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MOTIVATION Single-cell RNA sequencing (scRNA-seq) enables researchers to study gene expression at
cellular resolution. However, noise caused by amplification and dropoutmay hamper precise data analyses.
It is urgent to develop scalable denoising methods to deal with the increasingly large, but sparse, scRNA-
seq data. Here, we present autoCell, a graph-embeddedGaussianmixture variational autoencoder network
algorithm for scRNA-seq dropout imputation and feature extraction. Our autoCell provides a deep-learning
toolbox for end-to-end analysis of large-scale single-cell/nucleus RNA-seq data, including visualization,
clustering, imputation, and disease-specific gene network identification.
SUMMARY
Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expres-
sion of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of
scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-learning approach for
scRNA-seq dropout imputation and feature extraction. autoCell is a variational autoencoding network that
combines graph embedding and a probabilistic depth Gaussian mixture model to infer the distribution of
high-dimensional, sparse scRNA-seq data. We validate autoCell on simulated datasets and biologically rele-
vant scRNA-seq. We show that interpolation of autoCell improves the performance of existing tools in iden-
tifying cell developmental trajectories of human preimplantation embryos. We identify disease-associated
astrocytes (DAAs) and reconstruct DAA-specific molecular networks and ligand-receptor interactions
involved in cell-cell communications using Alzheimer’s disease as a prototypical example. autoCell provides
a toolbox for end-to-end analysis of scRNA-seq data, including visualization, clustering, imputation, and dis-
ease-specific gene network identification.
INTRODUCTION

Single-cell technology is a revolutionary breakthrough, allow-

ing us to study the genome, transcriptome, and multi-omics

systems of each cell, in each state, in tissues.1,2 Combined

with technologies such as fluorescent labeling and micro-

dissection, it can also determine spatial attributes and cell-

cell communication. These technologies have been widely
Cell Rep
This is an open access article under the CC BY-N
used, leading to a revolution in basic and translational

medicine.

Single-cell or single-nucleus RNA sequencing (sc/snRNA-seq)

is important for identifying biological and disease-relevant cell

types and subpopulations from heterogeneous cells.3–6 Low-

dimensional analysis of expression in different cell states can

also be highly effective in reconstructing the cell developmental

trajectory.7–12 However, the amount of mRNA in a single cell is
orts Methods 3, 100382, January 23, 2023 ª 2022 The Author(s). 1
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small, which necessitates a nearly million-fold amplification.

Although the measurement technology has been greatly

improved, technical factors still cause considerable noise in

data generated in scRNA-seq experiments, including amplifica-

tion deviation, library size difference, and extremely low capture

rate. In particular, the extremely low RNA capture rate leads to

undetectable, albeit expressed, genes, namely ‘‘dropout’’

events.13 An essential difference is found between the ‘‘false’’

zero count caused by the ‘‘dropout’’ event and the true zero

count. Given the sparse expression metrics, traditional analytic

tools cannot achieve scientific rigor, and they lack high data

reproducibility.14

Deep-learning algorithms have shown compelling perfor-

mance in high-dimensional data processing, including sparse

genomic data. DeepImute, an interpolation algorithm based on

a deep neural network, is one such example. It uses the dropout

layer to learn the patterns in the data to achieve accurate impu-

tation.15 Another denoising model is to denoise scRNA-seq da-

tasets through a depth-counting autoencoder (DCA) network. A

DCA takes the count distribution, overdispersion, and sparsity of

the data into account using a negative binomial noise model with

zero inflation.16 scScope, a scalable deep-learning-based

method, can accurately and quickly identify cell-type composi-

tion from millions of heterogeneous single-cell transcriptomic

profiles.9 Compared with DCA and scScope, scVI17 uses a vari-

ational autoencoder (VAE) to reduce the dimensionality of

scRNA-seq data. However, the standard VAE implemented by

scVI17 only uses a single isotropic multi-variate Gaussian distri-

bution on the latent variable, which is not generally suitable for

representing multi-category data such as scRNA-seq data con-

taining multiple types of cells/nuclei. scVAE is another method

based on VAEs, which uses Gaussian mixture models (GMMs)

as prior distributions and introduces Poisson or negative bino-

mial distributions to obtain latent representations of cells.18

However, the model considers the mean and variance of the

GMM as random variables, and it is approximated by a neural

network with a parameter b, which makes model optimization

challenging. As the number of measurable cells/nuclei and addi-

tional emerging sc/snRNA-seq data analysis challenges in-

crease, the demand for faster and scalable estimation methods

becomes a pressing need.

With the rapid development of graph neural networks, graph

autoencoders can learn low-dimensional representations of

graph topology and train node relationships with a global, entire

graph view. Increasingly, exploiting a graph neural network frame-

work in sc/snRNA-seq data analysis can be considered. Single-

cell graph neural network (scGNN)19 establishes cell-cell relation-

ships through graphical neural networks and uses left-truncated

mixed Gaussian models to model heterogeneous gene expres-

sion patterns. It also integrates three iterative multi-mode autoen-

coders. However, the iterative autoencoder framework requires

more computing resources, which is more time consuming.

In this study, we present a deep-learning framework, namely

autoCell, for dropout imputation and feature extraction from

scRNA-seq data. The accuracy index indicates that autoCell

outperformed six state-of-the-art published imputation methods

in simulated datasets and biologically relevant sc/snRNA-seq

datasets with varying degrees of human diseases. Therefore, au-
2 Cell Reports Methods 3, 100382, January 23, 2023
toCell is a scalable and accurate scRNA-seq data processing

method that is superior to other scRNA-seq data analysis tools.

RESULTS

Overview of the autoCell framework
The overview of autoCell is shown in Figure 1. It is a VAE network

that combines graph embedding and GMMs to model the distri-

bution of high-dimensional, sparse scRNA-seq data. autoCell ar-

chitecture can use biological representations of cells and genes

to perform different scRNA-seq data analysis tasks. By inte-

grating GMMs, autoCell can better estimate data distribution.

We apply graph embedding to deal with sc/snRNA-seq data.

Capturing the graphical information of the local data structure

is a good complement to deep GMMs, making the network learn

a global model with local structure constraints. Recent studies

have showed that zero-inflated negative binomial (ZINB) distri-

bution for modeling is an appropriate tool to solve the ‘‘dropout’’

event for scRNA-seq data. In reducing the impact of dropout

events in highly sparse and over-dispersed count data, we intro-

duce the ZINB distribution model, thereby denoising scRNA-seq

data (see STAR Methods).

autoCell effectively imputes scRNA-seq data
We first applied autoCell to simulated scRNA-seq data to assess

its imputation performance.20 We simulated two datasets with

three cell types, including 1,000 cells and 2,000 genes. For the

simulation of the two datasets, 60% and 71% of the data values

were set to the zero matrix to simulate dropout events in real

data. We divided the entry of the simulated raw expression

data into zero and non-zero space. Based on the density

plot of the estimated and real values, the recovery values of

DCA and autoCell are closer to the true expression values,

and scGNN is at a medium level. MAGIC,21 SAVER,22 and

SAUCIE23 always tend to underestimate the original value. We

also calculated the median L1 distance, root-mean-square error

(RMSE) scores, and cosine similarity (see STAR Methods) score

between the real expression value and restored expression value

to measure the estimation accuracy. As shown in Figure 2, auto-

Cell achieves overall better performance than the others. In

particular, autoCell ranks second in the median L1 distance of

gene expression restoration on the two simulated datasets and

ranks second in the cosine similarity score on the simulated da-

taset with a synthetic dropout rate of 71%. In addition, the

dropout event will increase the noise, muddling the identity of

cell types, which can be restored through interpolation by value

recovery algorithms. We also found that autoCell outperforms

existing methods in the two simulation datasets (Figures S1A

and S1B).

In evaluating the performance of autoCell in imputing missing

values, we also selected two biologically relevant sc/snRNA-seq

datasets24,25 with well-annotated cell types as benchmarks. We

simulated the dropout effects by randomly flipping 10% non-

zero entries to the zero matrix. Similarly, three indicators be-

tween the original dataset and imputed values of these synthetic

items are calculated as a measure of estimation accuracy.

Comparedwith several state-of-the-art algorithms (Figure 2), au-

toCell achieves the best performance evaluated by the median



Figure 1. Overview of the autoCell framework

autoCell uses a Gaussianmixturemodel (GMM) and a deep neural network (DNN) tomodel the process of data generation. It uses zero-inflated negative binomial

(ZINB) loss to process ‘‘dropout’’ events in scRNA-seq. The encoder and decoder are a two-layer neural network (128–128) with 10-dimensional latent variables

(features) directly connected to the output. The cell-cell network is used to constrain the latent feature Z; thus, similar cells have similar latent features and cluster

assignments. The yellow nodes depict the mean of the negative binomial distribution, which is the main output of the method representing denoised data,

whereas the purple and blue nodes represent the other two parameters of the ZINB distribution, namely, dispersion and dropout.
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L1 distance, cosine similarity, and RMSE at the 10% synthetic

dropout rate. Furthermore, autoCell imputation is closer to the

true expression value based on the density plot of the estimated

and true values (Figure 2). Collectively, autoCell outperforms

state-of-the-art methods in sc/snRNA-seq data imputation anal-

ysis (Figure S2).

autoCell improves the performance of existing tools for
capturing cell developmental trajectories
Apart from identifying cell types, scRNA-seq facilitates the orga-

nization of cells by time course or developmental stage (i.e., cell

trajectory). The transition of cells from one functional state to

another is a critical event in development. However, transitions

are difficult to characterize since trapping and purifying cells in

between stable endpoint states are challenging. Although some

models currently exist to infer cell developmental trajectories

based on scRNA-seq data, most inference methods do not

address dropout events. We tested the accuracy of inferring the

cell trajectory of scRNA-seq data after interpolation via autoCell.

We used a benchmark dataset26 with 1,529 single cells with five
stages of well-annotated human preimplantation embryonic

development from embryogenesis embryonic day 3 (E3) to E7.

We reconstructed cell trajectories using monocle327 after various

interpolation processes. The interpolation of autoCell produced

the highest correspondence between the inferred pseudotime

and the real-time cellular development (Figure S3). Pseudotime

order score (POS; see STAR Methods) increased from 0.838 to

0.850. On the contrary, the POS obtained by other algorithms is

lower than the original scRNA-seq dataset (Figure S3). Further-

more, we used another common trajectory analysis model, sling-

shot,28,29 to test whether autoCell improves trajectory analysis.

We found that cell development trajectory is well captured by

interpolation from autoCell (Figure 3). Therefore, autoCell cap-

tures more accurate transcriptome dynamics and cell develop-

mental trajectories across different developmental stages.

autoCell captures cellular pathobiology in latent space
We also assessed the extent to which the latent space inferred

by autoCell reflects the biological variability among cells based

on the previous stratification of cells into biologically important
Cell Reports Methods 3, 100382, January 23, 2023 3
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subpopulations through unsupervised clustering followed by

manual inspection and annotation. We applied autoCell to two

simulated datasets and four biologically relevant scRNA-seq da-

tasets. The zero ratio of these six datasets ranges from 60% to

90%. By default, autoCell extracted 10 features from the input

data. For a fair comparison, we further applied common

scRNA-seq data dimension reduction methods, including scVI,

DESC,30 scVAE, DCA, and SAUCIE, to reduce the input data to

10 dimensions. We used uniform manifold approximation and

projection (UMAP) to visualize the features extracted from these

tools and the original data. We found that the feature embed-

dings of autoCell were well separated among cell types with

closer inner-group distances and larger between-group dis-

tances. However, the embedding and original data of DESC,

scVAE, DCA, and SAUCIE overlapped among certain cell types.

We found that autoCell is the best approach to identify all three

cell types in the two simulated datasets (Figure S1C). For the

Klein dataset,25 scVI, scVAE, and autoCell showed better perfor-

mance, and DCA caused the cell types d0 and d2 to be closely

linked. However, SAUCIE and DESC only separated cells with

cell type d0 and incorrectly divided cell type d7 into two cell

types (Figure 4A). For the Zeisel dataset,24 we found that auto-

Cell, scVI, and scVAE still outperformed the other models, and

autoCell and scVAE achieved a closer intra-group distance

(Figure 4B).

We applied K-means clustering on autoCell-extracted latent

features and assessed the clustering accuracy by comparing it

with scVI, DESC, scVAE, DCA, and SAUCIE. We found that au-

toCell displays the best performance across all tested scRNA-

seq datasets (Figure 4). In the Klein dataset,25 the clustering

output using autoCell (Figure 4C) was more consistent with the

predefined unit-type annotation (normalized mutual information

[NMI] = 0.882 and adjusted Rand index [ARI] = 0.907) than the

second rankedmodel, scVI (NMI = 0.832, ARI = 0.784). In the Zei-

sel dataset,24 the clustering performance of autoCell was

considerably better than other existing tools. Then, we changed

K-means to another four clustering algorithms (including spectral

clustering, affinity propagation, birch, and agglomerative clus-

tering). autoCell shows the best performance across all tested

scRNA-seq datasets (Table S1).

In addition, we compared the visualization performance us-

ing principal-component analysis (PCA). As shown in Figure S4,

in the Klein dataset, the feature embedding of autoCell, scVI,

and scVAE was well separated among cell types. For the Zeisel

dataset, autoCell and DESC showed the best performance,

although they mixed astrocytes and brain endothelial cells,

both of which were glial cells located in the CNS, but they

can effectively separate most cell types. For the Romanov da-

taset, all models identify two glial clusters (astrocytes and brain

endothelial cells) close to each other in the latent space. How-

ever, autoCell was the only model that effectively separated the

microglia (Figure S4).
Figure 2. Performance comparison between autoCell and other state-

(A) Density plots of imputed versus original data masked. The x axis corresponds

data points. Each row is a different dataset, and each column is a different impu

(B) Comparison of the cosine similarity (higher is better), median L1 distance (lowe

autoCell and the other six imputation tools.
Collectively, autoCell presented elevated accuracy in cap-

turing cellular pathobiology than existing state-of-the-art ap-

proaches for simulated and real-world biologically relevant

scRNA-seq datasets (Figures S4 and S5).

Discovery of cell-type-specific molecular networks by
autoCell
In testing whether the autoCell-inferred cell type can capture

specific pathobiology of human diseases, we analyzed astro-

cytes, microglia, neurons, and oligodendrocyte progenitor cells

(OPCs) using Alzheimer’s disease (AD) as a prototypical

example. In total, we re-analyzed 13,214 high-quality nuclei

generated from the entorhinal cortex of AD brains and healthy

controls. Using autoCell, we identified four microglia clusters,

nine astrocyte clusters, and five OPC clusters (Figure 5A).

Recent studies using human postmortem brain tissues identi-

fied disease-associated astrocyte (DAA) involved in crucial

roles of AD pathogenesis and disease progression of AD. Using

11 experimentally validated DAA marker genes (four upregu-

lated marker genes [GFAP, CD44, HSPB1, and TNS] and seven

downregulated marker genes [SLC1A2, SLC1A3, GLUL,

NRXN1, CADM2, PTN, and GPC5]),31 we identified astrocyte

subcluster 4 as a DAA by autoCell (Figure S6). Next, we built

a DAA-specific molecular network using a state-of-the-art

network-based algorithm, GPSnet,32 under the human pro-

tein-protein interaction (PPI) network model. The DAA-specific

module network included 50 PPIs connected by 44 proteins,

such as APOE, MAPT, CD44, FOS, and STAT3 (Figure 5B;

Table S2). APOE and microtubule-associated protein Tau

(MAPT) were two of the most well-known risk genes for

AD.33,34 CD44 was an inflammation-associated protein. The

inhibition of CD44 could be a potential strategy for AD treat-

ment.35 In a mouse model study, Stat3-deficient and Stat3-

deletion astrocytes presented dropped levels of b-amyloid

and pro-inflammatory cytokine activities.36 Proteins from the

DAA-specific molecular network were enriched by multiple

AD-related pathways, such as cytokine signaling, spinal cord

injury, and brain-derived neurotrophic factor signaling path-

ways (Figure 5B; Table S3). For example, several proteins in

the DAA-specific network (STAT3, MAPT, HSPB8, HSPB1,

JUNB, and LINGO1) were enriched in multiple cytokine sig-

naling pathways, including interleukin-5 (IL-5), IL-2, IL-18,

IL-3, and IL-4, consistent with the important role of neuro-

inflammation mediated by microglia in AD.37,38 Therefore, using

autoCell, we can identify disease-associated, cell-type-specific

molecular network involved in key AD pathobiology.

We also identified significant ligand-receptor interactions

involved in cell-cell communications in AD. We first inferred cell

subpopulations using autoCell and the predicted ligand-receptor

interaction using CellChat.39 As shown in Figure 5C, we found

strong ligand-receptor interactions among astrocytes, OPCs,

and oligodendrocytes compared with the other three cell types
of-the-art methods under 10% synthetic dropout rate

to the imputed values, and the y axis represents the true values of the masked

tation method. Pearson correlation coefficient (PPC; higher is better).

r is better), and root-mean-square error (RMSE) scores (lower is better) between

Cell Reports Methods 3, 100382, January 23, 2023 5
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Figure 3. autoCell improves pseudotime analysis in the human preimplantation embryonic development dataset

(A and B) Results of slingshot estimated pseudotime using (A) raw data as input and (B) processed data from autoCell as input.

(C) Processed data from DCA as input.

(D) Processed data from MAGIC as input.

(E) Processed data from SAUCIE as input.

(F) Processed data from scVI as input.

(G) Processed data from SAVER as input.

(H) Processed data from scGNN as input.

POS, pseudotime order score (the higher the value the better). Pseudotime is a measure of how much progress an individual cell has made through a process

such as cell differentiation.
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Figure 4. UMAP visualization of the extracted features using different approaches

(A and B)We evaluated autoCell with DCA, DESC, scVI, SAUCIE, and scVAE using two datasets: (A) Klein and (B) Zeisel datasets. For comparison, autoCell, DCA,

DESC, scVI, SAUCIE, and scVAE all performed dimension reduction to 10 dimensions before applying UMAP.

(C) Comparison on the effect of clustering on four benchmark datasets. Clustering accuracy was evaluated by applying K-means clustering on the extracted

features to obtain cluster assignments.

NMI, normalized mutual information (the higher the value the better); ARI, adjusted rand index; COM, completeness (the higher the value the better); HOM,

homogeneity (the higher the value the better).
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(neuron, microglia, and endothelial). Two ligand-receptor pairs

(NRG3-ERBB4 and NRG1-ERBB4) revealed strong interactions

across multiple cell-cell pairs (Figure 5D; Table S4). Multiple sin-
gle-nucleotide polymorphisms in the NRG3 gene were found to

be associated with the onset of AD.40 In addition, the overex-

pression of ERBB4 in neurons was found to be associated with
Cell Reports Methods 3, 100382, January 23, 2023 7
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Figure 6. Comparison of running time and memory usage

autoCell scales linearly with the number of cells. The plot shows the running time and memory on three different size datasets: (1) Zeisel (3,005 cells); (2) AD

dataset (13,214 cells/nuclei); and (3) Zheng-68k dataset (68,579 cells). Colors indicate different methods. The experimental environment is Intel Core i9-10900K

CPU@3.70GHz, NVIDIA RTX 3080.

Article
ll

OPEN ACCESS
AD neuropathology.41 A recent AD mouse model study found

that immunoreactivity of NRG1 and ERBB4 was associated

with plaques in the hippocampus region.42 Using AD as a proto-

typical example, we demonstrated that the disease-associated

cell subtype identified by autoCell could identify molecular tar-

gets and networks (i.e., ligand-receptor interactions) involved

in AD pathogenesis and provide potential drug targets for AD

or other human diseases if broadly applied.

autoCell is scalable to large datasets
The increasing number of cells is the main challenge in

scRNA-seq analysis. In large projects such as the Human

Cell Atlas,43 the number of cells may be hundreds of thou-

sands. In large datasets, identifying cell populations is chal-

lenging because many existing scRNA-seq clustering

methods cannot scale up to handle them. Thus, we used

the Zheng-68k44 dataset and the Zheng-73k44 dataset to

study whether autoCell is suitable for large datasets. These

cell types were used as references when benchmarking auto-

Cell. autoCell worked well on these two large datasets and

obtained good clustering performance (Figures S2 and S4).

In addition, we performed time and memory comparisons on

three datasets with different sizes: (1) Zeisel (3,005 cells), (2)

AD dataset (13,214 cells), and (3) Zheng-68k dataset (68,579

cells). As shown in Figure 6, autoCell ranks fourth among all

algorithms with regard to time. With regard to memory, auto-

Cell ranks second after MAGIC. Thus, autoCell is scalable to

large datasets and is comparable to computing time and

memory compared with existing methods.
Figure 5. Discovery of cell-type-specific molecular networks and signi

autoCell

(A) UMAP visualization of subclusters of astrocytes (including disease-associate

(B) Reconstruction of the DAA-specific molecular subnetwork from the human

protein-protein interactions (PPIs) connected by 44 proteins (e.g., APOE, MAPT, C

are enriched with multiple AD-related pathways, including cytokine signaling path

multiple cytokine signaling pathways.

(C) Inferred cell-cell interactions using CellChat.

(D) Top selected significant ligand-receptor pairs among autoCell-identified ce

Methods).
DISCUSSION

Single-cell technology is a revolutionary breakthrough that leads

to the study of genomic, transcriptomic, and multi-omics sys-

tems of each cell in each tissue for the first time. With the devel-

opment and wide application of technology, computational

methods have been developed to solve problems posed by its

generated data. Among these methods, dimensionality reduc-

tion (or low-dimensional representation) is the basis of scRNA-

seq data visualization and downstream analysis. However, the

technical shortcoming of single-cell sequencing and the tran-

scription burst effect in single cells cause the data to be noisier

than bulk RNA-seq data. Among the problems, dropout events

usually occur, in which the false value of genes in some cells is

zero or close to zero, limiting the performance of dimensionality

reduction.

Here, we proposed a deep model autoCell for feature extrac-

tion and dropout imputation of scRNA-seq data. The key innova-

tion of autoCell is the use of GMMs to estimate the latent feature

distribution of the data. Compared with the previous application

of the VAE in scRNA-seq data analysis, autoCell captures the

graphical information of the local data structure by introducing

graph embedding. This is an excellent supplement to the deep

GMM, which allows network learning to follow the global model

with local structure constraints. In reducing the impact of

dropout events, we introduced the ZINB distribution, which

canmodel highly sparse and over-dispersed count data, thereby

denoising scRNA data. Through systematic comparison be-

tween simulated and real datasets, autoCell achieves better
ficant ligand-receptor interactions in Alzheimer’s disease (AD) using

d astrocyte [DAA]), microglia, and OPCs, labeled with autoCell clusters.

protein-protein interactome. The DAA-specific module network included 50

D44, FOS, and STAT3). The proteins from the DAA-specific molecular network

ways. The proteins from the DAA-specific molecular network are enriched with

ll types. Ligand-receptor interactions were predicted by CellChat (see STAR
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interpolation performance and feature extraction. In addition, we

have shown that autoCell can provide greater flexibility in dealing

with large datasets different from other imputation algorithms.

Limitations of the study
We acknowledge several potential limitations in autoCell. For

example, compared with scVI and SAUCIE, autoCell cannot

handle batch effects in scRNA-seq data. However, batch effects

are inevitable in studies involving human tissues because the

data are usually generated at different times, and batches may

affectbiological variation. Failure toeliminatebatcheffectswill tar-

nish downstream analysis and lead to incorrect interpretation of

results. In the future, we can improve the model to explicitly allow

for the discovery and elimination of batch effects. In addition, with

the progress of sequencing technology, multi-omics sequencing

technologies such as scMT-seq (single-cell methylome and tran-

scriptome sequencing) and scTrio-seq (single-cell triple omics

sequencing) can simultaneously detect DNA methylation and

transcriptome data from the same cell. DNA methylation is an

important epigenetic regulatory signal. However, its regulatory ef-

fect ongene expression in single cells remains a challenge. There-

fore, in the future, we will continue to enhance autoCell by imple-

menting a heterogeneous map mosaic to support the integration

of single-cell multi-omics data. Finally, compared with methods

based on statisticalmodels, the pre-training processing of the au-

toCell model requires more computing resources, which is more

time consuming. Thus, we will study the creation of a more effi-

cient autoCellmodel through the architecture of block and parallel

processing in the near future.
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METHOD DETAILS

Deep Gaussian mixture model
Using a Gaussian distribution as the prior probability distribution of z only allows for one mode in the latent representation. In the

presence of inherent clustering in data, such as scRNA-seq data where the cells represent different cell types, multiple modes
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are desirable, for example, one for every cluster or class. This strategy can be implemented by using a Gaussian-mixture model in

place of Gaussian distribution.

We aim to cluster a given set of D-dimensional training samples fxng N
n = 1 into K categories. For each training sample x, we learn a

latent feature z˛RM31. We assume that the underlying features follow a Gaussian mixture distribution. We introduce a binary vector

c˛ f0;1g K31 to indicate which Gaussian component the latent feature z belongs to.

Zero-inflated negative binomial model
ZINB distribution is favored in single-cell RNA data analysis. Previous studies have shown that the ZINB distributionmodel can effec-

tively denoise single-cell RNA data by modeling highly sparse and over-dispersed data. Therefore, in this study, we use ZINB to

model scRNA-seq data:

Bðx;m;4Þ =
Gðx +4Þ
Gð4Þ

�
4

4+m

�4�
m

4+m

�x
ZINBðx; l;m;4Þ = lI0ðxÞ+ ð1 � lÞNBðx;m;4Þ (Equation 1)

where l represents the proportion of zero value; m and 4 are the parameters of the negative binomial distribution, and I0 is the indi-

cator function. When the independent variable is 0, the value is 1, otherwise it is 0.

Generative model
In our model, we assume that the data are drawn from a Gaussian mixture distribution. In particular, for scRNA-Seq data x, wemodel

the generation process as follows:

pðc;pÞ = ðp1;.pkÞ =
YK
k = 1

p
ck
k

pðck = 1Þ = pik
pðzjck = 1Þ = N
�
mk ;diag

�
s2
k

��
PqðxjzÞ = ZINBðx; l;m;4Þ = lI0ðxÞ+ ð1 � lÞNBðx;m;4Þ (Equation 2)

where ck and pk represent the k th entry of c and p, respectively, and pk must satisfy
PK

k = 1pk = 1. mk and s2k represent themean and

variance of the k th Gaussian component, respectively. ðl;m;4Þ = gðzn; qÞ, where g is a neural network with a parameter q that can be

trained. Detailed parameter information is provided in Table S5.

Inference model
Finding the maximum a posteriori of potential variables and the maximum likelihood estimation of parameters by directly solving the

generative model is difficult.47 In addressing this problem, we use a new distribution q4ðz; cjxÞ to approximate the posterior distribu-

tion pqðz;cjxÞ. The distribution is extracted from a specific category and parameterized by the trainable parameter 4. In particular, we

assume that q4ðz; xjcÞ can be decomposed into q4ðz;cjxÞ = q4ðzjxÞq4ðxjcÞ. Then, we define the following equations:

q4ðzjxÞ = N
�
~m;diag

�
~s2
��
q4ðxjcÞ = Multinomialð~pÞ (Equation 3)

where �
~m; log

�
~s2
��

= fðx;4Þ
~p = fðz;4Þ (Equation 4)

here f represents neural networks with parameter 4.
e2 Cell Reports Methods 3, 100382, January 23, 2023
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In the framework of the generative and inference models, the parameters can be estimated by maximizing the log likelihood

function:

max
4;q

XN
i = 1

ln pqðxiÞ (Equation 5)

Equation 5 is usually solved bymaximizing the lower limit of evidence of the log likelihood function usingmultiple parameterization.

We observed that themodel consists of two networks, namely, g, and f, whichwere referred to as decoder and encoder, respectively,

because they form a variational autoencoder (VAE).

Graph embedding
Graph embedding aims to find low-dimensional features in a sample similarity graph, which keeps the similarity between vertex pairs.

In general, under graph embedding, training sample fxng is regarded as the vertex of similar graph, and the characteristic of similar

graph is regarded as the affinity matrix W. The optimal feature fz�ng can be obtained using Equation 6:

�
z�n
	
= arg min

ZZT = I

XN
i = 1

XN
j = 1

wij





zi � zj




2
2

(Equation 6)

whereZ = ½z1;.zn� andwij denotes the ði; jÞ th element of the affinitymatrixW. The constraintZZT = I is used to avoid trivial solutions.

Based on Equation 6, if samples are connected on the graph, then their features will be close to one another. Thus, we hypothesize

that if the two samples are connected on the graph, then they should have similar potential features and cluster assignments. Our

model considers latent features and cluster assignments as random variables. Therefore, we add a constraint to Equation 6 by

measuring the distance of the posterior distributions and obtain the following equation:

max
4;q

XN
i = 1

 
ln pqðxiÞ �

XN
j = 1

wijdðq4ðz; cjxiÞ;q4ðz; c


xjÞÞ

!
(Equation 7)

where dð:; :Þ is a measure of the distance between two distributions. Furthermore, we require
P

jwij = 1 to balance the weight of each

training sample. Here, we select the Jenson–Shannon (JS) divergence:

max
4;q

XN
i = 1

 
ln pqðxiÞ �

XN
j = 1

wijJSðq4ðz; cjxiÞ;q4ðz; c


xjÞÞ

!
(Equation 8)
Construction of affinity matrix
In other graph embedding methods, a properly constructed affinity matrix is important. A typical option of affinity matrix is a set of

nearest neighbors for a given data point, with a predefined kernel function to calculate their similarity. For example, for a Gaussian

kernel, the elements of the affinity matrix are defined as follows:

wij =

8>><
>>:

1

ai
exp

 
�




xi � xj





2
2

2s2i

!
ifxj ˛NðxiÞ

0; othrewise

(Equation 9)

where si is a predefined scalar;NðxiÞ represents the nearestNs neighbor of set xi, and the default number is 10. ai is standardized, that

is,
P

jwij = 1, and the default number is 1.

Imputation evaluation
We evaluated themedian L1 distance, cosine similarity, and RMSE between the real expression values of the original dataset and the

estimated values obtained by various imputation algorithms. For all flipped entries, X is the row vector of the original expression, and

Y is the row vector of its corresponding imputed expression. The L1 distance is the absolute deviation between the values of the

original expression and those of the imputed expression. Lower L1 distance indicates higher similarity.

L1 = jx � yj ; L1 ˛ ½0; + NÞ (Equation 10)

The cosine similarity indicates the dot product between the original expression and estimated expression.

cosðx; yÞ =
xyT

kxkkyk; cos˛ ½0; 1� (Equation 11)
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The RMSE indicates the square root of the quadratic mean of the difference between the original expression and the estimated

expression.

RMSE
�
x; y
�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1ðxi � yiÞ2

N

s
;RMSE ˛

�
0; + N

�
(Equation 12)
Evaluation metric for clustering
We selected four commonly used cluster evaluation indicators, including normalized mutual information (NMI),48 adjusted Rand in-

dex (ARI),49 completeness (COM),50 and homogeneity (HOM).50

Adjusted rand index
ARI is an improved version of the rand coefficient. In general, the rand coefficient is used to evaluate the clustering results by calcu-

lating the similarity between the two clusters. The adjustment of the rand coefficient is an improvement of the rand coefficient based

on probability regularization. We define a confusion matrix. In the case of a given gold standard, a is the number of cell pairs correctly

classified into the same category by clustering; b is the number of cell pairs that belong to different categories but are divided into the

same cluster; c is the number of cell pairs that belong to the same category but are divided into the number of different clusters, and d

is the number of cell pairs correctly divided into different clusters.

ARI =
2ðad � bcÞ

ða+bÞðb+dÞ+ ða+ cÞðc+dÞ : (Equation 13)
Normalized mutual information
Mutual information (MI) measures the degree of agreement between two dataset distributions. MI is also an important metric of in-

formation, which refers to the correlation between two sets of events. Moreover, NMI is improved on the basis of mutual information.

U = fu1; u2;u3.; ung and V = fv1; v2; v3.; vng denote the gold standard and partition obtained by k-means clustering algorithm,

respectively.

NMI =
2IðU;VÞ

HðUÞ+HðVÞ (Equation 14)
IðU;VÞ =
Xn
i = 1

Xn
j = 1



uiXvj




N
log

N


uiXvj




juij3



vj

 (Equation 15)
HðUÞ = �
Xn
i = 1

ui

N
log

ui

N
and HðVÞ = �

Xn
j = 1

vj
N
log

vj
N

(Equation 16)
Completeness
COM indicates that samples of the same category are classified into the same cluster. If all samples of the same type are grouped in

the same cluster, then the integrity is 1. If the samples of the same type are grouped in different clusters, then the conditional empirical

entropy HðV jUÞ is calculated. The larger the value, the smaller the completeness.

COM = 1 � HðV jUÞ
HðVÞ (Equation 17)
Homogeneity
HOM indicates that each cluster contains only a single category of samples. If only one category is found in a cluster, then HOM is 1. If

multiple categories are found, then the conditional empirical entropyHðUjVÞ of the cluster under the category is calculated. The larger
the value, the smaller the homogeneity.

HOM = 1 � HðUjVÞ
HðUÞ (Equation 18)

For all metrics, including ARI, NMI, COM, and HOM, a larger value (up to 1) indicated good performance.
e4 Cell Reports Methods 3, 100382, January 23, 2023
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Pseudotime order score (POS)
In measuring the accuracy of reconstruction pseudotime, we defined a POS as follows: POS = C=ðNc +CÞ, where C and Nc repre-

sent the number of cell pairs that are consistent and inconsistent between the inferred pseudotime and the gold standard (e.g., true

data collection time), respectively.

Protein-protein interactome (PPI) network
To build the comprehensive human interactome from the most contemporary data available, we assembled 18 commonly used PPI

databases with experimental evidence and the in-house systematic human PPI that we have previously utilized: (i) binary PPIs tested

by high-throughput yeast-two-hybrid (Y2H) system;51 (ii) kinase-substrate interactions by literature-derived low-throughput and

high-throughput experiments from KinomeNetworkX,52 Human Protein Resource Database (HPRD),53 PhosphoNetworks,54

PhosphositePlus,55 DbPTM 3.0 and Phospho.ELM;56 (iii) signaling networks by literature-derived low-throughput experiments

from the SignaLink2.0;57 (iv) binary PPIs from three-dimensional protein structures from Instruct;58 (v) protein complexes data

(�56,000 candidate interactions) identified by a robust affinity purification-mass spectrometry collected from BioPlex V2.0;59 and

(vi) carefully literature-curated PPIs identified by affinity purification followed by mass spectrometry from BioGRID,60 PINA,61

HPRD,62MINT,63 IntAct,64 and InnateDB.65 Herein, the human interactome constructed in this way includes 351,444 PPIs connecting

17,706 unique human proteins.

Description of GPSnet
GPSnet32 algorithms take two inputs: node score and one background PPI network. The node score was defined as |log2FC| for

significant (FDR <0.05) differentially expressed genes (DEGs), and 0 for non-significant DEGs. GPSnet builds raw module in each

iteration by starting with a random seed gene/protein (node). After that, one of the candidate neighboring genes that satisfy the sub-

sequent two conditions is added: (1) connectivity significance P(i) (Equation 19) is less than 0.01; (2) the updated module score is

greater than the current one (Equation 20). We repeated steps (1) and (2) until no more genes (nodes) can be added to each raw

module. In this study, we built �100,000 raw modules ranked by module scores with the corresponding module score computed

in (Equation 20). All generated raw modules are ranked in decreasing module score order. The final network module is generated

by assembling truncated top-ranked raw modules.

PðiÞ =
Xdi
d = dn

�
n
d

��
N � n
di � d

�
�
N
di

� (Equation 19)
MSn+ iðiÞ =
ðsðiÞ � mÞ+Pj˛MðSðjÞ � mÞffiffiffiffiffiffiffiffiffiffi

n+ 1
p (Equation 20)

Where,N denotes all proteins/genes in the PPI, n represents numbers of nodes in themodule, dn is the numbers of neighbors of node

i in the current raw module, di is the degree of gene i, MSn+1ðiÞ denotes the updated module score if adding node i to current raw

module, sðiÞ denotes the score of node i,M denotes the current module, and m is the average node score of all genes in the complete

PPI network.

Datasets and pre-processing
autoCell takes raw sc/snRNA-seq gene expression profile as input. Data filtering and quality control are the first step of data pre-pro-

cessing. Given the high loss rate of sc/snRNA-seq expression data, only genes expressed as non-zero in more than 1% of cells and

cells expressed as non-zero in more than 1% of genes are included. Then, the genes are sorted on the basis of the SD that is, the first

k genes (Table S6) in the variance are used. In addition, our model automatically log-transforms all data.

In order to test the performance of autoCell, we analyzed two simulated datasets and seven commonly used real-world datasets

(Table S6) from both human and mouse to test performance of autoCell across cross-species single-cell/nuclei RNA-seq datasets.

Real datasets were obtained from diverse sequencing platforms and experimental protocols (Table S6).

The simulation dataset was generated using the splatter R package. For the two sets of simulated datasets, the following param-

eters were used in the setParams() function: batchCells = 500, nGenes = 2000, group.prob = c(0.30, 0.3, 0.4), de.prob = c(0.05, 0.08,

0.01), de.facLoc = 0.5, de.facScale = 0.8. The following parameters were used in the splatSimulate() R function: dropout.shape =

c(�0.20, �0.20, �0.20) or dropout.shape = c(�0.05, �0.05, �0.05), dropout.mid = c(0,0,0), dropout.type = "group".

The Zeisel24 dataset consists of 3,005 cells from the somatosensory cortex and hippocampus of the mouse brain (Table S6). The

Zeisel dataset has real labels for seven different cell types, including pyramidal cells, oligodendrocytes, parietal cells, interneurons,

astrocytes, ependymal cells, and endothelial cells in the brain.
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The Klein dataset25 consists of 2717 cells derived from mouse embryonic stem cells (Table S6). This dataset reveals the hetero-

geneity of the population structure and differentiation after the withdrawal of leukemia inhibitory factor. The reproducibility of these

high-throughput single-cell data allows people to deconstruct cell populations and infer gene expression relationships.

The Romanov dataset45 consists of 2881 cells from the mouse hypothalamus (Table S6). The dataset includes 1001 oligodendro-

cytes, 267 astrocytes, 356 ependymal cells, 48 microglia, 240 endothelial cells, 71 vascular smooth muscle cells, and 888 neurons.

The AD dataset (GEO accession number GSE138852)46 contains 13,214 single-core scRNA-Seq datasets collected from six AD

and six control brains (Table S6). This dataset has true labels for eight different cell types: microglia, astrocyte neuron, oligodendro-

cyte, OPC, endothelial, unidentified, and hybrid.

The Zheng-68k44 dataset contains fresh peripheral blood mononuclear cells from healthy people, primarily involving the main cell

types of peripheral blood mononuclear cells, such as T-cells (T), Natural killer (NK) cells, B-cells (B), and myeloid cells (Table S6). In

addition, the Zheng-73k44 dataset is composed of fluorescently activated sorting cells from healthy people, including T, NK, and B

cells.

The Petropoulos dataset26 included the single cells from five stages of human preimplantation embryonic development from the

developmental day (E) 3 to day 7(Table S6).

QUANTIFICATION AND STATISTICAL ANALYSIS

Enrichment analysis
The pathway enrichment analyses were conducted using WikiPathways66 from Enrichr.67

Differential expression analyses
With the cell types annotated by autoCell, we utilized one R package ‘MAST’68 for the sequential differential expression analyses. The

results of differential expression analyses were used as input for the GPSnet algorithm (Method details - Description of GPSnet).
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