Skip to main content
. 2022 Jul 24;12(3):3744–3757. doi: 10.1002/cam4.5060

TABLE 2.

Performance metrics of machine‐learning models in predicting mortality with a threshold of 0.5 on the validation cohort

Model Accuracy (95% CI) Sensitivity Specificity PPV NPV Kappa F1 Brier
XGBoost 0.719 (0.686–0.751) 0.720 0.718 0.756 0.679 0.436 0.738 0.275
RF 0.723 (0.690–0.755) 0.782 0.651 0.732 0.711 0.437 0.756 0.271
LRLasso 0.596 (0.560–0.631) 0.309 0.945 0.872 0.529 0.237 0.456 0.396
SVM 0.690 (0.656–0.723) 0.727 0.645 0.714 0.661 0.373 0.720 0.304
KNN 0.702 (0.668–0.734) 0.656 0.759 0.767 0.644 0.408 0.707 0.292

Abbreviations: 95% CI, 95% confidence interval; KNN, K‐nearest neighbor; LRLasso, logistic regression with lasso regularization; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boost.