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Abstract
Objectives: Gliomas with comutations of isocitrate dehydrogenase (IDH) genes 
and telomerase reverse transcriptase (TERT) gene promoter (IDHmut pTERT-
mut) show distinct biological features and respond to first-line treatment differ-
ently in comparison with other gliomas. This study aimed to characterize the 
IDHmut pTERTmut gliomas in multimodal MRI using the radiomic method and 
establish a precise diagnostic model identifying this group of gliomas.
Methods: A total of 140 patients with untreated primary gliomas were admitted 
between 2016 and 2020 to West China Hospital as a discovery cohort, includ-
ing 22 IDHmut pTERTmut patients. Thirty-four additional cases from a different 
hospital were included in the study as an independent validation cohort. A total 
of 3654 radiomic features were extracted from the preoperative multimodal MRI 
images (T1c, FLAIR, and ADC maps) and filtered in a data-driven approach. The 
discovery cohort was split into training and test sets by a 4:1 ratio. A diagnostic 
model (multilayer perceptron classifier) for detecting the IDHmut pTERTmut 
gliomas was trained using an automatic machine-learning algorithm named tree-
based pipeline optimization tool (TPOT). The most critical radiomic features in 
the model were identified and visualized.
Results: The model achieved an area under the receiver-operating curve 
(AUROC) of 0.971 (95% CI, 0.902–1.000), the sensitivity of 0.833 (95% CI, 0.333–
1.000), and the specificity of 0.966 (95% CI, 0.931–1.000) in the test set. The area 
under the precision-recall curve (AUCPR) was 0.754 (95% CI, 0.572–0.833) and 
the F1 score was 0.833 (95% CI, 0.500–1.000). In the independent validation 
set, the model reached 0.952 AUROC, 0.714 sensitivity, 0.963 specificity, 0.841 
AUCPR, and 0.769 F1 score. MR radiomic features of the IDHmut pTERTmut 
gliomas represented homogenous low-complexity texture in three modalities.
Conclusions: An accurate diagnostic model was constructed for detecting 
IDHmut pTERTmut gliomas using multimodal radiomic features. The most 
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1   |   INTRODUCTION

Glioma is the most common primary malignant central 
nervous system tumor in adults.1 It can be histologically 
categorized into four grades (WHO I–IV). The median 
overall survival (OS) time of patients with glioblastoma 
multiforme (WHO IV) is 14–16 months. In contrast, 
grades II and III of glioma are relatively less aggressive, 
with a median survival of more than 7 years.2

Studies in recent decades have identified subtypes 
of gliomas of the same grade with different biological 
manifestations.3 Somatic missense mutations in IDH1/2 
(Isocitrate dehydrogenase 1/2) genes result in the pro-
duction of the mutant enzyme that converts αKG to D-2-
hydroxyglutarate (D2HG). IDH wild-type tumors show a 
higher proliferative and invasive behavior,4 and patients 
with IDH wild-type glioma generally have a worse prog-
nosis than those with IDH-mutant glioma. Telomerase 
reverse transcriptase (TERT) keeps telomeres intact by 
activating telomerase, allowing cells to gain unlimited 
proliferation. Forty-two percent of IDH-mutant gliomas 
carry TERT promoter mutation.5 Two SNVs were com-
monly found in the TERT promoter region: C228T and 
C250T. They resulted in enhanced transcriptional activity 
of the TERT.6 Gliomas with both IDH and TERT promoter 
mutations have been shown to derive a better prognosis. 
Over 80% of these gliomas are oligodendrogliomas. These 
gliomas are amenable to nongross total resection (GTR) 
and are sensitive to PCV chemotherapy.5,7 Therefore, iden-
tifying IDH-mutant TERT promoter-mutant (IDH-mut 
TERTp-mut) gliomas may help prognosis prediction and 
treatment selection.

Radiomics is a set of methodology that uses quantita-
tive summary statistics to represent macroscopic image 
phenotype in a region of interest. Significant associations 
have been shown between radiomic features and the mo-
lecular status of tumors.8,9 The quantitative nature of 
radiomics facilitates integrating information from mul-
tiple MRI sequences to produce tumor classifiers with 
machine-learning techniques. Radiomic features from 
conventional T1 with contrast (T1c) and FLAIR MRI se-
quences have been exploited to predict the mutation sta-
tus of IDH or TERT promoter in gliomas.10,11 However, 

their performance in identifying IDH-mut TERTp-mut 
gliomas was moderate.12 Multimodal MRI incorporates 
diffuse-weighted images (DWI), perfusion-weighted im-
aging (PWI), magnetic resonance spectroscopy (MRS), 
and other dedicated sequences on top of conventional se-
quences to reveal histology, metabolism, and functional 
status of tumor and brain parenchyma.13,14 DWI charac-
terizes the Brownian motion of water molecules, reflect-
ing the tumor cell density.15 Apparent diffusion coefficient 
(ADC) images, or ADC maps, show diffusion more spe-
cifically than conventional DWI by eliminating the T2 
weighting in conventional DWI.

In contrast to DWI, the standard grayscale of ADC 
images represents larger diffuse amplitudes as brighter.16 
High-grade gliomas show hypointense signals on ADC 
maps.17 The mean ADC values of IDH-wt gliomas were 
significantly lower compared with IDH-mut gliomas.18 
However, accurate preoperative diagnosis of TERTp sta-
tus using mean ADC values of the tumor region remains 
a challenge.19 We hypothesize that the ADC map can be 
combined with conventional T1 and FLAIR to capture a 
more comprehensive profile of IDH-mut TERTp-mut glio-
mas and build an accurate classifier.

In the present study, we extracted radiomic features 
from multimodal imaging sequences (T1c, FLAIR, and 
ADC maps) and identified diagnostic features that specif-
ically detect IDHmut pTERTmut comutant gliomas in a 
data-driven approach. We also attempted to characterize 
the comutants by interpolating the important radiomic 
features and predicting patient outcomes using the output 
of the radiomic model.

2   |   MATERIALS AND METHODS

2.1  |  Patients

A case–control study was designed to evaluate the appli-
cation of preoperative multimodal radiomic in identifying 
IDH-mutant TERT promoter-mutant gliomas. All in-
cluded patients met the following criteria: (1) preoperative 
multimodal MRI examination included T1, T2, FLAIR, 
enhanced T1, and DWI; (2) no craniotomy, glioma biopsy, 
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important features were associated with the homogenous simple texture of 
IDHmut pTERTmut gliomas in MRI images transformed using Laplacian of 
Gaussian and wavelet filters.
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or curative treatment for glioma was performed before the 
imaging study; (3) pathologically confirmed grade II, III, 
or IV glioma with known IDH status and TERT promoter 
status (Supplementary Methods). The collection of MRI 
data was compliant with the principles of the Declaration 
of Helsinki. Of all the patients, 22 in the discovery cohort 
and 7 in the validation cohort had IDH-mut TERTp-mut 
gliomas.

2.2  |  Image preprocessing and tumor 
segmentation

The T1, T2, FLAIR, and enhanced T1 image was per-
formed with a German-made Siemens 3.0 T MR scanner 
(Supplementary Methods). The ADC maps were obtained 
by automatic processing of DWI images by the syngo MR 
image workstation. T1, T2, FLAIR, enhanced T1, and ADC 
images were first had the cranium removed using the 
SwissSkullStripper module in 3DSlicer software.20 Next, 
we registered T1, T2, FLAIR, and ADC sequences with 
the enhanced T1 sequence by the General Registration 
(BRAINS) module, respectively.

The tumor segmentation was performed with a process 
combining automatic segmentation and manual correc-
tion. The automatic segmentation protocol is based on a 
set of niftynet and TensorFlow applications, laid out in 
python 3.6.21 It can automatically segment the tumor re-
gion based on four sequence images: T1, T2, FLAIR, and 
T1c. After coregistration, T1, T2, FLAIR, and enhanced T1 
images were input into the automatic segmentation model 
to obtain the ROI mask containing three parts: tumor ne-
crosis, solid, and edema.22 The original automatic segmen-
tation mask was then input into ITK-snap23 software and 
manually corrected based on multimodal images by a ra-
diologist (with 20 years of experience in neuro-oncology) 
to remove the mis-segmentations (Supplementary 
Methods).

2.3  |  Radiomic features extraction

For further radiomic analysis, radiomic features were 
extracted using a python package named pyradiomics24 
(Pyradiomics Library, version 2.2.0). In the pyradiom-
ics pipeline, the grayscale values of the images were first 
normalized by centering at the image mean and scaling 
with the standard deviation. Next, the images and seg-
ment masks were resampled to a specified pixel spac-
ing ([1,1,1]), using a Bspline interpolator. Pyradiomics 
can extract 1218 features per sequence including 2D 
and 3D intensity, shape, and texture features from raw 
voxels, LoG filter (Laplacian of Gaussian), and wavelet 

transformed voxels (Table S2). A total of 3654 (1218 × 3) 
features were extracted from the T1c, FLAIR, and ADC 
map sequences (1218 features include as follows: (1) 18 
first-order features, (2) 14 shape features, (3) 68 textural 
features (4), 430 LoG filter features, and (5) 688 wavelet 
features).

In LoG images, regions of rapid intensity change were 
highlighted. Details of edge texture were better seen.25 
In wavelet transformed images, the wavelet filter decom-
posed the signal of each dimension into high-frequency 
components (H) and low-frequency components (L). 3D 
images were decomposed at each dimension to produce 
a total of eight subimages (2*2*2), one of which corre-
sponded to the smooth version (LLL), and the remain-
ing seven correspond to the detailed version (LLH, LHL, 
LHH, HLL, HLH, HHL, HHL, and HHH).26 Utilizing 
pyradiomics, cv2, and pywt package on python 3.6, we 
performed LoG filter and wavelet transform processing 
on screenshots of the maximum cross sections of differ-
ent sequences of tumors to compare the extracted relevant 
features in different groups.

2.4  |  Model development

To evaluate the performance of multimodal features on 
the model predictive capacity, we organized all features 
into one multimodal feature set, which contained features 
extracted from T1 enhanced, FLAIR, and ADC sequences. 
The discovery data set was divided into the training set 
and test set in the ratio of 4:1. The training set features 
were subjected to feature selection by least absolute 
shrinkage and selection operator (LASSO) feature dimen-
sionality reduction. Before feature reduction by LASSO, 
all extracted features were normalized using Z-score nor-
malization. The minimum value of λ and the minimum 
value plus one MSE were determined after 10-fold vali-
dation, so the features with non-zero coefficients were 
obtained from the selected λ screening (the minimum λ). 
Next, each training data set after feature dimensionality 
reduction was input to a tree-based pipeline optimiza-
tion tool (TPOT) for model development (http://epist​
asisl​ab.github.io/tpot/). TPOT is an automated machine-
learning (AutoML) algorithm designed to search for the 
optimized machine-learning pipeline and minimize the 
need for human interference in this process. TPOT uses 
a genetic algorithm for feature and model selection to op-
timize models automatically, features and hyperparam-
eters, and generate the final optimal model.

TPOT parameters were selected: generation num-
ber, 50; population size, 100; and 10-fold internal cross-
validation. Generation refers to the number of iterations, 
and population refers to the number of primaries (i.e., 

http://epistasislab.github.io/tpot/
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the number of pipelines generated by the primaries). 
One iteration round will cross-mutate the previous 
round's individuals to generate an equal number of new 
individuals. Then, TPOT scores the old and new indi-
viduals simultaneously to select the best pipeline with 
the same number of primaries into the next round of it-
eration. After a specified number of iterations, the best 
pipeline was selected. In this pipeline, ANOVA (analysis 
of variance) was used for further feature selection. The 
classification model is a multilayer perceptron (MLP) 
classifier that was a fully connected class of feedforward 
artificial neural network (ANN). Two hundred random 
training/test set splits were used to validate the repro-
ducibility of the model performance. Subsequently, the 
predictive performance of our model was examined in 
the independent validation set. The workflow is shown 
in Figure 1.

After developing the optimal model, with the aid of 
coefficients of lasso dimensionality reduction, we mea-
sured the weights of the features via the ELI5 package 
(ELI5 Library, version 0.11.0) in python 3.6 to score the 

importance of features and selected key features from 
multimodal sequences.

2.5  |  Statistical analysis

Except for age, the baseline characteristics of the two 
groups (IDHmut/pTERTmut and non-IDHmut/pTERT-
mut) in each data set (discovery set and independent 
validation set) were compared using the chi-square test. 
Mann–Whitney test was used for baseline difference 
in age and to assess the differences in feature value be-
tween the double mutations group and the nondual mu-
tation group. Kruskal–Wallis test was used for accessing 
statistical differences of features across subgroups of pa-
tients (IDHmut pTERTmut, IDHmut pTERTwt, IDHwt 
pTERTmut, and IDHwt pTERTwt). Receiver-operating 
characteristic (ROC) and precision–recall (P-R) analyses 
were conducted to evaluate the performance of models in 
the prediction of comutation status. The predictive abil-
ity of the prediction model was assessed by specificity, 

F I G U R E  1   An overview of the current study. The workflow of the study included patient recruitment, image preprocessing and tumor 
segmentation, feature extraction, and model development. The region of interest (ROI) of the glioma was automatically segmented from 
T1Gd (T1C), FLAIR, T2, and T1 using the open-source NiftyNet platform. The radiomic features of three sequences were extracted from 
the segmented ROI in original images, Laplacian-of-Gaussian (LoG) filter images, and wavelet filter images. After the LASSO feature 
dimensionality reduction, the entire data set was split into a training set (yellow color), a test set (green color), and an independent 
validation set (orange color). The training set was used to search and train an optimal model using TPOT. The optimal model was evaluated 
on the test set and independent validation set. Then, we attempted to interpret key diagnostic features for IDHmut pTERTmut glioma. 
Finally, we assessed the survival curves in different subgroups.

++ + ++++++++++++++ ++ +++
++ ++++++ + ++

+++ +++++++
+++++

++
++++++

+++ ++
+ +

0

25

50

75

100

0 200 400 600 800 1000 1200
Time

 ytilibab orp lavivru
S

(%
)

Sequences: 
(FLAIR,T1c,ADC)

ROI

Original
(100 features)

Wavelet-transform
(688 features)

LoG-filter
(430 features)

Model DevelopmentFeature Extraction

Image Preprocessing and Tumor 
Segmentation

tumor
segmentation

Data

140 Gliomas 

Patient recruitment 

ROC 
curve

P-R 
curve

Model evaluationTPOT model selection

Feature type

(1) preoperative multimodal MRI 
examination included T1 T2, FLAIR, 
enhanced T1, and DWI(ADC); 
(2) no craniotomy, glioma biopsy, or 
curative treatment for glioma were 
performed before imaging study; 
(3) pathologically confirmed grade , 
or glioma with known IDH status and 
TERT promoter status.

Criteria:

Training set 

Validation set 
Feature analysis

Independent 
Validation set 

Kaplan-Meier
curve

34 Gliomas 



2528  |      WANG et al.

sensitivity, accuracy, precision, recall, F1 score, PRAUC, 
and AUC value. The 95% CIs of these performance metrics 
using 200 random training/test set splits. The log-rank test 
was used to test for differences in the overall survival of 
patients. A 95% CI was set, and p < 0.05 was considered 
statistically significant. The raw data of radiomic features 
are attached to Table S5.

3   |   RESULTS

3.1  |  Clinical characteristics

According to the inclusion criteria (Figure 1), a total of 
140 patients with untreated primary glioma admitted be-
tween 2016 and 2020 in the Department of Neurosurgery, 
West China Hospital were retrospectively included as 
the discovery cohort. An additional cohort consisting of 
34 primary glioma patients from West China Shangjin 
Hospital was collected as the independent validation 
data set (Table  1). All patients received preoperative 
multimodal MRI examination (T1c + FLAIR+ADC). The 
number of patients in two data sets with IDHmut pTERT-
mut glioma was 22/140 (15.7%) and 7/34(20.6%). There 
was no significant difference in gender between the two 
groups of IDH/pTERT glioma. The IDHmut pTERTmut 
glioma patients were significantly younger than the other 
patients in both the discovery set and independent vali-
dation set (p = 0.02 and p = 0.02). Most IDHmut pTERT-
mut gliomas (28/29) were lower-grade gliomas (WHO II/
III). The clinical and statistical results of the study are 
summarized in Table 1.

3.2  |  Identification of potential 
IDHmut pTERTmut Glioma-Specific 
radiomic features

We identified the radiomic features specific to IDHmut 
pTERTmut gliomas in a data-driven approach. After ex-
tracting 3654 features from the automatically segmented 
tumor, we selected potential predictive features for 
IDHmut pTERTmut gliomas from the multimodal feature 
set, by training lasso regression models with a series of 
λ. Nonzero coefficient features in the model with mini-
mum mean square cross-validation error were defined as 
specific to IDHmut pTERTmut gliomas (Figure  S1A,B). 
Thirty-nine IDHmut pTERTmut glioma-specific radiomic 
features were selected (Figure 2A). Unsupervised cluster-
ing of samples using these specific features revealed heter-
ogeneity among IDHmut pTERTmut gliomas. Clustering 
features found a higher correlation between the ex-
tracted features from original images than those extracted 

from LoG and wavelet transformed images (Figure  2B, 
Figure S2).

3.3  |  Detection of IDHmut 
pTERTmut gliomas using multimodal 
radiomic features

To understand if the multimodal radiomic features could 
be used to distinguish IDHmut pTERTmut gliomas from 
other gliomas, we built a diagnostic model using an au-
toML algorithm with 80% of the patients' data (112) as 
the training set. We evaluated the performance of the 
model with the rest 20% of the cohort (28). The autoML 
algorithm searched through a series of modeling pipe-
lines combining different data feature reduction methods 
and models to find the best pipeline for detecting IDH-
mut TERT promoter-mut gliomas. The best pipeline was 
found to be a pipeline that consisted of selecting the top 
4% ANOVA F value between label/feature, followed by 
appending the count of zero-value features for each sam-
ple as an additional feature, and finally fitting a multi-
layer perceptron classifier (MLP classifier). The pipeline 
reached a sensitivity of 0.833 (95% CI, 0.333–1.000) at a 
specificity of 0.966 (95% CI, 0.931–1.000) in the test set. 
The overall accuracy was 0.943 (95% CI, 0.886–1.000). The 
area under the receiver-operatoring curve (AUROC) was 
0.971 (95% CI, 0.902–1.000, Figure  2C). Given the rela-
tively small proportion of IDHmut pTERTmut gliomas, 
we also conducted a precision–recall analysis. The preci-
sion of this pipeline was 0.833 (95% CI, 0.667–1.000). The 
area under the precision–recall curve (AUCPR) was 0.754 
(95% CI, 0.572–0.833, Figure  2D), and the F1-score was 
0.833 (95% CI, 0.500–1.000). Here, we reported the 95% 
CIs of these performance metrics using 200 random train-
ing/test set splits to show the reproducibility of the results. 
Furthermore, the predictive performance of the model 
was evaluated in the independent validation set. The over-
all accuracy, sensitivity, and specificity were 0.912, 0.714, 
and 0.963 The AUROC was 0.952 (Figure  2E). The pre-
cision of this pipeline was 0.833. The AUCPR was 0.841 
(Figure  2F) and the F1 score was 0.769. These results 
suggested that the specific multimodal radiomic features 
could build robust diagnostic tools for detecting IDHmut 
pTERTmut gliomas.

3.4  |  Prognostic value of the radiomic 
model output

In current practice, the aggressiveness of suspected 
glioma is usually assessed using enhancement or non-
enhancement.27 Most malignant GBMs present in T1c 
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F I G U R E  2   Selected Features and Performance of The Prediction Model for Identifying IDH-mutant TERT promoter-mutant Gliomas. 
(A) The least absolute shrinkage and selection operator (Lasso) binary logistic regression model identified 39 radiomic features specific to 
IDHmut pTERTmut gliomas from a total of 3654 features. (B) Samples and features were clustered using unsupervised hierarchical clustering. 
(C, D), Performance of the prediction model (receiver operating characteristic [ROC] curve and P–R curve analysis). (E, F), Performance of the 
prediction model in the independent validation set (ROC curve and P–R curve analysis). Abbreviations: LoG, Laplacian of Gaussian.
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images as an enhancing tumor, while less-aggressive 
LGGs usually present as a nonenhancing tumor, but the 
exceptions are common.28 Interestingly, in the test set, 
the OS for patients with contrast-enhanced (CE) tumors 
appeared to be better than those with non-CE tumors, 
although the difference was nonsignificant (p = 0.091, 
Figure 5A). To understand if the radiomic model could 
provide more accurate prognostic information, we ana-
lyzed the OS of patients with different predicted comuta-
tion statuses. In patients with predicted non-comutation 
gliomas, six patients died, while none of the patients 
with comutation died during our follow-up (p  =  0.29, 
Figure 5B).

3.5  |  Interpreting diagnostic radiomic 
features of IDHmut pTERTmut Glioma

Despite the high performances of multivariate radiomic 
models in solving controlled classification tasks, the 
interpretability and transparency of the diagnostic re-
sults are still desirable for both clinicians and patients. 
In terms of radiological characteristics, there was a 
higher percentage of cases were marked/avid or mini-
mal/mild enhancing in non-IDHmut/pTERTmut group 
(p < 0.001). Although there was no significant difference 
in T2/FLAIR mismatch sign between the two groups 
(Table  S3). We attempted to interpret the result of the 
IDHmut pTERTmut glioma detection model by evaluat-
ing the most important diagnostic radiomic features. We 
estimated the contribution of each radiomic feature to the 
model by calculating its permutation importance which 
was represented by the mean decrease in model accuracy 
when values of the feature were permuted among sam-
ples. We found that IDHmut pTERTmut glioma-specific 
radiomic features from all three modalities contributed 
to the diagnostic model (Figure 3A). Among the top 10 
most important features, six were extracted from FLAIR 
images, two from ADC maps, and two from T1c images. 
The most important features were FLAIR_wavelet-HHL_
firstorder_Median, T1Gd_log-sigma-5-0-mm-3D_glcm_
Imc1, and ADC_original_glcm_Imc1 in each modality. 
Though FLAIR_wavelet-HHL_firstorder_Median and 
ADC_original_glcm_Imc1 ranked the most important 
feature in their respective modality, these features' differ-
ence between molecular subgroups was non-significant 
(adjusted p = 0.14 and p = 0.34, Table S4). Nonetheless, 
among the top features, FLAIR_wavelet-LLL_gldm_
DependenceVariance and ADC_log-sigma-5-0-mm-3D_
firstorder_RootMeanSquared were significantly different 
between IDHmut pTERTmut gliomas and other gliomas 
(adjusted p  < 0.001, Figure  3B, Table.S4). To visualize 
these diagnostic radiomic features, we transformed the 

original images with the corresponding filters and com-
pared the characteristics of different glioma groups. 
Intuitively, the IDHmut pTERTmut gliomas showed 
homogenous low-complexity texture in three modalities 
(Figure 4).

The diagnostic radiomic features in ADC and T1c 
images were extracted from LoG-transformed images 
with a sigma of 5.0 mm. The LoG filter enhances areas 
with rapidly changing intensities.25 Intuitively, the root 
mean squared of LoG ADC maps in the tumor region 
quantifies the average abruptness of diffusion changes. 
Therefore, lower ADC_log-sigma-5-0-mm-3D_firstorder_
RootMeanSquared values in the IDHmut pTERTmut gli-
omas may represent a more homogenous diffusion in the 
tumor, while abrupt changes in ADC intensity could re-
flect the presence of non-liquefied necrotic tissue found in 
more aggressive glioma groups (Figures 3B, 4C).

Gray Level Cooccurrence Matrix (GLCM) counts 
the number of gray level intensities combinations in 
connected voxels.29 The Informational Measure of 
Correlation 1 (IMC1) of the GLCM measures enrichment 
of any particular intensity combinations and correlated 
with the complexity of image texture (images with repeat-
ing predictable texture contain fewer intensity combina-
tions, thus yielding an IMC1 close to −1, while those with 
complex unpredictable texture contain widely dispersed 
intensity combinations and produces an IMC close to 0). 
For the LoG T1c image, the low GLCM IMC1 in IDHmut 
pTERTmut gliomas indicated low complexity texture in 
the tumor region (Figures 3B, 4A).

Wavelet decomposition separates image informa-
tion using a sequence of wavelet functions from higher 
frequency wavelets to lower frequency ones.26 The rel-
atively subtle information approximated by the higher 
frequency wavelet function is captured by the high-pass 
filter, while the remaining information is captured by 
the low-pass filter and can be further decomposed using 
wavelet functions with lower frequencies. The LLL wave-
let transformed FLAIR images had high-frequency signals 
removed and could therefore be considered a smoothed 
FLAIR image. The Gray Level Dependence Matrix 
(GLDM) counts the number of patterns formed by con-
nected voxels with similar intensity.30 The dependence 
variance of GLDM describes the diversity of patterns with 
higher values representing more diverse patterns in an 
image. IDHmut pTERTmut gliomas showed low GLDM 
dependence variance in LLL wavelet transformed FLAIR. 
This could also be considered a sign of its homogenous 
texture (Figures 3B and 4B).

Upon inspection, the differences between IDHmut 
pTERTmut and IDHmut pTERTwt gliomas were not as 
obvious as those between IDHmut pTERTmut and IDH 
wild-types (Figure 3B). Consequently, we further analyzed 
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significantly differential radiomic features between the 
two IDH-mutant groups. We found FLAIR_wavelet-
HLH_glszm_GrayLevelNonUniformityNormalized, 

t1Gd_wavelet-LLL_glszm_SmallAreaEmphasis, and 
ADC_wavelet-HHH_glcm_Imc1 had the smallest ad-
justed p values in their respective modality (Figure  S4, 

F I G U R E  3   Feature importance and comparison of key feature values. (A) The contribution of IDHmut pTERTmut glioma-specific 
radiomic features to the diagnostic model was estimated using the ELI5 package. The error bars in the figures were shown as standard 
deviations of weights in 200 random training/test set splits. (B) Boxplot of feature values. The value of key radiomic features in each 
sequence among IDHmut/pTERTmut and other groups were compared using the Mann–Whitney test (*p value <0.05, **p value <0.01,  
***p value <0.001, ****p value <0.0001). Abbreviations: GLCM, gray-level co-occurrence matrix; GLDM, gray level dependence matrix; 
GLSZM, gray-level size zone matrix; LoG, Laplacian of Gaussian.
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F I G U R E  4   The Appearance of The MR Image Corresponds to Three Key Radiomic Features in IDH-mutant TERT promoter-mutant 
and Other Gliomas. (A–C) suggested that the IDHmut pTERTmut gliomas showed homogenous low-complexity texture in T1Gd (T1C), 
FLAIR, and ADC sequences. Yellow lines indicated the region of gliomas. Red numbers denoted the feature values of the region of interest 
(ROI). Abbreviations: Imc1: Informational Measure of Correlation.
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Table S4). The FLAIR and ADC differential features could 
be interpreted into simple or uniform intensity signals in 
the high-pass wavelet filter transformed images, while the 
t1Gd_wavelet-LLL_glszm_SmallAreaEmphasis indicated 
fewer fine patterns (small-size connected voxel zones) in 
the smoothed T1c image (Figure S5A).

4   |   DISCUSSION

The outcomes of adult gliomas are diverse. While patients 
with highly aggressive IDH wild-type gliomas have an abys-
mal prognosis, those with IDH gene and TERT gene pro-
moter comutant tumors receive much greater benefit from 
current treatments.31,32 Over 80% IDHmut pTERTmut glio-
mas are oligodendrogliomas characterized by codeletion of 
chromosome arms 1p and 19q.5 This group of gliomas has 
been shown to derive similar benefits from non-GTR com-
pared with GTR and respond to PCV chemotherapy.33 This 
study attempted to develop a noninvasive method to detect 
IDH-mutant TERT promoter-mutant gliomas using pre-
operative multimodal MRI. We first extracted quantitative 
features using radiomic analysis and selected those most 
relevant to IDH-mutant TERT promoter-mutant gliomas 
in a data-driven approach. Consequently, we identified a 
set of diagnostic radiomic features that depicted the ho-
mogenous simple texture of these gliomas. Since a higher 

proportion of strongly enhancing cases was found in the 
non-IDHmut/pTERTmut group than IDHmut/pTERT-
mut group in the discovery set (Table S3), we attempted to 
use enhancement quality as a factor for prognostic strati-
fication in the test set. The K-M curves showed that the 
enhancement quality was not a prognostic stratification 
indicator for the glioma patients in the test set. With the 
model, we attempted to verify the significance of molecu-
lar subgroups, predicted by the model, in the prognostic 
stratification of glioma patients. Although not statistically 
significant, there was a worsening trend in overall survival 
in the predicted_NonIDHmut/pTERTmut group.

Time savings was an important benefit of using TPOT 
compared with manual annotation and model parameters 
searching. With the development of deep-learning technol-
ogy and the construction of related glioma MRI data sets 
(e.g., Brats competition), glioma's automatic tumor seg-
mentation model has become more and more mature.34 A 
recent study reported a deep-learning approach for tumor 
segmentation and grading, combining CNNs, transfer 
learning based on a pretrained model, a fully connected 
classifier, and the dice similarity coefficient (DSC) score 
reach 0.84.35 However, the drawback was that for diffuse 
or multiple lesions, automated segmentation results were 
not entirely satisfactory. Experienced radiologists were 
needed to correct and proofread the segmented tumor im-
ages. TPOT, the result of the autoML research, integrates 

F I G U R E  5   Kaplan–Meier analysis of test set patients while substratifying by predicted-IDHmut/pTERTmut or enhancing quality. (A) 
OS for patients with enhancement and patients without enhancement in T1C image. (B) OS for patients with predicted-IDHmut/pTERTmut 
and patients with predicted-NonIDHmut/pTERTmut.
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multiple models (random forest, XGBOOST, etc.) develop-
ing pipelines, which can most effectively perform feature 
engineering and model building. Prior studies have con-
firmed that the model from TPOT has better performance 
than from AdaBoost or random forest.36,37 However, the 
disadvantage of TPOT is that a large number of feature in-
puts can reduce the program's speed. Therefore, advanced 
feature selection such as LASSO feature dimensionality re-
duction was used in our study, which can significantly ac-
celerate the running speed of TPOT.

Previous radiomic studies focused on the diagnosis and 
prognosis of glioma for prediction.38 On the one hand, 
progress has been made in the prediction of a single geno-
type. Based on the radiomic features extracted from DWI, 
PWI, and conventional MRI, a logistic regression classifier 
was used for predicting the IDH status of LGGs. The AUC 
of the model reached 0.795 in the validation set.39 Another 
study showed similar results, using conventional MRI fea-
tures and arterial spin labeling (ASL) image features to 
develop a linear SVM model to predict IDH mutations in 
gliomas, and the AUC reached 0.823.11 As for some radio-
mic studies aimed at pTERT mutations, two prior stud-
ies evaluate the performance of random forest and linear 
SVM models in predicting pTERT mutations based on 
conventional MRI features. The results of the two studies 
showed AUC reached 0.827 and 0.845, respectively.10,40

On the other hand, some studies addressed combining 
subtypes of gliomas for predictions. A lasso regression 
model was developed for predicting IDH and pTERT mu-
tations based on the conventional MRI radiomics analy-
sis. The overall diagnostic accuracy in the validation set 
reached 0.56.12 Logistic regression models were built to 
predict IDH-wild-type TERTp-mutation high-grade gli-
omas using pretreatment dynamic [18 F]FET PET radio-
mics methods. The AUC of the best model reached 0.82 
with nine selected features.41 The application of CNNs in 
medical image analysis has been growing rapidly in recent 
years. A TERT promoter mutation classifier's accuracy 
reached 84.0 ± 9.3% using CNN base texture features.42 A 
gradient boosting model was trained using the textual and 
shape features from the LoG-filtered T1c image for pre-
dicting the co-occurrence of IDHmut and MGMTmet in 
gliomas, and the AUC reached 0.951.43 It was noteworthy 
that the texture feature set had a large weighting in many 
prediction models, which corroborated our study. Texture 
features accounted for above 80% of the model-selected 
features in a radiomic study for IDH prediction.11 Twelve 
features incorporated into the pTERT prediction model 
by Fang et al. were texture features and wavelet transform 
features.10 Nine features finally incorporated into the 
model of pTERT prediction study contained eight texture 
features, and six texture features were the same or similar 
to ours.40 Among them, three T1c features (correlation, 

gray-level nonuniformity normalized, and gray-level vari-
ance) were the same as our selected T1c features, and three 
T2 features (gray-level variance, large dependence on high 
gray-level emphasis, and small dependence on high gray-
level emphasis) were similar to our selected FLAIR fea-
tures. Textural features of conventional MRI also showed 
nice prognostic performance (C-index, 0.798) in LGG pa-
tients,44 most of them were wavelet-transformed textural 
features (27/29), and six wavelet features were identical 
to our study, including our key feature (FLAIR_wave-
let_LLL_gldm_DependenceVariance). In our study, the 
texture features contributed the most to the model. There 
are two possible reasons for this result. First, texture fea-
tures took the largest proportion in the radiomics feature 
set. Second, texture features convoluted the numerous 
internal details of ROI and contains more “microscopic” 
information which is more resilient to the heterogenous 
growth and invasion patterns of gliomas.45,46

In addition to the key features between IDHmut pTER-
Tmut and IDHmut pTERTwt gliomas, the interpretation of 
significantly differential radiomic feature between the two 
IDH-mutant groups is also of interest. The information cap-
tured in high-pass wavelet filters has often been regarded 
as a noise component of the image. However, the high-pass 
wavelet filter transformed ADC maps showed a significant 
difference in GLCM IMC1 between IDHmut pTERTmut and 
IDHmut pTERTwt gliomas. Lower ADC_wavelet-HHH_
glcm_Imc1 of IDHmut pTERTmut gliomas turned out to 
represent a lack of high-frequency component (Figure S5C).

Gray-Level Size Zone Matrix (GLSZM) counts con-
nected zones (patterns) of various sizes (number of 
voxels).47 The normalized gray-level nonuniformity of 
GLSZM is positively correlated with the variation in the 
sizes of zones. Lower nonuniformity (higher uniformity) 
in sizes of high-frequency intensity zones in FLAIR 
images of IDHmut pTERTmut gliomas may indicate a 
simpler texture pattern in the high-frequency of their 
FLAIR image. In smoothed wavelet-LLL T1c images 
(Figure  S5A), the IDHmut pTERTmut gliomas demon-
strated fewer small zones than IDHmut pTERTwt glio-
mas (which represent finer texture patterns in an image).

A few limitations should be noticed when interpreting 
the results of this study. First, although we evaluated the 
robustness of our model using cross-validation and inde-
pendent external validation, the size of the data set needs 
to be expanded to obtain more powerful conclusions. 
Second, we omitted PWI MRS because postprocessing 
of these data types was not well compatible with the ra-
diomic analysis, and we did not acquire these sequences 
from every included subject. Future studies may consider 
combining these data with extracted radiomic features to 
expand the MRI-based glioma classifier. Third, because 
of our limited follow-up time, none of the patients with 
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predicted IDHmut pTERTmut did reach the survival end-
point, which impaired the significance of the statistical 
test comparing the two survival curves. However, the pre-
diction made by the radiomic model still appeared to out-
perform conventional practice. Finally, the steep learning 
curve about the data-processing techniques, the indirect 
manifestations of radiomic features, and the complex-
ity of the classification model could prevent easy access 
to the analysis results for clinicians, especially in urgent 
situations. While loose associations could be established 
between radiomic feature values and trends in the visual 
characteristics of IDHmut pTERTmut gliomas, future en-
gineering work is still necessary to better integrate the rel-
evant information into the clinical user interface.

In conclusion, we identified specific radiomic fea-
tures that detect gliomas with IDH and TERT promoter 
mutations from multi-modal MRI that consisted of T1c, 
FLAIR, and ADC maps. We showed the performance of 
an automatically trained diagnostic model for this partic-
ular group of gliomas based on these features. We demon-
strated the most relevant radiomic features were associated 
with the homogenous simple texture of IDHmut pTERT-
mut gliomas in MRI images transformed using Laplacian 
of Gaussian and wavelet filters.
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