposure. At the end of the 5-day follow-up period,
the survival rate of mice in the control group was 100%,
whereas it was 50% in the LPS group. Remarkably, the sur-
vival rate of mice in the LPS+BMSCs-Vector and LPS
+BMSCs-FoxM1 groups was significantly increased, espe-
cially in the LPS+BMSCs-FoxM1 group (Figure 1(a)). To
evaluate pathological changes in the lung, paraffin sections
were stained with H&E. Lung histopathology revealed that
lung injuries include inflammatory cell infiltration, thick-
ened alveolar walls, and edema with hemorrhaging edema
in LPS-treated mice, whereas these pathological changes
were significantly attenuated in LPS-induced ALI mice
treated with BMSCs-Vector or BMSCs-FoxM1, especially
BMSCs-FoxM1 posttreatment (Figure 1(b)). These patho-
logical changes were reflected in the lung injury score
(Figure 1(c)). These results indicated that overexpression of
FoxM1 could enhance BMSCs improving survival and alle-
viating lung tissue damage of LPS-induced ALI mice.

One of the typical pathological features of ALI is dys-
function of the pulmonary vascular endothelial barrier. To
investigate the effects of FoxM1-modified BMSCs on pulmo-
nary vascular permeability, we quantifiedW/D weight ratios,
extravasation (as evaluated with Evans Blue dye), and BALF
protein concentrations. The findings showed that W/D
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Figure 3: BMSCs-FoxM1 alleviated pulmonary fibrosis of LPS-induced ALI: (a) Masson staining lung sections; (b) grading of lung fibrosis.
Values are provided as the mean ± SEM. n = 6, ∗∗∗∗p < 0:0001 whereas for control group; ##p < 0:01, ####p < 0:0001 vs. LPS group.
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weight ratios in the LPS+BMSCs-FoxM1 group were signif-
icantly decreased compared with the BMSCs-Vector and
LPS groups (Figure 1(d)). Similarly, protein concentrations
in BALF and quantitative extravasation of Evans Blue dye,
as well as W/D, were remarkably reduced in mice treated
with FoxM1-modified BMSCs (Figures 1(e) and 1(f)). These
findings illustrated that FoxM1-modified BMSCs had a pro-
tective effect against pulmonary vascular permeability in
LPS-induced ALI mice. These results indicated that overex-
pression of FoxM1 could enhance BMSCs improving the
vascular permeability of LPS-induced ALI mice.

The number of neutrophils in BALF is an indicator of
the degree of inflammatory damage in lung tissue. As
shown in Figures 1(g) and 1(h), strong inflammation was
confirmed in LPS group mice by significantly increased

counts of total cells and leukocytes in BALF, which were
significantly lowered in mice receiving either BMSCs treat-
ment, particularly BMSCs-FoxM1. Additionally, micro-CT
revealed bilateral patchy infiltrates in LPS group mice com-
pared with the normal radiological aspects of the lung in
controls; however, these patchy infiltrates were significantly
decreased in the LPS+FoxM1 group contrasted to the LPS
and LPS+BMSCs-Vector groups (Figure 2). Overall, these
results confirm that overexpression of FoxM1 enhanced
the inflammation inhibition effect of BMSCs on LPS-
induced lung injury.

3.2. BMSCs Overexpressing FoxM1 Alleviated Pulmonary
Fibrosis Induced by LPS. Studies have shown that fibrosis
may occur in the early stage of ARDS [34, 35]. BMSC
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Figure 4: BMSCs-FoxM1 regulates LPS-induced inflammation in BALF. BMSCs-FoxM1 reduced LPS-induced protein expression of IL-1β
(a), IL-6 (b), and TNF-α (c). BMSCs-FoxM1 suppressed the decrease of LPS-induced production of the pro-anti-inflammatory IL-10 (d) and
IL-4 (e). Values are reported as the mean ± SEM. n = 3-6, ∗p < 0:05, ∗∗∗∗p < 0:0001 whereas for control group; #p < 0:05, ###p < 0:001,
####p < 0:0001 vs. LPS group.
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treatment has been shown to markedly reduce the collagen
deposition observed in LPS-induced lung injury [36]. There-
fore, Masson staining was used to evaluate the effect of
FoxM1-modified BMSCs on ALI fibrosis. The images of
Masson staining revealed severe collagen deposition and
fibrotic lesions in LPS group mice contrasted to the control
group; however, less damage was discovered in the LPS
+BMSCs-FoxM1 group contrasted to the LPS and LPS
+BMSCs-Vector groups (Figure 3(a)). We next used the
Ashcroft score to quantify lung fibrosis in each group. The
results showed that the Ashcroft score in the LPS+BMSCs-
FoxM1 group was significantly decreased compared with
the BMSCs-Vector and LPS groups (Figure 3(b)). These
findings indicated that overexpression of FoxM1 could
enhance the fibrosis inhibition effect of BMSCs on LPS-
induced lung injury.

3.3. Measuring Inflammatory Factors. ALI is a complex
inflammatory disease, and inflammatory cytokine release
has been proven to perform a pivotal function in the patho-
logic process of sepsis-stimulated lung injury. Therefore, we
detected inflammatory cytokines using ELISA. ELISA
detected levels of pulmonary inflammatory cytokines
(Figure 4). IL-1β, IL-6, and TNF-α levels in BALF were sig-
nificantly raised in the LPS group in contrast to the control
group, while IL-4 and IL-10 were significantly decreased.
The BMSCs-FoxM1 group exhibited lower levels of inflam-
matory factors (IL-1β, IL-6, and TNF-α) and higher levels
of anti-inflammatory factors (IL-4 and IL-10) compared
with the LPS and LPS+BMSCs-Vector groups. These find-
ings indicated that overexpression of FoxM1 could enhance
the lung inflammation inhibition effect of BMSCs on LPS-
induced lung injury.
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Figure 5: BMSCs-FoxM1 protects against LPS-induced ALI via stimulating the Wnt/β-catenin pathway: (a) Western blotting evaluated the
expression of Wnt/β-catenin, VE-cadherin, and apoptosis-related proteins (Bcl-2, Bax); (b–e) Western blot densitometric evaluation. Values
are presented as the mean ± SEM. n = 3, ∗p < 0:05, ∗∗p < 0:01 whereas for control group; #p < 0:05, ##p < 0:01, ###p < 0:001 vs. LPS group.
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3.4. BMSCs Overexpressing FoxM1 Activated the Wnt/β-
Catenin Signaling Pathway In Vivo. VE-cadherin, a key
member of adherens junctions [37], plays a vital part in con-
trolling pulmonary microvascular endothelial permeability.
To study the protective pathway of FoxM1-modified BMSCs
on endothelial barrier integrity, we examined VE-cadherin,
β-catenin, Bcl-2, and Bax protein expressions. We observed
that protein levels of VE-cadherin, β-catenin, and the antia-
poptotic protein Bcl-2 were significantly reduced, while

apoptosis-associated protein Bax was significantly raised in
the LPS group contrasted to the control group
(Figures 5(a)–5(e)). Moreover, β-catenin, VE-cadherin, and
the antiapoptotic protein Bcl-2 expressions were significantly
elevated, and apoptosis-associated protein Bax expression
was significantly reduced in the LPS+BMSCs-FoxM1 group
contrasted to the LPS and LPS+BMSCs-Vector groups
(Figures 5(a)–5(e)). Similarly, immunofluorescence results
show significantly decreased expression of VE-cadherin
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Figure 6: Impact of BMSCs-FoxM1 on β-catenin and VE-cadherin expression in LPS-induced ALI mice by immunofluorescence analysis:
(a) immunofluorescence staining for β-catenin (green) and VE-cadherin (red); (b) quantitative β-catenin expression; (c) quantitative VE-
cadherin expression. Values are reported as the mean ± SEM. n = 3, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001 whereas for control group; #p < 0:05,
##p < 0:01, ###p < 0:001, ####p < 0:0001 vs. LPS group.
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and β-catenin in the LPS group, while these factors were
markedly increased in the LPS+BMSCs-FoxM1 group
(Figures 6(a)–6(c)). Intriguingly, a particular Wnt/β-
catenin pathway suppressor (XAV-939) abolished the
effect of BMSCs-FoxM1, which downregulated not only
protein expression of β-catenin but also VE-cadherin
(Figures 7(a)–7(c)). Taken together, these results indicated
that BMSCs overexpressing FoxM1 enhanced the protec-
tive effect of BMSCs on LPS-induced ALI through the
activation of Wnt/β-catenin signaling.

4. Discussion

Herein, we examined the impacts of FoxM1-modified
BMSCs on LPS-induced ALI. FoxM1 overexpression signifi-
cantly stimulated the protecting impacts of BMSCs on LPS-
induced ALI, partly by stimulating the Wnt/β-catenin sig-
naling pathway. This research presents unique perspectives
on MSC-based therapeutic strategies for ALI/ARDS.

MSCs have substantial treatment promises for ALI/
ARDS. However, the potential mechanisms involved remain
unclear. Recent preclinical studies have demonstrated that
MSCs influence essential pathobiological mechanisms in
ARDS and sepsis by releasing paracrine factors [12], which
exert anti-inflammatory [38, 39] and antiapoptotic [21]
effects and reduce the permeability of alveolar epithelium
[40] and vascular endothelium [41]. Modifying certain genes
can further induce the impact of MSCs in treating ALI
[42–44]. Salerno et al. [45] found that aging of MSCs
in vitro leads to the loss of chondrogenesis, and reduced
chondrogenesis is associated with the downregulation of

FoxM1 signaling. Xu et al. [46] found that activation of the
ERK/FoxM1 pathway exerts protective effects against MSC
senescence. In our study, BMSCs were modified with a retro-
virus carrying FoxM1 and then intravenously infused into
mice 4 h after LPS-induced ALI modeling. Consistent with
previous studies, we found that BMSCs-Vector reduced
mortality, pulmonary edema, pathological damage, inflam-
matory cell recruitment into the lungs, fibrosis, and proin-
flammatory cytokine levels. As expected, FoxM1-modified
BMSCs were more effective than BMSCs-Vector at produc-
ing therapeutic effects in a mouse model of ALI/ARDS.

ALI/ARDS pathogenesis involves alveolar capillary dam-
age, which increases vascular permeability [47]. The impor-
tance of maintaining pulmonary endothelial integrality in
the treatment of ARDS has been demonstrated [48]. In addi-
tion, some studies identified critical roles for FoxM1 in vas-
cular repair [24, 49–53]. For example, Zhao et al. found that
endothelial expression of FoxM1 is crucial for protecting
bone marrow progenitor cells from LPS-induced lung
inflammation and death [24]. In a mouse model with EC-
restricted disruption of FoxM1, Mirza et al. demonstrated
that FoxM1 repairs endothelial adherens junctions via β-
catenin transcriptional control [51]. Moreover, abnormally
activating FoxM1 can lead to overexpression of MMP-2,
VEGF, ZEB1, and so on, which are all angiogenic genes
[54]. Here, consistent with previous findings, we demon-
strated that FoxM1 enhances BMSCs to restore vascular
integrity by reducing vascular leakage and exerting antia-
poptotic impacts (lowering Bax and elevating Bcl-2 activity).
VE-cadherin, a key member of adherens junctions, regulates
endothelial permeability in vessels [55]. Interestingly, we
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Figure 7: The effect of Wnt/β-catenin pathway inhibitor (XAV-939) on BMSCs-FoxM1 in the treatment of LPS-induced ALI: (a) the
expression of VE-cadherin and β-catenin; (b, c) Western blot densitometric evaluation. Values are reported as the mean ± SEM.
n = 3, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗∗p < 0:0001.
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observed that FoxM1-modified BMSCs reversed the reduc-
tion of VE-cadherin protein caused by LPS compared with
BMSCs-Vector. Therefore, we believe that FoxM1 may be
beneficial for the restoration of vascular integrity.

The Wnt/β-catenin pathway contributes to chronic
inflammation, organ fibrosis, and asthma [56, 57]. Zhang
et al. [58] revealed that upregulation of the Wnt/β-catenin
pathway attenuated phosgene-induced ALI. Additionally,
activating the Wnt/β-catenin pathway serves crucial parts
in the progression of lung injury and repair during sepsis
and ventilator-induced ALI [59]. Moreover, Wnt/β-catenin
signaling is essential for angiogenesis [60]. Of note, Xie
et al. [61] revealed that FoxM1 promoted renal fibrogenesis
via activating the Wnt/β-catenin pathway. Similarly, Zhang
et al. revealed that the increased expression of FoxM1 can
promote the nuclear localization of β-catenin, thus activat-
ing the Wnt/β-catenin signaling pathway to regulate the
occurrence and development of breast cancer [62]. Addi-
tionally, apoptosis was repressed by regulating the FoxM1/
Wnt/β-catenin pathway [63]. Likewise, Chen et al. [64]
found that Wnt-induced deubiquitination of FoxM1 is a
novel and important mechanism controlling canonical
Wnt signaling and cell proliferation. Furthermore, FoxM1-
mediated activation of the Wnt pathway can promote cell
proliferation, migration, and epithelial-mesenchymal transi-
tion [65]. Here, we discovered that β-catenin expression
lowered following LPS therapy but was reversed by
BMSCs-Vector or BMSCs-FoxM1, and the reversal was
more pronounced with BMSCs-FoxM1. Furthermore, our
results reveal that a specialized suppressor of the Wnt/β-
catenin pathway (XAV-939) partially reversed β-catenin
expression in LPS-induced ALI/ARDS mice following injec-
tion of BMSCs-FoxM1. Therefore, we believe that the posi-
tive impacts of BMSCs-FoxM1 for the restoration of
vascular integrity partially occurred through activating the
Wnt/β-catenin signaling pathway.

MSCs-based treatments have been widely used in pre-
clinical and clinical studies of various diseases, showing great
potential in the treatment of ARDS. However, several
therapy-related issues deserve comment. The source of
MSCs, the way they are transfused, and their activity in the
body can affect the effectiveness of treatment [66, 67]. How
to ensure that MSC therapy is safe and efficient under the
premise of improving the therapeutic effect is particularly
important. Some methods have been employed to improve
the value of MSCs in vivo. For example, genetically modified
MSCs not only have all the characteristics of stem cells but
also can efficiently express foreign genes and enhance their
treating effects [68, 69]. Herein, we demonstrated for the
first time that FoxM1-modified BMSCs could enhance pro-
tection against LPS-induced ALI, which may contribute to
the optimization of MSC-based therapies. However, this
research has certain restrictions. First, animal models cannot
fully recapitulate all the features of human ALI/ARDS, and
the efficiency of identical treatments in different manifesta-
tions or ALI models requires further investigation. Second,
without comorbidities, antibiotic use, or use of ventilators,
the LPS-induced ALI/ARDS model cannot fully mimic the
pathophysiological process of patients with septic shock.

Third, MSCs naturally secrete a variety of paracrine factors,
but changes in paracrine factor secretion by MSCs overex-
pressing FoxM1 and the specific factors that play a therapeu-
tic role in ALI/ARDS development remain to be identified.
Such factors may be illuminated by future protein array or
microarray analyses.

5. Conclusion

In summary, our findings indicate that transplantation of
BMSCs overexpressing FoxM1 elicited protective effects
against LPS-induced ALI/ARDS by inhibiting inflammation
and apoptosis and restoring vascular integrity partially
through activating the Wnt/β-catenin signaling pathway.
These results provide new insight into MSC-based therapeu-
tic strategies for ALI/ARDS.
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