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Cefoselis enhances breast cancer chemosensitivity by
directly targeting GRP78/LRPS5 signalling of cancer stem

cells

Dear editor,

Stress-induced cellular defence machinery is significant
for regulating breast cancer stem cells (CSCs).! > GRP78 is
an endoplasmic reticulum (ER) stress protein and has been
reported to be overexpressed in multiple malignancies.* In
this study, we shed novel light on the role of GRP78 in regu-
lating breast CSCs via LRP5/B-catenin signalling. Cefoselis
is a widely used $-lactam antibiotic with high efficacy and
safety.” Here, we identified cefoselis as a GRP78-targeting
agent for eliminating breast CSCs.

We first evaluate the clinical implications of GRP78
expression in breast cancer and its potential as a drug-
gable target. Bioinformatics analysis indicated that GRP78
levels were higher in tumours than in para-tumour tis-
sues. The overall survival of GRP78M8" breast cancer
patients was significantly poorer compared to GRP78!°%
patients (Figure 1A). Moreover, GRP78 expression was sig-
nificantly higher in CD44%/CD24~ or ALDH" breast CSCs
(Figure 1B). A tissue microarray analysis (n = 118) con-
firmed that GRP78 was highly correlated with prognosis
and CSC-related signalling in breast cancer (Figure SI,
Tables S1 and S2). Similarly, GRP78 expression was
remarkably upregulated in breast cancer stem-like cells
(Figure 1C). Notably, GRP78 was highly expressed on
the cell surface of breast cancer stem-like cells but was
reduced following differentiation (Figure 1D-E). Previous
studies have indicated that GRP78 shifts to the cell mem-
brane under ER stress.®® Herein, it was also observed
that paclitaxel treatment induced GRP78 translocation to
the cell surface (Figure 1F). GRP78 expression and the
stem-like cell population were significantly elevated in
paclitaxel-resistant cells (Figure S2). GRP78 knockdown
resulted in a significant reduction of breast cancer stem-
like cell numbers, mammosphere formation abilities, and
p-catenin nuclear localisation in both breast cancer cell
lines, whereas GRP78 overexpression presented the oppo-

site effects (Figures 1G and S3). These findings suggest that
GRP78 positively regulates breast CSCs.

Small molecule microarrays are emerging as valuable
tools for high-throughput screening in drug discovery. We
printed 1836 kinds of small molecules on a surface plasmon
resonance (SPR) slide to identify the potential inhibitor
(Figure 2A). Through screening, twelve compounds were
shown to have the potential binding interaction. Notably,
cefoselis had the strongest binding affinity (Figure 2B).
The result was further validated by isothermal titration
calorimetry (ITC) technology, indicating that hydropho-
bic and van der Waals forces jointly contributed to the
interaction between cefoselis and GRP78 (Figure 2C and
D). In addition, FITC-labelled cefoselis and Alexa Fluor
555-coupled GRP78 were colocalised in breast cancer cell
lines. Colocalisation of GRP78 and cefoselis was primar-
ily found in the cytoplasm before paclitaxel treatment.
However, the unfolded protein response (UPR) is activated
following paclitaxel treatment. The UPR sensor GRP78 had
been reported to translocate toward the cell membrane to
bind with ligands and facilitate cell survival.” Correspond-
ingly, GRP78 presented colocalisation with cefoselis at the
cell surface upon paclitaxel treatment (Figure 2E). CETSA
analysis suggested that cefoselis improved the thermal sta-
bility of GRP78, further validating the binding between
them in breast cancer cells (Figure 2F).

As expected, cefoselis efficiently reduced paclitaxel-
induced upregulation of breast cancer stem-like cells
(Figures 3A and S4A-D). Meanwhile, cefoselis dose-
dependently limit the number and size of mammo-
spheres in breast cancer cell lines (Figures 3B and S4E).
Besides, the paclitaxel-induced overactivation of LRP5/8-
catenin signalling was suppressed by cefoselis (Figures 3C
and S4F), which is independent of general protein synthe-
sis inhibition (Figure S4G). Correspondingly, cell viability,
colony formation, transwell and wound-healing assays
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FIGURE 1 GRP78 positively regulates breast CSCs. (A) Comparative analysis of GRP78 gene expression between the primary tumour
tissues and para-tumour tissues from a cohort of TCGA breast cancer patients (upper panel). Overall survival curves were constructed
according to GRP78 levels using the GEO database (lower panel, GSE1456). (B) GRP78 expression was compared between CD44t/CD24~
breast CSCs (n = 12) and non-CD44"/CD24~ ones (n = 11) using the GEO database (GSE52262, upper panel). The GRP78 expression of
ALDH™ breast cancer stem-like cells (n = 6) and ALDH™ ones (n = 6) were also compared in the GEO database (GSE52327, lower panel). (C)
ALDHTY cells were isolated as breast cancer stem-like cells to detect the GRP78 expression and compared with the unsorted breast cancer cells.
(D) The fluorescence of GRP78 expression on the surface of the mammospheres was displayed in the confocal 3D imaging (upper panel). The
scale bars indicate 20 um. Fluorescence changes of GRP78 expression following mammospheres differentiation were also detected (lower
panel). The scale bars indicate 50 um. (E) The mammospheres were digested into single cells before performing an immunofluorescence
analysis. A part of single-cell suspensions was collected for immunofluorescence analysis directly (undifferentiated). The other part was
differentiated in the plain culture well for 48 h before immunofluorescence detection. Thus, the fluorescence intensities of GRP78 were
compared before and after differentiation. The cell membrane was visualised with Dil staining (red) and merged with GRP78 (green). The
scale bars indicate 10 um. (F) Representative fluorescence imaging of GRP78 localisation in paclitaxel treatment or paclitaxel-resistant
MDA-MB-231 and SK-BR-3 cells. The cell membrane was visualised with Dil staining (red) and merged with GRP78 (green). The scale bars
indicate 10 um. (G) ALDHT cells were detected in GRP78 overexpression and knockdown cells compared with their empty vector or
scrambled shRNA control. Data were represented as mean =+ SD. For statistical analysis, Wilcoxon test (A) and unpaired two-sided Student’s ¢
test (B, C, G) were applied. *p < .05, *p < .01. OE-GRP78: GRP78 overexpression; sShGRP78: GRP78 knockdown
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FIGURE 2 Screening and identification of cefoselis as a GRP78-targeting agent. (A) BCL (1836) small molecule library was printed on
the surface plasmon resonance (SPR) slide to screen the candidate GRP78-targeting agent. (B) A total of 12 compounds were screened with the
potential binding interaction. Cefoselis was identified as the strongest compound binding with GRP78 in a dose-dependent manner. (C)
Isothermal titration calorimetry (ITC) assay was performed to measure the binding affinity of cefoselis with the recombinant GRP78 protein.
(D) The raw and integrated heat release in the ITC assay were fitted to obtain the binding parameters. (E) Cefoselis was covalently coupled to
FITC (green), and GRP78 was labelled using Alexa Fluor 555 (red). The colocalisation of cefoselis and GRP78 in control or paclitaxel-induced
breast cancer cells was observed by immunofluorescence. (F) Cellular thermal shift assay (CETSA) of the thermal stability of the GRP78 in
cell lysate after cefoselis (20 uM) treatment. ANOVA for repeated measurements was applied. *p < .05
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FIGURE 3 Cefoselis limits breast CSCs with high safety and targeted characteristic. (A) ALDH* frequency of MDA-MB-231 and SK-BR-3
was detected by flow cytometry following treatment with paclitaxel (24 nM) alone or cefoselis (20 uM) combination for 6 h. (B) MDA-MB-231
and SK-BR-3 cells were cultured in ultralow attachment plates with the conditioned medium for mammosphere formation. The number and
size of mammospheres in both cell lines were quantified under 10 and 20 uM cefoselis treatment. (C) LRP5, p-LRP5, and -catenin expression
were measured in paclitaxel-resistant cells following cefoselis (20 uM) treatment. (D) The CD44*/CD24~/°" subpopulation of SK-BR-3 cells
was sorted and inoculated into the mammary fat pads of NOD/SCID mice at the density of 1x10.* The tumour incidence was identified and
quantified following treatment with 25 and 50 mg/kg cefoselis (n = 8). (E) Orthotopic breast cancer xenograft was established as mentioned
above. The left panel is the representative image of tumours separated from Balb/c nude mice. The right panel is the tumour growth curve

(n =5). (F) The bioluminescence of the lung colonisation was imaged (left panel) and quantified (right panel) (n = 4). (G) ALDH" stem-like
cells in primary tumour tissues and lung metastasis lesions were analysed by flow cytometry (n = 3). (H) LRP5 and 5-catenin expression in
primary tumour tissues of each group were detected by immunofluorescence assay (the scale bars indicate 10 um). (I) SD rats (n = 6) were
injected with 50 mg/kg cefoselis via tail vein. Pharmacokinetic curves were recorded, and the pharmacokinetic parameters were calculated.
(J) Breast cancer-bearing mice (n = 6) were administered 25 mg/kg cefoselis by intraperitoneal injection, and the tissue distribution of
cefoselis was detected 1 h later. Data were represented as mean + SD. For statistical analysis, one-way ANOVA and Bonferroni as post hoc test
(A, B), Wilcoxon test (D), ANOVA for repeated measurements (E), and unpaired Student’s ¢ tests (F, G) were applied. *p < .05, *p < .01
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FIGURE 4 Cefoselis disrupts the interaction between GRP78 and LRP5 via PHE294. (A) ALDH™ frequency of breast cancer cells with
GRP78 overexpression was detected following cefoselis (20 uM) treatment. (B) The CD44+/CD24~/'°% subpopulation of control or GRP78
overexpressing SK-BR-3 cells was sorted and inoculated into the mammary fat pads of NOD/SCID mice at the density of 1x10.* The tumour
incidence was identified and compared following cefoselis (25 mg/kg) treatment (n = 8). (C) S-catenin, LRP5 and its phosphorylation levels
were measured in MDA-MB-231 and SK-BR-3 cell lines following GRP78 overexpression under the administration of Wnt inhibitor WIF-1
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demonstrated the synergistic effects between cefoselis
and paclitaxel (Figure S5). In vivo, cefoselis significantly
limited the tumourigenicity of breast CSCs sorted from SK-
BR-3 cellsin NOD/SCID mice in a dose-dependent manner
(Figure 3D). In addition, cefoselis significantly promoted
paclitaxel chemosensitivity to limit breast cancer growth
(Figure 3E). A lung colonisation model further validated
that cefoselis synergistically interacted with paclitaxel to
inhibit MDA-MB-231 growth in the lung, accompanied
by the reduction of metastatic lesions in the combination
group (Figures 3F and S6A). The flow cytometry assay
revealed that the population of breast cancer stem-like
cells increased by paclitaxel was significantly suppressed
by cefoselis (Figures 3G and S6B). Consistent with in vitro
findings, the LRP5/B-catenin signalling was suppressed
by cefoselis (Figure 3H), and paclitaxel-induced apopto-
sis was aggravated (Figure S6C). These findings highlight
cefoselis as a potential CSCs-limiting agent to improve
breast cancer prognosis.

We next validated the CSCs-limiting effects and safety
of cefoselis on immune-competent mice. Cefoselis brought
little hepatotoxicity, nephrotoxicity, and no aggravation
of leukopenia when coadministrated with paclitaxel
(Table S3).° The pharmacokinetic study demonstrated
that the Cmax and AUC,_ , values of cefoselis were
27.367 mg/L and 38.337 mg/L-h, and the #;,, was deter-
mined as 2.346 h (Figure 3I). Moreover, cefoselis had
a relatively high concentration in breast tumours, just
behind the kidney (Figure 3J). In agreement with the pre-
vious results, cefoselis synergistically facilitated paclitaxel
to inhibit breast cancer growth and lung metastasis, and
reduced ALDH1A3 activity induced by paclitaxel, as well
as the expression of LRP5 and -catenin (Figure S7). These
findings demonstrate that cefoselis could be safely used
as an adjuvant agent during chemotherapy with a natural
tendency to the breast.

Mechanistically, it was found that the inhibition of
cefoselis on stem-like cells and tumourigenicity of breast
CSCs were relieved following GRP78 or LRP5 overex-
pression (Figures 4A and B and S8). Meanwhile, GRP78
overexpression resulted in an enhanced expression of

phosphorylated-LRP5/5-catenin signalling under the Wnt
inhibitor treatment in breast cancer cell lines, suggesting a
possible interaction between GRP78 and LRP5 (Figures 4C
and S9A)."° Coimmunoprecipitation (Co-IP) assay further
indicated an interaction between GRP78 and LRP5, which
was enhanced by paclitaxel treatment or chemoresistance
(Figure 4D). Co-IP of different truncations of LRP5 with
GRP78 confirmed that the binding site located in LRP5
fragment 201-400 (Figure 4E-F). Molecular docking anal-
ysis suggested the highest binding energy was attributed
to PHE294 of LRP5 (Figure 4G-H). The binding between
GRP78 and LRP5 was abrogated following PHE294 muta-
tion (Figures 41 and S9B). Notably, cefoselis also displayed
strong binding with PHE294 (Figures 4J and S9C). Cefos-
elis interfered with the binding between GRP78 and LRP5
and attenuated their interaction enhanced by paclitaxel
(Figure 4K). Moreover, the frequency of breast cancer
stem-like cells declined by cefoselis was abolished due to
the mutation of PHE294 (Figure S9D). Therefore, cefos-
elis limits breast CSCs mainly by interrupting the binding
between GRP78 and LRP5.

In conclusion, GRP78/LRP5/B-catenin signalling was
identified as a novel pathway promoting breast CSCs.
Moreover, cefoselis was identified as a GRP78-targeting
agent to enhance breast cancer chemosensitivity and limit
metastasis by inhibiting CSCs in vitro and in vivo. Our
findings highlight the significance of ER stress signalling
in CSC regulation and provide cefoselis as an adjuvant
agent to improve breast cancer prognosis by targeting
GRP78.
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