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Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a non-Hodgkin lym-
phoma with high mortality rates. Small nucleolar RNAs (snoRNAs) are tumor-
specific biological markers, but there are few studies on the role of snoRNAs in 
DLBCL.
Materials and Methods: Survival-related snoRNAs were selected to construct a 
specific snoRNA-based signature via computational analyses (Cox regression and 
independent prognostic analyses) to predict the prognosis of DLBCL patients. 
To assist in clinical applications, a nomogram was built by combining the risk 
model and other independent prognostic factors. Pathway analysis, gene ontol-
ogy analysis, transcription factor enrichment, protein–protein interactions, and 
single nucleotide variant analysis were used to explore the potential biological 
mechanisms of co-expressed genes.
Results: Twelve prognosis-correlated snoRNAs were selected from the DLBCL 
patient cohort of microarray profiles, and a three-snoRNA signature consisting of 
SNORD1A, SNORA60, and SNORA66 was constructed. DLBCL patients could be 
divided into high-risk and low-risk cohorts using the risk model, and the high-
risk group and activated B cell-like (ABC) type DLBCL were linked with disap-
pointing survival. In addition, SNORD1A co-expressed genes were inseparably 
linked to the biological functions of the ribosome and mitochondria. Potential 
transcriptional regulatory networks have also been identified. MYC and RPL10A 
were the most mutated SNORD1A co-expressed genes in DLBCL.
Conclusion: Put together, our findings explored the potential biological effects 
of snoRNAs in DLBCL, and provided a new predictor for DLBCL prediction.
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1   |   INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is an aggres-
sively malignant hyperplastic disease, accounting for 
approximately one-third of all non-Hodgkin lymphoma 
(NHL) cases worldwide.1 According to gene expression 
profiling, DLBCL is classified into three types: germinal 
center B-cell like (GCB), activated B-cell like (ABC), and 
unclassifiable, among which ABC DLBCL has a lower 
3-year survival rate of approximately 40%–50%, com-
pared to approximately 75% of GCB DLBCL.2,3 Although 
the complete response rate for DLBCL patients is over 
60%, after receiving the standard treatment protocols, 
R-CHOP (cyclophosphamide, doxorubicin, vincristine, 
and prednisone with rituximab), approximately one-
third of patients suffer from relapse or refractory disease 
due to chemoresistance, with a median survival time 
of <6 months.4 The dominant clinical measurement, 
International Prognostic Index (IPI), can predict clinical 
outcomes, but does not distinguish biological hetero-
geneity.1 Therefore, investigating prognostic biological 
molecules, as well as alternative treatment strategies for 
DLBCL is of great significance.

With the current next-generation sequencing and com-
putational techniques evolving rapidly, the critical roles 
of non-coding RNAs (ncRNAs), including microRNAs 
(miRNAs), long ncRNAs (lncRNAs), circular RNAs, piwi-
associated RNAs, and small nucleolar RNAs in the regu-
lation of tumorigenesis and tumor progression have come 
to light.5–7 Among ncRNAs, miRNAs and lncRNAs are the 
most extensively studied as vital factors in the diagnosis, 
treatment, and prognosis of DLBCL8–10; however, less at-
tention has been paid to other classes of ncRNAs, particu-
larly snoRNAs, which are comparable to miRNAs in terms 
of diversity and number.

snoRNAs are mainly found in the eukaryotic cell nu-
clei, 60–300 base pairs long, and contain conserved struc-
tural elements.11 Based on their structural components 
and biological roles, snoRNAs are classified into H/ACA 
snoRNAs (SNORA) and C/D box snoRNAs (SNORD). 
SNORAs guide the dioxymethylation of nucleotides, 
whereas SNORDs are responsible for pseudouridyla-
tion.11,12 Additionally, current data suggest that snoR-
NAs are involved in modifying snRNAs, tRNAs, and even 
mRNAs, and associated with the pathogenesis of multi-
ple malignancies, suggesting their potential as prognos-
tic biomarkers.13–15 Because of their carcinogenic roles, 
several snoRNA host genes, SNHG12,16 SNHG14,17,18 
and SNHG1619 have been recognized as promising ther-
apeutic targets in DLBCL. Among these, high expression 
of SNHG12 was found to correlate with poor prognosis 
in DLBCL patients.16 Despite these findings, the clinical 
value of snoRNAs in DLBCL remains to be determined.

This study aimed to screen snoRNA predictors based 
on microarray profile data and construct an independent 
and specific snoRNA-based signature using a series of 
computational analyses. To explore the underlying mech-
anism of snoRNAs in DLBCL, the genes co-expressed 
with snoRNAs in DLBCL were identified through analy-
ses of pathways, gene ontology, transcriptional regulation 
and mutations.

2   |   MATERIALS AND METHODS

2.1  |  Data acquisition and processing

The human snoRNA list was extracted from the snoDB 
(http://scott​group.med.usher​brooke.ca/snoDB/) data-
base20 and provided details of human snoRNAs integrat-
ing current literature and similar database resources, such 
as snoRNABase, snOPY, and snoRNA Atlas. Using “lym-
phoma” as the search term in Gene Expression Omnibus 
(GEO) database, prognostic snoRNA profiles of DLBCL 
were gathered. RNA sequencing (RNA-seq) data for 
DLBCL were downloaded from The Cancer Genome Atlas 
(TCGA). Expression data of snoRNAs in DLBCL, patient 
survival information, and other clinical parameters were 
downloaded for analysis, and all expression data were 
log2 normalized. Datasets without sufficient survival in-
formation, as well as datasets with prognostically relevant 
patients and fewer than 50 cases were excluded. The ex-
pression levels of snoRNAs were examined in two or more 
samples, and the average expression value was used for 
subsequent analyses. snoRNA expression and relevant 
clinical features were matched to the human snoRNA list 
obtained from snoDB.

2.2  |  Construction and validation of 
snoRNA prediction models

All the following calculations were performed using R 
4.0.2. In the construction of the microarray profile, uni-
variate Cox regression analysis was utilized to screen 
out snoRNAs related to overall survival (OS) in DLBCL 
patients. Significant survival-related snoRNAs (p < 0.05) 
were included for the next analyses. Then the LASSO re-
gression analysis is widely applied to variable selection 
and shrinkage for minimization of overfitting risk and 
can be used for prognostic model establishment.21 Thus, 
we constructed an optimal prognostic snoRNA signature 
in DLBCL via 1000 cross-validation iterations in LASSO 
regression and obtained regression coefficients (β). To cal-
culate the risk scores to confirm microarray profiles, the 
following formula was used: the risk score was equal to the 

http://scottgroup.med.usherbrooke.ca/snoDB/
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sum of (snoRNA1 expression × βsnoRNA1 + snoRNA2 expres-
sion × βsnoRNA2 + ...... + snoRNAn expression × βsnoRNAn). 
The in-between hazard score was regarded as the cut-off 
point. The Survival package in R 4.0.2 was used for subse-
quent survival analyses. To estimate the difference in OS 
between the high- and low- risk groups, the Kaplan–Meier 
(K-M) method was used. Using SurvivalROC R package 
to plot receiver operating characteristic curve, also known 
as ROC curve, predictive efficiency of the snoRNA model 
was determined. The area under the curve (AUC) was 
computed as well. To ensure the robustness and reliability 
of the risk model, an exclusion standard was made for the 
obtained models: the snoRNAs of the model could not be 
found in other datasets.

2.3  |  Exploration of the clinical value of 
risk model

Clinical correlation analyses of the risk model and corre-
sponding clinicopathological features were conducted to 
explore the clinical value of the prognostic signature. The 
chi-square test was applied for clinical correlation analy-
sis and the relevant cluster heat map was generated. The 
possibilities of risk score for predictive model and clinical 
indicators as significant prognostic markers were evalu-
ated using independent prognostic analyses, via “forest-
plot” R package.

2.4  |  Establishment of 
prognostic nomogram and calibration

The risk model and independent clinicopathological pa-
rameters were combined to construct a nomogram, an 
individualized scoring system for prognosis that is con-
ducive to prognosis prediction in DLBCL patients. Higher 
total scores were suggestive of worse clinical outcomes. 
The construction of nomogram was generated through 
“rms” package in R. Also, to test reliability, calibration 
analysis of the nomogram was conducted.

2.5  |  Functional annotation of genes 
co-expressed with candidate snoRNAs

SnoRNAs, which are mainly embedded in introns of 
protein-  or non protein-coding genes, have been impli-
cated in the process of posttranscriptional regulation of 
mRNA, snRNA, and tRNA.22 The co-expression relation-
ships between candidate snoRNAs and encoding genes 
were explored using Pearson's correlation analysis. Genes 
with an absolute value of correlation coefficient > 0.4 

(moderate correlation) were selected for further func-
tional examination. These mRNAs were subsequently 
subjected to functional enrichment analysis, containing 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) analyses, via DAVID 6.8 (Database 
for Annotation, Visualization, and Integrated Discovery 
version 6.8, https://david.ncifc​rf.gov/home.jsp). The sta-
tistically significant annotation KEGG and GO terms 
(p < 0.05) were visualized using the ggplot2 package in 
R. To assess the association among these genes, protein–
protein interaction networks (PPI) were drawn using 
high-confidence interactions (interaction score ≥ 0.7) in 
the STRING database (https://strin​g-db.org/). The genes 
ranked as top 10 according to degree values were selected 
as hub genes using Cytoscape software.

2.6  |  Transcriptional regulation of 
snoRNA-related genes in DLBCL

Transcription factors (TFs) that were potentially involved 
in regulating snoRNA-related genes and their biological 
processes were also predicted in DAVID v6.8. In addition, 
TF-hub gene networks were predicted and visualized 
using Cytoscape software. Chromatin immunoprecipita-
tion (ChIP)-seq was adopted to explore the underlying 
transcriptional regulation of TFs and snoRNA-related 
genes, which downloaded from Cistrome Data Browser 
(http://cistr​ome.org/db/#/).

2.7  |  Single nucleotide variant analysis of 
snoRNA-related genes in DLBCL

Maf data of single nucleotide variant (SNV) for DLBCL in 
the TCGA database was acquired from the UCSC online 
tool (https://xena.ucsc.edu/), which was calculated using 
the varscan method. R package “maftools” was used to an-
alyze the mutations of SNORD1A co-expression genes. A 
waterfall plot was used to visualize the SNV distribution.

3   |   RESULTS

3.1  |  Prognostic risk model based on 
snoRNAs for DLBCL

Figure  1 illustrated the study design. A total of 751 
human snoRNAs were acquired from the SnoDB on-
line database (Tables S1 and S2), from which duplicated 
snoRNAs were deleted. In total, we obtained six data-
sets for subsequent analyses, including five microarray 
profiles (GSE11318, GSE10846, GSE53786, GSE31312, 

https://david.ncifcrf.gov/home.jsp)
https://string-db.org/
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GSE136971) from the GEO database and one RNAseq 
dataset (NCICCR: the National Cancer Institute Center 
for Cancer Research) from the TCGA database, as shown 
in Table S2.

We then constructed prognostic snoRNA signatures 
based on the above datasets using Cox regression analyses. 
After matching the list of human snoRNAs from SnoDB to 
expression matrixes of the six datasets, we finally obtained 
74 snoRNAs, 75 snoRNAs, 74 snoRNAs, 22 snoRNAs, 
75 snoRNAs and 112 snoRNAs for prognosis analysis in 
GSE11318, GSE10846, GSE53786, GSE31312, GSE136971 
and NCICCR, respectively. Randomly, when one dataset 
worked as the training cohort, the other datasets worked 
as the validated cohorts. Using univariate and LASSO 
Cox regression analyses, risk models for six training co-
horts were preliminarily established, including GSE11318 
(SNORD1A, SNORA60, and SNORA66), GSE10846 
(SNORA66, SNORD35B, and SNORA70), GSE53786 
(SNORD84, SNORD4A, and SNORD1A), GSE31312 
(SNORA68, SNORD8, and SCARNA13), GSE136971 
(SNORA67, SNORA11D, and SNORA37) and NCICCR 
(SNORD104, SNORD116-18, and SNORD51). All p val-
ues of the six prognostic risk models in the K-M analy-
sis were lower than 0.05, indicating significant statistical 
significance (Figures  S1 and S2). More details regarding 
the six prognostic signatures for DLBCL are provided in 
Table S2. After excluding the unqualified risk models, we 
finally included the risk models consisting of SNORD1A, 
SNORA60, and SNORA66 in GSE11318 for subsequent 
analyses.

3.2  |  Clinical parameters for the 
included DLBCL patients

Four microarray profiles (GSE11318, GSE10846, GSE53786, 
and GSE136971) were included in the prognosis risk model 
construction (184 cases in GSE11318), and validation (380 
cases in GSE10846, 76 cases in GSE5378, and 214 cases in 
GSE136971). A total of 854 DLBCL patients underwent 
follow-up survival analysis. Complete clinical information 
for 147, 320, 59, and 214 patients in GSE11318, GSE10846, 
GSE53786, and GSE136971, respectively (Table 1).

3.3  |  Prognostic signature consisting of 
SNORD1A, SNORA60, and SNORA66 
in DLBCL

In GSE11318, we obtained 74 snoRNAs for prognostic anal-
ysis after matching the human snoRNAs list from SnoDB 
to the expression matrix. The 74 snoRNAs were then 
subjected to univariate Cox regression analysis for assess-
ment of prognostic value of snoRNAs in DLBCL. A total 
of 12 prognosis-correlated snoRNAs were screened out 
(p < 0.05, Table 2). LASSO regression was then conducted 
to establish a predictive prognostic model for three candi-
date snoRNAs: SNORD1A (snoRNA, C/D box 1A; chr17: 
76561633_76561706), SNORA60 (snoRNA, H/ACA box 
60; chr20: 38449369_38449504), and SNORA66 (snoRNA, 
H/ACA box 66; chr1: 92840719_92840851) (Figure 2). The 
division of DLBCL patients was determined according to 

F I G U R E  1   Flow diagram of the study design
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the medium risk score (cutoff point). In addition, high-
hazard patients had worse prognosis than low-hazard pa-
tients (p = 0.014, Figure 2). The 1-, 3-, and 5-year survival 
rates of high-hazard patients were 0.750, 0.452, and 0.403, 
respectively, compared to 0.856, 0.678, and 0.604, respec-
tively, for low-hazard patients. Individuals with high-risk 
scores had a propensity for disappointing outcomes. In 
addition, the AUC for this signature was 0.663 and 0.643 
at 3 and 5 years, respectively, suggesting definite sensitiv-
ity and specificity for the prediction of overall survival 
(Figure 2).

SNORD1A and SNORA60 showed higher expression lev-
els in DLBCL tissues, than SNORA66. The average expres-
sion levels of SNORD1A, SNORA60, and SNORA66 were 
11.4274, 9.4125, and 4.1978, respectively. SNORD1A and 
SNORA60 were up-regulated in the high-risk scores cohorts. 
In contrast, the up-regulation of SNORA66 was observed 

in the low-risk cohort (Figure 3). Univariate Cox regression 
analysis suggested that SNORD1A (HR = 1.6027, p = 0.0366) 
and SNORA60 (HR = 1.8385, p = 0.0407) were harmful fac-
tors for DLBCL patients, whereas SNORA66 (HR = 0.8685, 
p = 0.0423) was recognized as a protective factor (Table 2).

3.4  |  Correlation of prognostic 
risk model and clinicopathological 
characteristics in DLBCL

First, risk scores were compared across subgroups 
(Figure  3), suggesting that high risk patients were 
highly likely to have ABC-type DLBCL. Moreover, we 
arranged DLBCL patients using their risk scores to fur-
ther explore their association with clinicopathological 
characteristics. The elevated risk score was obviously 

Clinical features GSE11318 GSE10846 GSE53786 GSE136971

Gender
Male 67 141 22 113
Female 80 179 37 101

Age
≤65 82 191 30 145
>65 65 129 29 69

Sate
Dead 80 118 26 46
Alive 67 202 33 168

Subtype
ABC DLBCL 62 128 27 79
GCB DLBCL 62 146 21 81
Unclassified DLBCL 23 46 11 54

Stage
1 21 56 9 29
2 49 99 15 42
3 31 71 15 34
4 46 94 20 109

ECOG performance status
0 34 76 13 NA
1 80 174 24 NA
2 25 48 16 NA
3 8 20 5 NA
4 0 2 1 NA

Number of extranodal sites
0 122 198 31 NA
1 25 95 21 NA
2 0 17 5 NA
3 0 7 2 NA
4 0 2 0 NA
5 0 1 0 NA

T A B L E  1   Clinical features of patients 
with DLBCL in microarray profiles
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significant linked with the DLBCL subtype (p < 0.001, 
Figure  3). However, the risk scores and other clinical 
parameters (gender, age, ECOG score, stage, and num-
ber of extranodal sites) were not significantly associated 
(p > 0.05, Figures 3 and 4). The prognostic value of the 
snoRNA model was explored for different DLBCL sub-
types. We found that ABC-type DLBCL patients had a 
worse survival than GCB-type and unclassified DLBCL 
patients in the training cohort (GSE11318, p < 0.001), 
shown as in Figure 4.

3.5  |  Integration analysis of candidate 
prognostic risk model

Assessment of the possibility of the three-snoRNA signa-
ture and other clinicopathological features as independent 
risk factors for DLBCL was conducted through independ-
ent prognostic analysis. According to univariate analy-
sis, the three-snoRNA model, age, subtype, stage, ECOG 
performance status, as well as number of extranodal sites 
had a close relationship with the state of DLBCL patients 
(p < 0.05, Figure 4). In multivariable Cox regression analy-
sis, the risk signature, age, stage, and ECOG performance 
status were four independent predictors of prognosis in 
DLBCL (Figure 4). Overall, the three-snoRNA risk model 
could be considered as an independent risk predictor to 
assess the prediction effect. The nomogram, a quantita-
tive scoring method, was then plotted by combining the 
four independent risk factors (three-snoRNA signature, 
age, stage, and ECOG performance status) to predict 

survival probability for DLBCL patients (Figure 4). Each 
variable was assigned a score according to its contribution 
to DLBCL prognosis (Age: ≤65, 0 points; >65, 30 points. 
Stage: 1, 0 points; 2, 77 points; 3, 100 points; 4, 98 points. 
ECOG performance status: 0, 0 points; 1, 23 points; 2, 57 
points; 3, 37 points; Risk model: 0, 0 points; 1, 44points). 
Then, the total points were obtained by adding a single 
point of each variable and used to predict the probability 
of the clinical outcome for an individual or clinical out-
come. Patients with higher total points tended to have 
shorter survival. According to the calibration curves, then 
prediction accuracy of this nomogram was close to that of 
the ideal model (Figure 4).

3.6  |  Validation of the prognostic 
snoRNA signature in other 
microarrary profiles

Similar results for prognostic prediction, clinical correlation, 
and independent analysis were also observed in three vali-
dation series: GSE10846, GSE53786, and GSE136971. The 
formula was: (expression of SNORD1A) × (0.3709) + (ex-
pression of SNORA60) × (0.4059) + (expression of 
SNORA66) × (−0.1106). We validated our snoRNA sig-
nature in both GSE10846 (p < 0.0001) and GSE53786 
(p = 0.0056) and found that a high-risk score was corre-
lated with worse prognosis in DLBCL patients (Figure 5). 
For example, in GSE10846, 1-, 3-, and 5- year survival rates 
were 0.776, 0.539, and 0.481 for predicting OS in the high-
risk cohort, and 0.918, 0.826, and 0.786 in the low-risk 
cohort. Although the p-value of GSE136971 (p = 0.6036) 
was greater than 0.05, we could also discover the trend of 
low-risk patients with a better outcome.

Next, we selected GSE10846 and GSE53786 to ver-
ify the relationship between the risk model and clinical 
features. Similar to GSE11318, the risk model was cor-
related with the subtype and number of extranodal sites 
in GSE10846 but was not associated with any clinico-
pathological features in GSE53786 (Figure  5). Both se-
ries indicated an independent role of the three-snoRNA 
signature in DLBCL (Figure  S2). Worse prognosis 
was found to be linked to some clinical features, such 
as older age, GCB subtype, advanced stage, and high 
ECOG performance status in GSE10846. As for progno-
sis in different DLBCL subtypes, ABC type DLBCL pa-
tients showed worse survival in the validation cohorts 
(GSE10846 and GSE136971) compared to GCB type and 
unclassified DLBCL patients, and all the p values were 
<0.001 (Figure 5). A trend of having a lower overall sur-
vival rate was found in ABC type DLBCL patients for the 
GSE53786 dataset (p = 0.1954, Figure 5).

T A B L E  2   Summary of univariate analyses for 12 prognosis 
snoRNAs in DLBCL

ID HR
95%CI 
LL

95%CI 
UL p value

SNORA73A 1.6509 1.2605 2.1621 0.0003

SNORD19B 1.9635 1.3457 2.8650 0.0005

SNORD88C 1.5077 1.1536 1.9705 0.0026

SCARNA16 1.6921 1.1960 2.3939 0.0030

SNORA17 1.7154 1.1972 2.4578 0.0033

SNORD110 1.7700 1.1422 2.7429 0.0106

SNORA4 1.6357 1.1146 2.4004 0.0119

SNORA71A 1.3226 1.0372 1.6867 0.0242

SNORD44 1.4727 1.0269 2.1119 0.0353

SNORD1A 1.6027 1.0297 2.4946 0.0366

SNORA60 1.8385 1.0261 3.2939 0.0407

SNORA66 0.8685 0.7580 0.9951 0.0423

Abbreviations: CI, confidence interval; HR, hazard ratio; LL, lower limit; 
UL, upper limit.
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3.7  |  Functional examination of the 
predictive prognostic snoRNAs in DLBCL

snoRNAs and their correlated mRNAs are reported to 
be involved in post-transcriptional processes that trig-
ger tumor development. Correlation analysis was per-
formed to determine the correlations of snoRNAs with 
their co-expressed protein-coding genes, and moderately 
co-expressed mRNAs (|correlation coefficient| > 0.4) were 

selected for the next function exploration. We acquired 356 
and 10 co-expression genes for SNORD1A and SNORA60, 
respectively, but no qualified co-expression genes were 
identified for SNORA66.

KEGG and GO enrichment analyses were conducted 
in David, suggesting that SNORD1A co-expression genes 
are mostly involved in Ribosome, Huntington's disease, 
Pyrimidine metabolism, Parkinson's disease, Ribosome bio-
genesis in eukaryotes, RNA polymerase, Purine metabolism, 

F I G U R E  2   Construction of prognostic snoRNA signature for DLBCL. (A) LASSO coefficient profiles of three included risk snoRNAs. 
(B) Tuning parameter (lambda) selection cross-validation in LASSO model. The optimal values were chosen by using the minimum and 
1-SE criteria, and then the dotted vertical lines were drawn. (C) K-M survival analysis of the three-snoRNA signature in GSE11318. (D) ROC 
analysis for three-snoRNA prognostic signature.
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Metabolic pathways, Oxidative phosphorylation, RNA 
transport for KEGG; rRNA processing and some biological 
activities related to mitochondrion for BP; Ribosome and 
Mitochondrion for CC; Poly(A) RNA binding and Structural 
constituent of ribosome for MF; NMYC, USF and NRF2 for 
TF (Figure 6). SNORD1A co-expression genes were enriched 
in several snoRNA-relevant terms, as shown in Table  3. 
What's more, according to the results of PPI analysis using the 
String and MCC methods of cytoHubba in cytoscape, RPL11, 
RPL23, RPL8, RPL13A, RPL3, RPLP0, RPL10A, RPL4, RPS16, 
and RPL12 may be the top 10 hub genes for SNORD1A. The 
aforementioned networks are shown in Figure 6.

3.8  |  Construction and 
validation of a potential transcriptional 
regulatory network

We constructed a potential interactive network of transcrip-
tion factors and hub genes according to the enrichment 
results of transcription factors and their relevant genes in 
David using cytoscape software (Figure  7). Additionally, 

we checked specific ChIP-seq data for tissue/blood of lym-
phoma in humans or mus musculus using the Cistrome 
Data Browser to identify the binding sites of potential 
transcription factors and hub genes (Table 4). The binding 
sites with a combined score > 1.0 were recognized to be sig-
nificant, such as p53-RPL23 (Mus musculus, Lymphoma, 
coordinate: chr11:97777525–97,782,438, score: 1.4505), 
p53-RPL10A (Mus musculus, Lymphoma, coordinate: 
chr17:28328564–28,331,032, score: 1.1760), p53-RPS16 
(Mus musculus, Lymphoma, coordinate: chr7:​28350688–
28,352,697, score: 1.3798), p53-RPL12 (Mus musculus, 
Lymphoma, coordinate: chr2:32961711–32,964,044, score: 
1.3535), and ZIC2-RPL12 (Homo sapiens, Lymphoma, 
coordinate: chr9:127447673–127,451,405, score: 1.1500).

3.9  |  Mutation analysis of snoRNA-
related genes in DLBCL

A total of 37 DLBCL samples with mutations were iden-
tified in the TCGA-DLBCL cohort. For SNORD1A co-
expression genes, approximately 72.97% of DLBCL patient 

F I G U R E  3   (A, B) SNORD1A and SNORA60 were both up-regulated in high-risk cohort. (C) SNORA66 was down-regulated in high-risk 
cohort. (D–J) Relationship of risk-score and clinicopathological characteristics in DLBCL patients: (D) Age, (E) Gender, (F) Stage, (G) Status, 
(H) Subtype, (I) ECOG status, (J) Extranodal sites. Statistical significance was set at p-value < 0.05. **p value < 0.05, ***p value < 0.001.

F I G U R E  4   (A) Correlation of candidate snoRNAs expression, risk-score, and the clinicopathologic information shown in the cluster heatmap. 
Red color for snoRNA refers to high risk score, whereas green color for snoRNA means low risk score. The levels of color referred to the value risk 
score. The other colors matched to different features that were noted in the figure legends. (B) K-M survival analysis of different DLBCL subtypes 
in GSE11318. (C, D) Independent prognostic analysis of snoRNA risk model in DLBCL: Forest plot of univariate and multivariable cox analysis. (E) 
Nomogram for independent prognostic factors (three-snoRNA signature, age, stage and ECOG performance status) to predict 3-, or 5-year survival 
probability in DLBCL. Each variable was assigned a score according to its contribution to the prognosis of DLBCL (Age: <=65, 0 points; >65, 30 
points. Stage: 1, 0 points; 2, 77 points; 3, 100 points; 4, 98 points. ECOG performance status: 0, 0 points; 1, 23 points; 2, 57 points; 3, 37 points; Risk 
model: 0, 0 points; 1, 44points). Then, total points were obtained by adding single point of each variable and used for predicting the probability of 
the clinical ending for individual or clinical outcome. (F) Calibration curves of nomogram-predicted probability for 3-year overall survival
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F I G U R E  5   Validation of prognostic snoRNA signature for DLBCL. (A–C) K-M survival curve of overall survival based on the three-
snoRNA signature in GSE10846, GSE53786, GSE136971. (D, E) The correlation of candidate snoRNAs and clinical features in GSE10846 and 
GSE53786. Red color for snoRNA refers to high risk score, while green color for snoRNA means low risk score. The levels of color referred 
to the value risk score. The other colors matched to different features that were noted in the figure legends. (F–H) K-M survival analysis of 
different DLBCL subtypes in GSE10846, GSE136971, and GSE53786
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F I G U R E  6   The potential mechanism of snoRNAs co-expressed genes for SNORD1A. (A) The top 10 significant KEGG pathways. (B–D) 
The top 10 significant GO terms. (E) The top 10 significant transcription factors (TF). (F) The potential hub genes. To make the figures more 
visual, the p values of KEGG and GO terms were −log10 normalized using ggplot2 package in R.
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samples (27/37) carried mutations, of which missense 
mutations were of the highest frequency (Figure 7). C > T 
mutations (27.69%) occurred in most samples, followed 

by G > A (26.15%), (Figure 7). The genes with the highest 
mutation frequency rates were MYC (up to 14.81%) and 
RPL10A (up to 11.11%), as shown in Figure 7.

T A B L E  3   SNORD1A co-expressed mRNAs involved in biological activities of snoRNA

Term Count p-Value Genes

BP_SRP-dependent cotranslational protein 
targeting to membrane

22 2.64E-17 RPL4, RPL3, RPL23, RPS5, RPL12, RPL11, 
RPLP0, RPL13A, RPSA, SRP68, RPL10A, 
RPL8, RPL7A, RPS16, RPL14, RPL24, 
SRPRB, RPL35, RPL13, RPS2, RPL29, UBA52

BP_snRNA pseudouridine synthesis 3 0.0010 DKC1, NHP2, NOP10

CC_small nucleolar ribonucleoprotein 
complex

4 0.0014 LSM7, NHP2, NOP10, SNRPB

CC_box H/ACA scaRNP complex 3 0.0018 DKC1, NHP2, NOP10

CC_box H/ACA telomerase RNP complex 3 0.0018 DKC1, NHP2, NOP10

CC_box H/ACA snoRNP complex 3 0.0018 DKC1, NHP2, NOP10

MF_box H/ACA snoRNA binding 3 0.0020 DKC1, NHP2, NOP10

CC_U4/U6 x U5 tri-snRNP complex 4 0.0074 PRPF4, SNRPD2, PPIH, SNRPB

BP_snRNA transcription from RNA 
polymerase II promoter

6 0.0095 SNAPC4, POLR2E, POLR2G, POLR2H, POLR2I, 
POLR2L

BP_small nuclear ribonucleoprotein complex 3 0.0353 SNRPD2, SLU7, SNRPB

Abbreviations: BP, biological process; CC, cellular component; MF, molecular function.

F I G U R E  7   (A) The network of transcription factors and hub genes for SNORD1A.Red color refers to transcription factors, whereas 
blue color refers to hub genes. (B) Heat map of the mutations for SNORD1A co-expressed genes in TCGA-DLBCL cohort. Different colors 
matched to different mutation types that were noted in the figure legends. Each row represents the mutations of a SNORD1A co-expressed 
gene in 27 DLBCL samples, whereas each column represents the mutations of SNORD1A co-expressed genes in a DLBCL sample. The gene 
with the highest mutations frequency rate was MYC (up to 14.81%) and RPL10A (up to 11.11%). (C) The pie graph shows the classification of 
mutations. C>T mutations (27.69%) occurred in most of the samples, followed by G>A (26.15%).
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4   |   DISCUSSION

Approximately 70% of DLBCL patients are diagnosed ter-
minally, and 20 to 25% of patients receiving the standard 
care R-CHOP still suffer from relapse, especially within 
the initial 2 years.1 Thus, identifying novel and effective 
predictors is crucial for high-risk DLBCL patients. In clin-
ical practice, constructing a risk assessment model based 
on prognostic indicators is crucial for diverse malignan-
cies. Jiang et al. created a new immune checkpoint- and 
hypoxia-based independent risk model for acute myeloid 
leukemia (AML), facilitating the development of new tar-
gets for AML therapies.23,24 Hu et al. combined clinical 
variables and pharmacogenomic genes to construct a risk 
model to improve drug resistance in DLBCL patients.25 
Risk score models based on prognostic genes related to 
metabolism,26 pyroptosis,27 and ferroptosis28 have been 
established for DLBCL, providing novel ideas for indi-
vidualized therapeutic strategies in DLBCL patients. The 
past few years have witnessed the potential of several 
snoRNAs as prognostic molecular biomarkers in various 
cancers, and predictive risk signatures based on certain 
snoRNAs have been found in carcinomas of the lung,29,30 
liver,31 stomach,32 colon,33 kidney,34,35 bladder,36 head and 
neck,37 and eyes,38 as well as sarcoma,39 and T-cell lym-
phoma.40 The current literature has reported the potential 
oncogenic functions of several snoRNAs in the carcino-
genesis of DLBCL,16–19 and SNHG12 might be a risk factor 
for the clinical outcome of DLBCL patients. However, to 
date, no report exists on a similar prognostic risk model 
for snoRNAs in DLBCL.

In our study, survival-associated snoRNAs were 
screened in a DLBCL patient cohort of microarray pro-
files, and then a three-snoRNA prognostic risk model 
consisting of SNORD1A, SNORA60, and SNORA66, was 
constructed using the LASSO method. We found that 
DLBCL patients could be stratified by the prognostic sig-
nature, and patients in the high-risk cohorts tended to 
have a disappointing clinical outcome, as did ABC type 
DLBCL patients. This is consistent with the latest re-
ports.2,3 In addition, the risk signature could play an in-
dependent role, as a novel biomarker in the prognosis of 
DLBCL. A nomogram containing the risk signature, as 
well as other independent prognostic factors (age, stage 
and ECOG performance status) was constructed to visual-
ize the risk model in clinical practice.

To date, predictive risk models based on mRNAs,26,41 
miRNAs,42,43 lncRNAs,44–46 and circRNAs47 have been 
studied in DLBCL. However, no report exists on survival-
related snoRNA signatures in DLBCL patients. Our study 
was the first to systematically explore the clinical value 
of survival-related snoRNAs in DLBCL, and provided 
evidence that SNORD1A, SNORA60, and SNORA66 T
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could serve as prognostic risk models. In our selected 
snoRNAs, SNORD1A was a C/D box snoRNA, whereas 
SNORA60 and SNORA66 were H/ACA box snoRNAs. 
All three snoRNAs were detected in DLBCL tissues, sug-
gesting the possibility of clinical detection in DLBCL pa-
tients. Additionally, we found potentially harmful roles of 
SNORD1A and SNORA60 in DLBCL with higher expres-
sion levels in high-risk cohorts; moreover, up-regulation 
of SNORD1A and SNORA60 correlated with an unfavor-
able outcome in DLBCL patients. However, SNORA66 
was upregulated in the low-risk group and served as 
a protective factor. Current studies have reported that 
SNORD1A is a survival-related snoRNA in various carci-
nomas by analyzing snoRNA cancer genomic data from 
TCGA database.48 There is limited literature on the clini-
cal value of SNORA60 and SNORA66 in tumors. Further 
investigations are needed to evaluate the roles of the three 
candidate snoRNAs in tumor carcinogenesis and the prog-
nosis of DLBCL.

The AUC for this snoRNA model was 0.663 at 3 years, 
showing a certain predictive capacity after comparison 
with the published prognostic models, suggesting the pos-
sibility of clinical application in DLBCL patients. For in-
stance, using the GSE11318 dataset, Xie et al. established 
a prognostic risk model using six related genes of RNA-
binding proteins, and achieved an the AUC value was 0.65 
at 3 years.49 Zhang et al. constructed a risk model with 
an AUC of 0.564 based on alternative splicing events in 
DLBCL.50 Zhou et al. reported that the AUC of the immu-
noscore prognostic signature in DLBCL was 0.562.51 For a 
gene signature in DLBCL patients, Hu et al. obtained an 
AUC of 0.67 in their pharmacogenomic gene risk model.25 
For some published snoRNA risk models, Cao et al. and 
Liu et al. have reported snoRNA signatures with an AUC 
of 0.664 at 3 years in bladder cancer, and an AUC of 0.657 
at 3 years in sarcoma.36,39 Summarily, as technology has 
been developing, this snoRNA model seems prospective 
and beneficial for improving the prognosis of DLBCL 
patients.

Currently, snoRNA host genes are known to play an 
oncogenic role in DLBCL; furthermore certain snoRNAs 
could advance the immune escape and progression of 
DLBCL by interacting with miRNAs.16–19 However, un-
derstanding the mechanism of snoRNAs in DLBCL is 
rudimentary, thus limiting their application in clinical 
practice. Mechanism exploration in this research revealed 
that SNORD1A co-expressed genes were mainly involved 
in pathways of pyrimidine metabolism, ribosome bio-
genesis in eukaryotes, RNA polymerase, purine metabo-
lism, metabolic pathways, and oxidative phosphorylation, 
which belong to a series of processes related to ribosomes 
and mitochondria. Increasing evidence has demonstrated 
that snoRNAs can promote the development of cancer 

through the regulation of ribosome biogenesis, which 
plays essential roles in tumor cell growth.52,53 Krogh 
et al. revealed that dysregulation of ribosomal modifi-
cations could be linked to DLBCL pathogenesis, includ-
ing cell growth and tumor-specific changes in DLBCL.54 
Mitochondria dysfunction has also been verified as an-
other vital factor in tumor proliferation and metastasis, 
and targeted drugs for certain mitochondria processes are 
regarded as promising strategies for patients with meta-
static tumors.55–57 Summarily, we assumed that the se-
lected SNORD1A co-expressed genes might play crucial 
roles in DLBCL progression by influencing ribosomal and 
mitochondrial processes.

We obtained the potential transcription factors and 
hub genes for SNORD1A co-expressed genes, and con-
structed a potential interactive network. Using ChIP-
seq data from the Cistrome Data Browser, we identified 
the binding sites in p53 and several ribosomal protein-
correlated genes (RPL10A, RPL12, RPL23, and RPS16) 
in Mus musculus lymphoma tissue, and ZIC2-RPL12 in 
peritoneal effusion for human B cell lymphoma, suggest-
ing their potential interaction in DLBCL. Tumor protein 
p53 (TP53) gene encodes a tumor suppressor protein that 
functions as a master regulator of diverse cellular activ-
ities, such as activation of transcription, apoptosis, and 
metabolism.58 Inhibition of apoptosis related to p53 is 
recognized as a crucial factor in resistance to therapy for 
DLBCL.59 Ribosomal protein L10A (RPL10A), ribosomal 
protein L12 (RPL12), ribosomal protein L23 (RPL23) and 
ribosomal protein S16 (RPS16), encode ribosomal proteins 
(RPs) that are mostly implicated in protein synthesis.

RPs play extremely important roles in modulating 
p53 function in cell cycle arrest and ribosome biogen-
esis in lymphoma, which is related to tumorigenesis 
and tumor development.60–62 RPL23 has been reported 
to participate in a typical signaling pathway in malig-
nancies, wherein RPL23 blocks the inhibitory function 
of the oncoprotein murine double minute 2 (MDM2) 
to target and ubiquitinate p53 via the RP-MDM2-p53 
axis, further controlling tumor cell growth.63–66 A study 
by Meng et al. verified that in dependence on MAPK/
ERK kinase (MEK)/phosphoinositide 3-kinase (PI3K) 
and mechanistic target of rapamycin (mTOR) path-
ways, RAS could increase RPL23 expression and further 
cause cell cycle arrest regulated by p53.67 Watanabe et al. 
found that Glutamate Rich WD Repeat Containing 1 
(GRWD1) could induce the proteolysis of RPL23, further 
decreasing p53 expression, which is related to tumori-
genesis.68 Current studies have illustrated that RPL23 
could modulate p53-correlated cell apoptosis and cell 
cycle arrest through MDM2-p53 feedback loop modula-
tion in in vitro experiments in carcinomas of the stom-
ach,69,70 colon,71 and lung,72 suggesting the involvement 
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of the RPL23-MDM2-p53 pathway checkpoint in malig-
nancies. Here, we observed a possible interaction of p53 
and RPL23 (Coordinate: chr11:97777525–97,782,438, 
Score: 1.4505) as well as of p53 and MDM2 (Coordinate: 
chr10:117688891–117,710,713, Score: 1.5943) in the mus 
musculus lymphoma tissue. As for correlation of p53 
and RPL10A, Jia et al. found that RPL10A is one of the 
critical components of eEF1B network in gastric cancer, 
potentially associated with the p53 signaling pathway.73 
Palasin et al. identified elevated expression levels of 
TP53 in zebrafish with RPL10A deficiency.74 However, 
correlations of p53-RPL12, p53-RPS16, and ZIC2-RPL12 
were found for the first time in this study. Thus, we spec-
ulated that the interaction of p53 and RPL23, as well as 
p53 and RPL10A is of therapeutic value in DLBCL, but 
further experimental evidence is required to verify this.

In this study, MYC and RPL10A were recognized as 
the most mutated genes for SNORD1A co-expression in 
DLBCL. MYC acts as a transcription factor associated 
with cell cycle, biosynthesis, and apoptosis. Close links 
between MYC mutations and hematopoietic tumors are 
well-known. Double-hit DLBCL contains MYC trans-
locations and translocations of BCL2 or BCL6, with an 
extremely disappointing outcome, making MYC an at-
tractive therapeutic target.75 Currently, treatment strate-
gies targeting the biosynthesis of MYC that affect tumor 
cells of DLBCL have been reported.75 Drugs based on 
Rocaglates have been gradually applied in treatment 
of lymphomas with MYC mutations, with promising 
therapeutic value.76 RPL10A belongs to the L1P family 
of ribosomal proteins. Derenzini et al. found that pa-
tients with RP mutations tend to have statistically worse 
clinical outcomes than patients with wild-type TP53,77 
of which RPL10A mutations were identified. A correla-
tion between p53 and RPL10A was also observed in our 
study. Thus, we presumed that SNORD1A co-expressed 
genes might produce effects in DLBCL through MYC 
and RPL10A mutations, of which RPL10A mutations 
might interact with p53, providing novel insights into 
the molecular mechanism of DLBCL.

Generally, a novel three-snoRNA signature was firstly 
mentioned in this study, providing new ideas for the 
clinical treatment and management of DLBCL patients. 
However, this research has some limitations that the de-
sign is retrospective, and the sensitivity and specificity 
of the risk model are not sufficiently high. Moreover, no 
experiments were conducted to verify the mechanism of 
SNORD1A co-expressed genes. Therefore, multicenter 
large cohort data and further experiments are necessary 
to validate our findings and increase the possibilities of 
seeking more effective snoRNA biomarkers for prognosis 
of DLBCL patients.

5   |   CONCLUSION

A comprehensive analysis was performed to select signifi-
cant survival-related snoRNAs in DLBCL. Collectively, a 
prognostic signature based on three snoRNAs (SNORD1A, 
SNORA60, and SNORA66) was established for DLBCL 
patients. The three-snoRNA signature and certain clin-
icopathological parameters (age, stage and ECOG per-
formance status) were considered as independent risk 
factors. Also, we found snoRNA co-expressed genes that 
were mostly involved in ribosome-correlated pathways 
and processes, and the interaction of ribosomal proteins 
(RPL23, RPL10A) and p53. The current study is the first 
to determine the prognostic significance of snoRNAs in 
DLBCL, develop a novel scoring system for clinical appli-
cation, and explore the potential molecular mechanisms 
underlying DLBCL. Nonetheless, more clinical data and 
experiments are needed for further validation of this risk 
model.
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