Skip to main content
. 2023 Feb 6;13:1043463. doi: 10.3389/fonc.2023.1043463

Table 10.

Comparison of classification accuracy (%) of different classification algorithms for BreaKHis dataset.

Category Model Magnification
40X 100X 200X 400X
Eight-class Classification GoogLeNet (23) 68.7 65.9 69.1 62.8
ResNet50 (23) 82.5 78.8 84.3 81
Inception-ResNet-V2 (23) 86.7 80.3 83.5 68.5
CNN (28) 88.2 84.6 83.3 84
CNN (28) 82.70 82.15 83.37 82.40
PFTAS + SVM (29) 81.65 79.70 85.30 82.30
PFTAS + RF (29) 81.70 82.60 84.40 81.20
Single-Task CNN (29) 83.08 84.15 85.67 83.10
Proposed method 93.88 93.97 94.57 94.77
Binary Classification CNN (30) 89.6 85 84 80.8
DeCAF features using CNN (31) 84.6 84.8 84.2 81.6
Single Task CNN (5) 83 83.1 84.6 82.1
Proposed method 97.68 97.98 97.88 97.79

The bold values indicate the highest accuracy under the same conditions.