Abstract
Objective
To investigate whether human short interspersed nuclear element antisense RNA (Alu antisense RNA; Alu asRNA) could delay human fibroblast senescence and explore the underlying mechanisms.
Methods
We transfected Alu asRNA into senescent human fibroblasts and used cell counting kit-8 (CCK-8), reactive oxygen species (ROS), and senescence-associated beta-galactosidase (SA-β-gal) staining methods to analyze the anti-aging effects of Alu asRNA on the fibroblasts. We also used an RNA-sequencing (RNA-seq) method to investigate the Alu asRNA-specific mechanisms of anti-aging. We examined the effects of KIF15 on the anti-aging role induced by Alu asRNA. We also investigated the mechanisms underlying a KIF15-induced proliferation of senescent human fibroblasts.
Results
The CCK-8, ROS and SA-β-gal results showed that Alu asRNA could delay fibroblast aging. RNA-seq showed 183 differentially expressed genes (DEGs) in Alu asRNA transfected fibroblasts compared with fibroblasts transfected with the calcium phosphate transfection (CPT) reagent. The KEGG analysis showed that the cell cycle pathway was significantly enriched in the DEGs in fibroblasts transfected with Alu asRNA compared with fibroblasts transfected with the CPT reagent. Notably, Alu asRNA promoted the KIF15 expression and activated the MEK-ERK signaling pathway.
Conclusion
Our results suggest that Alu asRNA could promote senescent fibroblast proliferation via activation of the KIF15-mediated MEK-ERK signaling pathway.
Electronic supplementary material
The online version of this article (10.1007/s11596-022-2688-z) contains supplementary material, which is available to authorized users.
Key words: senescent fibroblast, cell proliferation, Alu antisense RNA, KIF15 gene expression, MEK-ERK signaling pathway, cell cycle
Supplementary data
Supplementary material, approximately 390 KB.
Conflict of Interest Statement
The authors declare no conflicts of interests related to this study.
Footnotes
This work was supported by grants from the National Natural Science Foundation of China (No. 81771499) and the Natural Science Foundation of Hebei Province, China (No. H2018206099 and No. H2021206460).
Contributor Information
Ning Ji, Email: 20201011@stu.hebmu.edu.cn.
Xiu-fang Wang, Email: wangxf1966@hebmu.edu.cn.
Zhan-jun Lv, Email: lslab@hebmu.edu.cn.
References
- 1.Rhinn M, Ritschka B, Keyes WM. Cellular senescence in development, regeneration and disease. Development. 2019;146(20):dev151837. doi: 10.1242/dev.151837. [DOI] [PubMed] [Google Scholar]
- 2.Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72–76. doi: 10.1038/35036093. [DOI] [PubMed] [Google Scholar]
- 3.Hsu WH, Lin BZ, Leu JD, et al. Involvement of 8-O-acetylharpagide for Ajuga taiwanensis mediated suppression of senescent phenotypes in human dermal fibroblasts. Sci Rep. 2020;10(1):19731. doi: 10.1038/s41598-020-76797-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;30(7589):184–189. doi: 10.1038/nature16932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522. doi: 10.1016/j.cell.2005.02.003. [DOI] [PubMed] [Google Scholar]
- 6.Zannas AS, Kosyk O, Leung CS. Prolonged glucocorticoid exposure does not accelerate telomere shortening in cultured human fibroblasts. Genes (Basel) 2020;11(12):1425. doi: 10.3390/genes11121425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95. doi: 10.1038/s41580-020-00314-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000–1011. doi: 10.1016/j.cell.2017.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16(10):908–914. doi: 10.1111/j.1524-4725.1990.tb01554.x. [DOI] [PubMed] [Google Scholar]
- 10.Gruber F, Kremslehner C, Eckhart L, et al. Cell aging and cellular senescence in skin aging -Recent advances in fibroblast and keratinocyte biology. Exp Gerontol. 2020;130:110780. doi: 10.1016/j.exger.2019.110780. [DOI] [PubMed] [Google Scholar]
- 11.Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–733. doi: 10.1016/j.devcel.2014.11.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Zhou L, Ouyang L, Chen K, et al. Research progress on KIF3B and related diseases. Ann Transl Med. 2019;7(18):492. doi: 10.21037/atm.2019.08.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Brendza RP, Serbus LR, Duffy JB, et al. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science. 2000;289(5487):2120–2122. doi: 10.1126/science.289.5487.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Vicente JJ, Wordeman L. Mitosis, microtubule dynamics and the evolution of kinesins. Exp Cell Res. 2015;334(1):61–69. doi: 10.1016/j.yexcr.2015.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature. 2000;407(6800):41–47. doi: 10.1038/35024000. [DOI] [PubMed] [Google Scholar]
- 16.Wang J, Guo X, Xie C, et al. KIF15 promotes pancreatic cancer proliferation via the MEK-ERK signalling pathway. Br J Cancer. 2017;117(2):245–255. doi: 10.1038/bjc.2017.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Nellåker C, Keane TM, Yalcin B, et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 2012;13(6):R45. doi: 10.1186/gb-2012-13-6-r45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Walters-Conte KB, Johnson DL, Allard MW, et al. Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact. J Hered. 2011;102(Suppl 1):S2–S10. doi: 10.1093/jhered/esr051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Richardson SR, Doucet AJ, Kopera HC, et al. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol Spectr. 2015;3(2):MDNA3-0061-2014. doi: 10.1128/microbiolspec.MDNA3-0061-2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Hwang YE, Baek YM, Baek A, et al. Oxidative stress causes Alu RNA accumulation via PIWIL4 sequestration into stress granules. BMB Rep. 2019;52(3):196–201. doi: 10.5483/BMBRep.2019.52.3.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Wang W, Wang WH, Azadzoi KM, et al. Alu RNA accumulation in hyperglycemia augments oxidative stress and impairs eNOS and SOD2 expression in endothelial cells. Mol Cell Endocrinol. 2016;426:91–100. doi: 10.1016/j.mce.2016.02.008. [DOI] [PubMed] [Google Scholar]
- 22.Crooke PS, 3rd, Tossberg JT, Porter KP, et al. Cutting Edge: reduced adenosine-to-inosine editing of endogenous Alu RNAs in severe COVID-19 disease. J Immunol. 2021;206(8):1691–1696. doi: 10.4049/jimmunol.2001428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Aune TM, Tossberg JT, Heinrich RM, et al. Alu RNA structural features modulate immune cell activation and A-to-I editing of Alu RNAs is diminished in human inflammatory bowel disease. Front Immunol. 2022;13:818023. doi: 10.3389/fimmu.2022.818023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Yamada K, Kaneko H, Shimizu H, et al. Lamivudine inhibits Alu RNA-induced retinal pigment epithelium degeneration via anti-inflammatory and anti-senescence activities. Transl Vis Sci Technol. 2020;9(8):1. doi: 10.1167/tvst.9.8.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Bravo JI, Nozownik S, Danthi PS, et al. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development. 2020;147(11):dev175786. doi: 10.1242/dev.175786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Song Z, Shah S, Lv B, et al. Anti-aging and anti-oxidant activities of murine short interspersed nuclear element antisense RNA. Eur J Pharmacol. 2021;912:174577. doi: 10.1016/j.ejphar.2021.174577. [DOI] [PubMed] [Google Scholar]
- 27.Liu C, Zhao Y, Yin S, et al. The expression and construction of engineering Escherichia coli producing humanized AluY RNAs. Microb Cell Fact. 2017;16(1):183. doi: 10.1186/s12934-017-0800-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Khan M, Yan L, Lv B, et al. The preparation of endotoxin-free genetically engineered murine B1 antisense RNA. Anal Biochem. 2020;599:113737. doi: 10.1016/j.ab.2020.113737. [DOI] [PubMed] [Google Scholar]
- 29.Kwon M, Firestein BL. DNA transfection: calcium phosphate method. Methods Mol Biol. 2013;1018:107–110. doi: 10.1007/978-1-62703-444-9_10. [DOI] [PubMed] [Google Scholar]
- 30.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods. 2015;12(4):357–360. doi: 10.1038/nmeth.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Das S, Rai SN. Statistical methods for analysis of single-cell RNA-sequencing data. MethodsX. 2021;8:101580. doi: 10.1016/j.mex.2021.101580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515. doi: 10.1038/nbt.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. doi: 10.1093/bioinformatics/btu638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Nirgude S, Desai S, Choudhary B. Curcumin alters distinct molecular pathways in breast cancer subtypes revealed by integrated miRNA/mRNA expression analysis. Cancer Rep (Hoboken) 2022;5(10):e1596. doi: 10.1002/cnr2.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Wang J, Zhao K, Chen L, et al. Proteomics and post-translational modifications analysis of umbilical mesenchymal stem cells aging. Anal Biochem. 2022;652:114770. doi: 10.1016/j.ab.2022.114770. [DOI] [PubMed] [Google Scholar]
- 37.Pertea M, Pertea GM, Antonescu CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–295. doi: 10.1038/nbt.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Li H. A statistical framework for SNP calling, mutation discovery, association mapping and populationgenetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–2993. doi: 10.1093/bioinformatics/btr509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Cingolani P, Platts A, Wang Le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6(2):80–92. doi: 10.4161/fly.19695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Qi M, Zhou H, Fan S, et al. mTOR inactivation by ROS-JNK-p53 pathway plays an essential role in psedolaric acid B induced autophagy-dependent senescence in murine fibrosarcoma L929 cells. Eur J Pharmacol. 2013;715(1–3):76–88. doi: 10.1016/j.ejphar.2013.05.051. [DOI] [PubMed] [Google Scholar]
- 42.Mao X, Fang W, Liu Q. An emerging role of Alu RNA in geographic atrophy pathogenesis: the implication for novel therapeutic strategies. Discov Med. 2016;22(123):337–349. [PubMed] [Google Scholar]
- 43.Romanov VS, Abramova MV, Svetlikova SB, et al. p21 (Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate. Cell Cycle. 2010;9(19):3945–3955. doi: 10.4161/cc.9.19.13160. [DOI] [PubMed] [Google Scholar]
- 44.Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev. 2021;131:988–1004. doi: 10.1016/j.neubiorev.2021.09.049. [DOI] [PubMed] [Google Scholar]
- 45.Baryakin DN, Semenov DV, Savelyeva AV, et al. Alu- and 7SL RNA analogues suppress MCF-7 cell viability through modulating the transcription of endoplasmic reticulum stress response genes. Acta Naturae. 2013;5(4):83–93. doi: 10.32607/20758251-2013-5-4-83-93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Wang J, Geesman GJ, Hostikka SL, et al. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle. 2011;10(17):3016–3030. doi: 10.4161/cc.10.17.17543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.van Deursen JM. The role of senescent cells in ageing. Nature. 2014;09(7501):439–446. doi: 10.1038/nature13193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Klejnot M, Falnikar A, Ulaganathan V, et al. The crystal structure and biochemical characterization of Kif15: a bifunctional molecular motor involved in bipolar spindle formation and neuronal development. Acta Crystallogr D Biol Crystallogr. 2014;70:123–133. doi: 10.1107/S1399004713028721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Florian S, Mayer TU. Modulated microtubule dynamics enable Hklp2/Kif15 to assemble bipolar spindles. Cell Cycle. 2011;10(20):3533–3544. doi: 10.4161/cc.10.20.17817. [DOI] [PubMed] [Google Scholar]
- 50.Messin LJ, Millar JB. Role and regulation of kinesin-8 motors through the cell cycle. Syst Synth Biol. 2014;8(3):205–213. doi: 10.1007/s11693-014-9140-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Drechsler H, McHugh T, Singleton MR, et al. The Kinesin-12 Kif15 is a processive track-switching tetramer. eLife. 2014;3:e01724. doi: 10.7554/eLife.01724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Buster DW, Baird DH, Yu W, et al. Expression of the mitotic kinesin Kif15 in postmitotic neurons: implications for neuronal migration and development. J Neurocytol. 2003;32(1):79–96. doi: 10.1023/A:1027332432740. [DOI] [PubMed] [Google Scholar]
- 53.Bidkhori G, Narimani Z, Hosseini Ashtiani S, et al. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS ONE. 2013;8(7):e67552. doi: 10.1371/journal.pone.0067552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Park JI. Growth arrest signalling of the Raf/MEK/ERK pathway in cancer. Front Biol (Beijing) 2014;9(2):95–103. doi: 10.1007/s11515-014-1299-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Giordano G, Febbraro A, Tomaselli E, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer. J Exp Clin Cancer Res. 2015;34:108. doi: 10.1186/s13046-015-0225-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Wang N, Li Y, Li Z, et al. IRS-1 targets TAZ to inhibit adipogenesis of rat bone marrow mesenchymal stem cells through PI3K-Akt and MEK-ERK pathways. Eur J Pharmacol. 2019;849:11–21. doi: 10.1016/j.ejphar.2019.01.064. [DOI] [PubMed] [Google Scholar]
