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Abstract
Background  Acute Mountain Sickness (AMS) is one of the diseases that predispose to sudden ascent to high 
altitudes above 2500 m. Among the many studies on the occurrence and development of AMS, there are few studies 
on the severity of AMS. Some unidentified phenotypes or genes that determine the severity of AMS may be vital to 
elucidating the mechanisms of AMS. This study aims to explore the underlying genes or phenotypes associated with 
AMS severity and to provide evidence for a better understanding of the mechanisms of AMS.

Methods  GSE103927 dataset was downloaded from the Gene Expression Omnibus database, and a total of 19 
subjects were enrolled in the study. Subjects were divided into a moderate to severe AMS (MS-AMS, 9 subjects) group 
and a no or mild AMS (NM-AMS, 10 subjects) group based on the Lake Louise score (LLS). Various bioinformatics 
analyses were used to compare the differences between the two groups. Another dataset, Real-time quantitative PCR 
(RT-qPCR), and another grouping method were used to validate the analysis results.

Result  No statistically significant differences in phenotypic and clinical data existed between the MS-AMS and 
NM-AMS groups. Eight differential expression genes are associated with LLS, and their biological functions are related 
regulating of the apoptotic process and programmed cell death. The ROC curves showed that AZU1 and PRKCG 
had a better predictive performance for MS-AMS. AZU1 and PRKCG were significantly associated with the severity of 
AMS. The expression of AZU1 and PRKCG were significantly higher in the MS-AMS group compared to the NM-AMS 
group. The hypoxic environment promotes the expression of AZU1 and PRKCG. The results of these analyses were 
validated by an alternative grouping method and RT-qPCR results. AZU1 and PRKCG were enriched in the Neutrophil 
extracellular trap formation pathway, suggesting the importance of this pathway in influencing the severity of AMS.

Conclusion  AZU1 and PRKCG may be key genes influencing the severity of acute mountain sickness, and can be 
used as good diagnostic or predictive indicators of the severity of AMS. Our study provides a new perspective to 
explore the molecular mechanism of AMS.
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Background
Acute Mountain Sickness (AMS) has defined as a syn-
drome involving headache, dizziness, gastrointestinal 
symptoms, insomnia and fatigue after arrival at a high 
altitude (> 2500 m) [1]. The disease occurs in people who 
have lived on the plains for a long time and have been 
exposed to high-altitude areas for a short period. Many 
factors contribute to AMS, and acute hypobaric hypoxia 
may serve as a principal etiological factor for Acute 
Mountain Sickness (AMS) [2]. In China, about 15 million 
people go to high-altitude for work or travel every year, 
and the incidence rate of AMS is almost 43%~69% [3, 4]. 
Besides, AMS may progress to high altitude pulmonary 
edema, high altitude cerebral edema, and even death [5, 
6]. Therefore, AMS has become a public health problem 
of increasing concern [7].

Multiple factors influence the occurrence of AMS. In 
addition to environmental factors, for the population 
susceptibility, AMS occurs mostly in the male popula-
tion [8]. Being overweight or obese is another factor 
contributing to the occurrence of AMS [9]. In terms of 
individuals, many clinical phenotypes were changed at 
high altitudes. The partial pressure of arterial oxygen 
decreases for a short period, resulting in lower arterial 
oxygen saturation [10]. Slowly, the bioavailability of NO 
decreases, leading to pulmonary vasoconstriction and 
consequent high-altitude pulmonary edema [11]. Under 
prolonged hypoxic conditions, hemoglobin produc-
tion increases, increasing blood viscosity and leading to 
altitude erythrocytosis [12]. While some changes ben-
efit athletes in terms of improved athletic performance, 
they are detrimental to most of the general population 
exposed to high altitudes for short periods [13].

Previous studies have shown that the hypoxia-inducible 
factor (HIF) pathway plays a significant role in hypoxic 
adaptation [14]. Under hypoxic conditions, hydroxylation 
and degradation of HIF are inhibited, and HIF induces 
transcription of downstream genes by binding to hypoxia 
response elements (HREs) [15]. For example, HIF regu-
lates vascular endothelial growth factor (VEGF) [16]. 
VEGF promotes endothelial cells to add value and form 
new blood vessels, which facilitates the improvement 
of the ventilation-perfusion ratio (V/Q) to adapt to the 
hypoxic environment [17, 18]. Erythropoietin (EPO) is 
regulated by HIF and promotes erythropoiesis [19]. Many 
related genes, such as PPAR, NF-kb, p53, and P13K, are 
part of pathways that function together to adapt to the 
hypoxic environment [20].

However, few studies have focused on phenotypes or 
genes associated with AMS severity, especially in the 
early stages of AMS. The discovery of more phenotypes 
or genes associated with the severity of AMS may lead to 
a better understanding of the mechanisms of AMS occur-
rence and development, a variable that distinguishes the 

severity of AMS can guide the use of clinical medications 
and reduce the incidence of death due to AMS. There-
fore, phenotypic or gene expression differences between 
no or mild AMS and moderate to moderate AMS deserve 
to be explored.

Since 1993, the diagnosis and severity evaluation of 
AMS relies on the Lake Louise Score (LLS) [21]. LLS is 
a subjective judgment by the study participants of their 
symptoms of headache, gastrointestinal symptoms of 
fatigue, and dizziness [22]. People rate the severity of 
each symptom (0–3) based on how they feel, and the sum 
of the symptom scores is the total LLS score. Although 
there have been many debates on LLS in recent years, 
such as the mental state of the subject at sea level and 
the specificity of LLS, LLS remains one of the criteria 
for rapid diagnosis of AMS until a conclusion is reached 
[23–25]. The AMS-C is one of the indicators included 
in the Environmental Symptoms Questionnaire (ESQ) 
and, in recent studies, is another criterion widely used 
to diagnose AMS [26–28]. In this study, we use AMS-C 
grouping to validate the analysis results derived from LLS 
grouping to make the analysis results more convincing.

Nowadays, more publicly available datasets are submit-
ted to Gene Expression Omnibus (GEO) database with 
the development of technologies [29]. Transcriptome and 
microarray analysis have been used in various diseases, 
including tumors, AMS, and high altitude pulmonary 
edema (HAPE). Through bioinformatics analysis meth-
ods, such as weighted gene co-expression network analy-
sis (WGCNA), the genes or phenotypes most associated 
with AMS can be identified to discover potential bio-
markers and pathways associated with AMS, which are 
critical for disease diagnosis, treatment, and prevention.

Therefore, this study aimed to explore essential can-
didate genes and phenotypes for moderate-to-severe 
AMS to provide evidence for a better understanding of 
the mechanisms of AMS. The dataset GSE103927 and 
its original study in the GEO database contains general 
characteristics of the study subjects, clinical data, LLS, 
and transcriptome information. This dataset meets the 
needs of this study. We analyzed this dataset by bioin-
formatics methods such as differentially expressed gene 
screening and WGCNA. AZU1 and PRKCG were finally 
identified that were associated with AMS severity. This 
result was validated by an alternative grouping approach 
and clinical samples.

Methods
Data collection and study design
The datasets analyzed during the current study are 
available in the GEO repository, https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE103927. Data-
set GSE103927 was downloaded from GEO database 
(https://www.ncbi.nlm.nih.gov/gds) by R software 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103927
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103927
https://www.ncbi.nlm.nih.gov/gds


Page 3 of 14Xu et al. BMC Medical Genomics           (2023) 16:28 

(version 4.0.4) on March 25, 2022. One hundred twelve 
total samples representing 21 subjects at 7-time points 
(not all subjects represented at all time points) were 
taken. Nineteen samples exposed to the high altitude at 
noon on the first day (H1) were included in this study. In 
this study, we focused on analyzing the data during the 
first day of exposure to high altitude (H1) and sea level 
(SL). However, in this dataset, at time point H1, tran-
scriptome information was included for only 19 subjects. 
Therefore, the other 2 subjects were excluded from this 
study, and the total number of subjects in this study was 
19.

General characteristics and clinical data of subjects 
were obtained from the supplementary material of 
Andrew’s study [30]. Clinical data at other time points 
were excluded except for those measured at H1 and Sea 
Level (SL). Multiple imputation, an approach used to 
generate synthetic data that accurately represents group-
level results, was used to impute missing values [31]. This 

process was implemented through the “mice” package in 
R software (version 4.0.4) [31–33]. Multiple interpolation 
was performed five times, and the final average was taken 
[34, 35]. The code is available in Table S1. Since all data 
used for analysis in this study were obtained from a pub-
licly available database, Ethics Committee approval was 
not required. Figure 1 briefly illustrates our study design.

Definition of acute mountain sickness and grouping
Based on the 2018 Lake Louise Score (LLS) criteria, 
AMS cases must have headache symptoms (headache 
score > 0), then a total score of 3–5 was defined as mild 
AMS, moderate AMS as 6–9 points, and severe AMS 
as 10–12 points [21]. Based on the latest LLS and pre-
vious study, subjects were divided into two groups, 
namely moderate to severe AMS (MS-AMS, 9 sub-
jects’ LLS ≥ 6) and mild or no AMS (NM-AMS, 10 sub-
jects’ LLS < 6) [36, 37]. According to AMS-C, subjects 
were classified into four categories, namely normal 
(AMS-C < 0.700), mild (0.700 ≤ AMS-C < 1.530), moder-
ate (1.530 ≤ AMS-C < 2.630) and severe (AMS-C ≥ 2.630) 
[37]. All the details about the grouping can be seen in 
part 3.1. The NM-AMS-C group (9 subjects) included all 
subjects with an AMS-C < 1.530, and other subjects were 
included in the MS-AMS-C group (10 subjects). The 
grouping according to AMS-C will be applied in Sect. 3.7. 
Details of the grouping are shown in Table 1.

Difference analysis of clinical data and differentially 
expressed genes (DEGs)
The ‘limma’ package in R language software (version 
4.0.4) based on a generalized linear model was used to 
analyze the DEGs [38]. DEGs with |Fold change|>1 and 
P value < 0.050 were screened in this research [39]. Use 
SangerBox (http://vip.sangerbox.com/) for graphing and 
visualizing the results using volcano and heatmap [40].

Weighted gene co-expression network analysis (WGCNA)
The Median Absolute Deviation (MAD) of each gene was 
calculated, genes with MAD less than the median were 
excluded, outlier genes and samples were removed by the 
‘goodSamplesGenes’ method of the R package ‘WGCNA’, 
and finally, a co-expression network was created for the 
genes in the MS-AMS group [41]. LLS was selected as a 
representative to identify modules and associated genes. 
Genes in modules associated with LLS are considered to 
be co-expressed LLS-related genes.

Table 1  The number of subjects in each group under different grouping methods
Grouping method Normal Mild Moderate Severe NM-AMS

(NM-AMS-C)
MS-AMS
(MS-AMS-C)

LLS 3 7 7 2 10 9

AMS-C 3 6 6 4 9 10

Fig. 1  Flow chart of the study design

 

http://vip.sangerbox.com/
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First, the Pearson correlation matrix and average link-
age methods were performed for all pairs of genes. Then 
a weighted adjacency matrix is constructed using the 
power function A_mn=|C_mn|^β. β is a soft threshold 
parameter that emphasizes the strong linkage between 
genes and penalizes weak linkage. A suitable soft thresh-
old of 18 was selected (Figure S1). The adjacency rela-
tionships are translated into a topological overlap matrix 
(TOM), which measures the network connectivity of a 
gene, and the corresponding dissimilarity (1-TOM) is 
calculated. To classify genes with similar expression pro-
files into gene modules, the average linkage hierarchical 
clustering was performed based on the TOM dissimi-
larity measure with a minimum gene dendrogram size 
(genome) of 30. The sensitivity is set to 3. To further ana-
lyze the modules, dissimilarities of module feature genes 
were calculated, a cut line was selected for the module 
dendrogram, and some modules were merged. Gene sig-
nificance (GS) for LLS and modules membership (MM) 
were calculated. Five hundred eighty-seven genes with 
GS > 0.500 and MM > 0.800 of the modules significantly 
correlated with LLS were selected as key genes [40, 42].

Candidate genes selection, correlation analysis, and 
differential expression analysis
Candidate genes were selected from the intersection 
of the DEGs in part 3.2 and the genes in part 3.3. The 
Wayne diagram visualizes the intersection. The ‘corrplot’ 
package in R software was used to explore correlations 
between candidate genes. The boxplot made by Sanger-
Box (http://vip.sangerbox.com/login.html) was used to 
visualize the differences in the expression of candidate 
genes among different groups [40].

Functional annotation and pathway enrichment analysis
For gene set functional enrichment analysis, the ‘org.
Hs.eg.db’ package and the ‘clusterProfiler’ package in R 
language software were used for GO annotation of genes 
[43]. A minimum gene set of 30 and a maximum gene set 
of 5000 were set, and the P value of < 0.050 were consid-
ered statistically significant. KEGG (Kyoto encyclopedia 
of genes and genomes) pathway enrichment for key genes 
using online tools (https://david.ncifcrf.gov/) [44–46]. 
Visualize the results with a bar-plot, bubble-plot, and 
circle map [40].

Receiver operating characteristic (ROC) Curves analysis 
and correlation analysis
ROC curves were used to evaluate the predictive abil-
ity of candidate genes on the severity of AMS. The ROC 
curve analysis was completed by the ‘ROCR’ package and 
‘rms’ package in R language software. Correlation analy-
sis was used to explore the relationship between candi-
date genes and the severity of AMS.

Cell culture and hypoxia treatment
BEAS-2B cells were obtained from laboratory passaged 
cultures. Cells were maintained in DMEM basic (Gibco, 
USA) with a mixture of 10% fetal bovine serum (BI, 
China) and 1% penicillin-streptomycin (Gibco, USA). 
All cells were cultured and passaged at 37  °C, 5% CO2 
before treatment was applied. Control cells were cultured 
at 37 °C and 5% CO2 for 24 h. Cells in the experimental 
group were treated with hypobaric hypoxia and cultured 
at 37 °C in 1 ± 0.3% O2, 5% CO2, and 94% N2 for 24 h.

Real-time quantitative PCR
RNA was isolated using the RNA-easy isolation Reagent 
(Vazyme, China). Then reversed transcribe the RNA to 
cDNA according to the reverse transcription kit instruc-
tions (GeneStar, China). Real-time quantitative PCR 
(qRT-PCR) was completed using SYBR Green (GeneStar, 
China). The primers were synthesized by Sangon Biotech 
(Shanghai, China) and are shown in Table 2. PCR ampli-
fication was performed for 40 cycles using the following 
conditions: denaturation 95  °C for 15s, annealing 60  °C 
for 30s and extension 72 °C for 30s. The qRT-PCR results 
were evaluated using the ∆∆Ct method. Bar graphs pres-
ent the results.

Statistical analysis
SPSS software (version 26.0) was used to compare gen-
eral characteristics and clinical data between different 
groups. LLS, AMS-C and differences between groups 
for each gene were analyzed by Mann-Whitney U. One-
way ANOVA analysis was used for overall comparison 
between groups. Independent-Samples T-test was used 
to test statistically significant differences of other vari-
ables in the two groups. The filtering of DEGs is done 
through the ‘limma’ package in R language software (ver-
sion 4.0.4). ROC curve analysis was performed using 
SPSS 26.0 and plotted using the ‘ROCR’ package and the 
‘rms’ package in R. The ‘corrplot’ package in R was used 
to complete Pearson correlation analysis between key 
genes. Two-sided P value < 0.050 means the difference is 
statistically significant.

Results
Difference of general characteristics and clinical data
General characteristics and clinical data were obtained 
from previous research and its supplementary mate-
rial. Missing values in these data were filled by multiple 

Table 2  Primers Sequence List
Genes Forward primer 5’-3’ Reverse primer 5’-3’
AZU1 TGAGCGAGAATGGCTACGAC GAGGCAGTGGCAGTATCGTC

PRKCG AGCCACAAGTTCACCGCTC GGACACTCGAAGGTCACAAAT

GAPDH GCAGGGGGGAGCCAA AAGGG TGCCAGCCCCAGCGTCAAAG

http://vip.sangerbox.com/login.html
https://david.ncifcrf.gov/
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imputation [30, 33]. In general, 19 subjects (8 females) 
were included in this study.

We try to identify phenotypic or clinical differences 
related to the severity of AMS early in the disease, as 
this is what people tend to focus on. By comparing the 
general characteristics at H1, no statistically significant 
difference in gender was found between the NM-AMS 
group and the MS-AMS group (Χ2 = 0.398, P = 0.528). 
Besides, the differences between the two groups in other 
general characteristics were also not statistically signifi-
cant (Table S2).

By comparing the clinical data at H1, the difference in 
HB between the NM-AMS group and MS-AMS group 
was close to statistical significance (t = 2.103, P = 0.052), 
and there was no statistically significant difference in 
general characteristics between the NS-AMS and MS-
AMS groups (Table S3).

The results of the above analysis suggest to us that after 
subjects are exposed to a plateau environment and occur 
AMS, patients with moderate to severe AMS may not be 
identified in time solely by general characteristics or clin-
ical data. Therefore, in the following section, we analyzed 
the gene expression of our subjects in order to explore 
variables that could detect or predict the severity of AMS 
in a timely manner.

The LLS and DEGs between the two groups
There was a clear significant difference in LLS between 
the two groups, as shown in Fig. 2a. A total of 368 DEGs 
(252 were up-regulated and 116 were down-regulated) 
were identified between the NM-AMS group and the 
MS-AMS group, with the screening criteria of |Fold 
change|>1 and P < 0.050, the visualization result is shown 
in Fig.  2b, c [39]. This suggests to us that it may be the 
differential expression of these genes between the two 
groups that causes the difference in severity in AMS 
patients. However, the relationship between the expres-
sion of these DEGs and LLS is unknown. We will explore 
the genes associated with LLS in the next section.

Discovering the most significant LLS-Related modules and 
genes
After screening the DEGs, in order to find out the genes 
most related to LLS, a gene co-expression network was 
constructed through WGCNA. Each module contained 
a minimum of 30 genes, and the sensitivity was set to 
3. Modules with a distance less than 0.25 were merged 
together, resulting in 44 modules, of which module 
blue4 (R2 = 0.900, P < 0.001), module brown2 (R2 = 0.770, 
P = 0.020), and module orangered (R2 = 0.760, P = 0.020) 
were the most relevant to LLS (Fig.  3a, b). A heat map 
showing the clustering of module feature vectors was 
made and can be seen in the attachment (Figure S2). All 
three modules were positively correlated with LLS.

Fig. 2  The LLS and DEGs between the two groups. (a) Differences in LLS 
between the MS-AMS group (9 subjects) and the NM-AMS group (10 sub-
jects). (b)(c) The volcano plot and heatmap show DEGs in the MS-AMS 
group vs. the NM-AMS group. In total, 368 DEGs between the NM-AMS 
group and the MS-AMS group were identified, of which 252 were up-
regulated, and 116 were down-regulated. LLS, lake louis score; DEGs, dif-
ferentially expressed genes
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The selection criteria for key genes were: the module in 
which the gene was located was significantly correlated 
with LLS, GS > 0.500 and MM > 0.800, and weighting 
threshold ≥ 0.100. As shown in Fig. 3c, d, and e. Accord-
ing to this principle, 530 genes in the three modules were 
considered key genes when LLS was considered.

Candidate genes selection, correlation analysis, and 
differential expression analysis
Genes in both DEGs and Key Genes obtained by 
WGCNA were selected as candidate genes. Fig-
ure  4a visualizes this result. The final 8 genes selected 
were CAAP1, ZNF45, FAM86B3P, PRKCG, RIPPLY3, 
PHLDA3, AZU1, and MYDGF. These eight genes are 
both associated with LLS and differentially expressed 
genes, suggesting that they are associated with the sever-
ity of AMS. The expression differences of these eight 
genes among different groups are shown in Fig.  4b. 
Besides, Fig.  4c shows the correlation between the can-
didate genes.

Functional annotation and pathway enrichment analysis of 
candidate genes
To further understand the biological functions in which 
these genes are involved, we performed enrichment anal-
ysis. The GO enrichment analysis included the following 
three portions: biological process (BP), cell component 
(CC), and molecular function (MF). The primary biologi-
cal roles of candidate genes include regulation of apop-
totic process (GO:0042981), regulation of programmed 

cell death (GO:0043067), regulation of cell death 
(GO:0010941), negative regulation of apoptotic process 
(GO:0043066), and calcium-dependent protein serine/
threonine kinase activity (GO:0009931). As Fig.  5a, b, 
and c show. The candidate genes were primarily enriched 
in pathways associated with hsa04613: Neutrophil extra-
cellular trap formation (Fig. 5d). Detailed information on 
these results is available in Table S4 ~ 5.

ROC curves of candidate genes and correlation analysis
To explore the performance of these eight genes in pre-
dicting MS-AMS and to identify more critical candi-
date genes, we made ROC curves for each of the eight 
genes. ROC curve analysis showed that FAM86B3P 
(AUC = 0.867, P = 0.007), AZU1 (AUC = 0.800, P = 0.027) 
and PRKCG (AUC = 0.822, P = 0.018) were good predic-
tors of moderate to severe AMS. By analyzing the opti-
mal cut-off point (at the maximum of the Youden index), 
AZU1 expression at 5.221 was able to distinguish NM-
AMS and MS-AMS sensitively with a sensitivity of 100% 
and specificity of 50%. PRKCG expression of 3.720 was 
able to distinguish NM-AMS and MS-AMS with sensitiv-
ity of 100% and specificity of 60%. Although FAM86B3P 
was a good predictor of moderate to severe AMS, 
FAM86B3P was a pseudogene and therefore excluded, as 
we will mention in the Discussion section. We then tried 
to explore the ability of AZU1 and PRKCG to predict 
MS-AMS together, and the results showed that the joint 
prediction had better predictive power than the separate 
prediction (AUC = 0.833, P = 0.014). The sensitivity at the 

Fig. 3  The Most Significant LLS-Related Modules and Genes. (a) Co-expression module identification in MS-AMS group. The branches of the cluster den-
drogram represent the 44 different gene modules. Each module denoted a collection of co-related genes and was given a unique color. Each piece of the 
leaves on the cluster dendrogram represents a gene. (b) A heatmap shows the correlations and significant differences between the gene modules and 
LLS. The upper left corner of each cell displays R2, between 0 and 1. The P-value is displayed in the lower right corner of each cell. Significantly associated 
modules are blue4 (c), brown2 (d), and orangered (e), and the scatter plot of module characteristic genes is shown in Figure. Each circle represents a gene, 
and the genes in the upper right corner represent key genes for that module. LLS, lake louis score
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optimal cut-off point was 78.8% and the specificity was 
80%. The ROC curve is shown in Fig. 6a, b, c, and d. For 
more information on the ROC curves for other genes, see 
Table S6.

AZU1 (r = 0.787, P < 0.001) and PRKCG (r = 0.677, 
P = 0.001) were significantly correlated with LLS, as 
shown in Fig. 6e, f. Meanwhile, the expression of AZU1 
and PRKCG in the blood of patients with different sever-
ity of AMS is shown in Fig. 6g, h. It should be noted that 
only two subjects entered the severe group according to 
the LLS grouping, and this group did not participate in 
the One-way ANOVA test. But it still can be clearly seen 
that the expression of AZU1 or PRKCG increases with 
the increase of AMS severity. In conclusion, these analy-
ses suggest that AZU1 and PRKCG are associated with 
AMS severity and are good predictors of moderate to 
severe AMS.

Verification by another grouping method, another dataset, 
real-time quantitative PCR
We validated the results of this study using an alterna-
tive method of diagnosing AMS. The study subjects 
were divided into NM-AMS-C and MS-AMS-C groups 
according to AMS-C, as detailed in Sect. 2.3 and Table 2. 

There was a significant difference in the AMS-C scores 
between the two groups (Fig.  7a). All phenotypic and 
clinical data were not significantly different between MS-
AMS-C group and NM-AMS-C group, as detailed in 
Table S7, 8. This is consistent with our previous analysis.

AZU1 and PRKCG expressions were significantly dif-
ferent between the NM-AMS-C and MS-AMS-C groups 
and had higher expression levels in the moderate to 
severe AMS group, as shown in Fig.  7b, c. ROC curve 
analysis showed that AZU1 (AUC = 0.989, P < 0.001) and 
PRKCG (AUC = 0.833, P = 0.014) were still good predic-
tors of moderate to severe AMS. AZU1 of 5.323 pre-
dicted moderate to severe AMS with 90% sensitivity and 
100% specificity (Fig.  7d). The PRKCG was 3.757, with 
a sensitivity of 90% and specificity of 77.8% for predict-
ing moderate to severe AMS (Fig. 7e). Combined AZU1 
and PRKCG also predicted moderate to severe AMS well 
(Fig. 7f ). This is consistent with the results of our study.

Correlation analysis showed that AZU1 and PRKCG 
expression were significantly correlated with AMS-C, as 
shown in Fig. 7g, h. Besides, the expression levels of both 
AZU1 and PRKCG increased with the increase of AMS 
severity. This result can be seen in Fig. 7i, j. This result is 

Fig. 4  Candidate Genes Selection, Correlation analysis, and Differential Expression analysis. (a) A Venn diagram showing the number of DEGs versus the 
number of Key Genes obtained by WGCNA repeats. (b) Differential expression of candidate genes among different groups. (c) Candidate gene correlation. 
The lower left part shows the correlation coefficient, and the size of the circle in the upper right part is consistent with the size of the absolute value of 
the correlation coefficient; the more significant the absolute value of the correlation coefficient, the larger the graph is, and the darker the color. Red rep-
resents negative correlation, and blue represents positive correlation, as shown in the legend on the right. DEGs, differentially expressed genes; WGCNA, 
weighted gene co-expression network analysis. *, P < 0.050; **, P < 0.010
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also consistent with our analysis that AZU1 and PRKCG 
are associated with AMS severity.

Finally, we verified the changes in the expression of 
AZU1 and PRKCG under hypobaric hypoxia environ-
ment. GSE145935, another dataset in the GEO database, 
was used for validation (Fig. 8a). We also performed real-
time quantitative PCR to detect the expression of can-
didate genes under hypobaric hypoxic conditions. The 
results showed that the transcript levels of AZU1 and 
PRKCG were increased under hypobaric hypoxic condi-
tions (Fig. 8b and c).

Discussion
In this study, dataset GSE103927 was downloaded from 
the GEO database. According to the 2018 edition of the 
LLS, the research subjects were divided into the NM-
AMS group and the MS-AMS group. The differences 
in phenotypes and genes between the two groups at H1 
were analyzed. The differences in phenotypic and clinical 
data between the two groups were not significant, sug-
gesting the importance of gene expression. The modules 
and key genes most associated with LLS were obtained 
by WGCNA analysis. The intersection of differentially 
expressed genes with key genes obtained by WGCNA 
was selected as a candidate gene for AMS. To explore 
their biological function, these candidate genes were 

enriched for GO and KEGG function. ROC curves were 
made to evaluate the predictive performance of the three 
candidate genes. AZU1 and PRKCG are good predictors 
of moderate to severe AMS. We validated the results of 
the analysis by regrouping the subjects using AMS-C. 
Hypobaric hypoxia environment promotes AZU1 and 
PRKCG expression. In conclusion, AZU1 and PRKCG 
were associated with the severity of AMS.

It is important to note that in this study, subjects used 
two separate grouping methods, the LLS and the AMS-
C. The AMS-C is an item in the ESQ questionnaire that 
has been used several times for the diagnosis of AMS 
[13–15]. We first grouped and compared the subjects 
using the LLS criteria and later grouped them again 
using the AMS-C, which was used to validate the results 
obtained from the LLS group comparison analysis. This 
eliminated some bias and made the results of this study 
more convincing.

We tried to find variables that discriminate moderate 
to severe AMS from other subjects, and phenotype was 
the primary consideration because phenotype is more 
likely to be of interest. Therefore, we first compared phe-
notypes between the MS-AMS group and the NM-AMS 
group. However, there were no statistically significant 
differences in phenotypic data between patients with no 
or mild AMS and moderate to severe AMS, regardless 

Fig. 5  Functional Annotation and Pathway Enrichment Analysis of Candidate Genes. (a, b, c) The GO enrichment analysis of the candidate genes. Bubble 
chart showing the top terms in BP, CC, and MF groups. (d) The term for KEGG pathway analysis of candidate genes is shown with bar graphs. GO, gene 
ontology; KEGG, kyoto encyclopedia of genes and genomes; BP, biological process; CC, cell component; MF, molecular function
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of which grouping was used to group the subjects. This 
suggests to us that the differences between moderate to 
severe AMS and no or mild AMS in the early stages of 
AMS may be due to differences in gene expression.

After DEGs analysis and WGCNA analysis, eight genes 
were identified as key genes because they were associ-
ated with LLS and differentially expressed between the 
two groups. These eight genes are FAM86B3P, AZU1, 
PHLDA3, MYDGF, RIPPLY3, PRKCG, CAAP1 and 
ZNF45. FAM86B3P is a pseudogene and little research 
has been done on FAM86B3P. Pseudogenes are variant 
copies of protein-coding genes that cannot be translated 
into proteins and rarely do. Therefore, it was excluded 
in the follow-up study. To gain insight into the biologi-
cal roles of the eight key genes, we did an enrichment 
analysis. GO enrichment analysis suggested that these 

genes were associated with regulation of apoptotic pro-
cess, regulation of programmed cell death, regulation of 
cell death, and calcium-dependent protein serine/threo-
nine kinase activity. KEGG enrichment analysis showed 
that AZU1 and PRKCG were enriched to the Neutrophil 
extracellular trap formation pathway.

ROC curve analysis showed that AZU1 and PRKCG 
were good predictors of moderate to severe AMS. When 
subjects were grouped with LLS. The sensitivity of 
AZU1 to predict MS-AMS was 100% and the specificity 
was 50% according to the best cutoff analysis. the sen-
sitivity when PRKCG was used as a predictor was 100% 
and the specificity was 60%. the sensitivity when AZU1 
and PRKCG were combined as predictors was 78% and 
the specificity was 80%. When grouping with AMS-C. 
The best cut-off point showed a sensitivity of 90% and 

Fig. 6  ROC Curves of Candidate Genes (a) ROC curve of FAM86B3P to predict MS-AMS. (b) ROC curve of AZU1 to predict MS-AMS. (c) ROC curve of PRKCG 
to predict MS-AMS. (d) ROC curve of AZU1 together with PRKCG. € Correlation analysis of AZU1 with LLS. (f ) Correlation analysis of PRKCG with LLS. (g) 
AZU1 expression in the blood of patients with varying severity of AMS. (h) PRKCG expression in the blood of patients with varying severity of AMS. ROC 
curve, receiver operating characteristic curve

 



Page 10 of 14Xu et al. BMC Medical Genomics           (2023) 16:28 

specificity of 100% for AZU1 to predict MS-AMS. 90% 
sensitivity and 77.8% specificity when PRKCG was used 
as a predictor. 100% sensitivity and 88.9% specificity 
when AZU1 and PRKCG were used together as predic-
tors. The expression of AZU1 and PRKCG was propor-
tional to LLS and AMS-C and increased with increasing 
AMS severity. These results suggest that the expression 
of AZU1 and PRKCG may influence the severity of AMS.

Azurocidin 1 (AZU1), also known as heparin-binding 
protein (HBP) or cationic antimicrobial protein of 37 
KDa (CAP37), is a neutrophil-derived granule protein 

[47]. HBP is associated with several diseases and may 
be a new biomarker in sepsis [47]. Previous studies have 
shown that AZU1 is associated with hypoxic lung dis-
ease. The expression levels of AZU1in patients with acute 
lung injury (ALI) are higher than in patients without ALI. 
This phenomenon is also present in patients with acute 
respiratory distress syndrome (ARDS) [47–49]. Besides, 
the elevation of AZU1 is associated with a decrease in 
arterial oxygen partial pressure (PaO2) [50]. Protein 
kinase C gamma (PRKCG, also known as PKC-gamma, 
PKCγ, and SCA14) is located on chromosome 19 and 

Fig. 7  The analysis results of the LLS subgroup are validated by the AMS-C subgroup. (a) AMS-C differences between the NM-AMS-C and MS-AMS-C 
groups. (b) The difference in AZU1 expression between the two groups. (c) The difference in PRKCG expression between the two groups. (d) ROC curve 
analysis of AZU1 predicted MS-AMS-C. (e) ROC curve analysis of PRKCG predicted MS-AMS-C. (f ) ROC curve analysis of AZU1&PRKCG predicted MS-AMS-C. 
(g) Correlation of AZU1 with AMS-C. (h) Correlation of PRKCG with AMS-C. (i) AZU1 expression in the blood of patients with varying degrees of AMS. (j) 
PRKCG expression in the blood of patients with varying degrees of AMS
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encodes the γ isoform of the PKC family [51, 52]. PKC is 
a family of protein serine/threonine kinases composed of 
multiple isoforms that play essential roles in cell mitosis 
and proliferation, apoptosis, and platelet activation [53]. 
It has been shown that PRKCG is associated with brain 
disorders caused by hypoxia. PRKCG is involved in the 
hypoxia-induced reduction of blood-brain barrier per-
meability [54]. In the oxygen-glucose deprivation model, 
PKC-γ expression was associated with hypoxia-induced 
mitochondrial depolarization, increased ROS, and ele-
vated calcium ions [55]. Our results also show that the 
hypobaric hypoxic environment promotes the expression 
of AZU1 and PRKCG.

Previous studies have shown that T cells or mono-
cytes release AZU1 chemokines, such as IL-8, when in 
a hypoxic or infected state [56, 57]. Upon stimulation 
with IL-8, neutrophils release AZU1 preexisting in secre-
tory vesicles and sulfur cell granules. released AZU1 acts 
on glycosaminoglycans on the surface of endothelial 
cells, activating PKC and Rho kinase, while allowing the 
entry of Ca2+. Hypoxia-generated ROS promote PLCγ 

expression and activate PKC together with Ca2+. These 
alterations rearrange the endothelial cytoskeleton, lead-
ing to increased endothelial permeability and inducing 
the onset of edema while leaving the possibility for neu-
trophils to act on other tissues and cells [47, 58]. These 
biological processes are likely to occur in the hypobaric 
hypoxia environment of high altitude [59].

In the present study, AZU1 and PRKCG were enriched 
to the Neutrophil extracellular trap formation pathway. 
The Neutrophil extracellular trap formation pathway has 
been shown to be associated with lung injury in diseases 
such as influenza and sepsis [60–62]. There have been 
many studies shows that the HBP (AZU1) and PKC path-
ways play a role in the development of pulmonary edema, 
as gates lead to enhanced endothelial cell permeability 
[50, 63]. Therefore, it is reasonable to speculate that this 
is one of the causes of the development of high altitude 
pulmonary edema. However, this still requires more clin-
ical samples and experimental validation, which is one of 
the future research directions.

Fig. 8  Transcript levels of AZU1 and PRKCG in GSE145935 and hypobaric hypoxia environment. (A) Transcript levels of candidate genes in GSE145935. (B) 
Transcript levels of AZU1 under hypobaric hypoxia treatment. (C) Transcript levels of PRKCG under hypobaric hypoxia treatment. *, P < 0.050; **, P < 0.010; 
***, P < 0.001
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In this study, we propose for the first time that AZU1 
and PRKCG are associated with the severity of AMS, and 
that AZU1 and PRKCG may be key genes affecting the 
severity of AMS. Our study provides new insights into 
the mechanisms of AMS. However, this study also has 
some limitations such as lack validation from clinical 
samples and small sample size. Many publicly available 
datasets could not be applied to this study because of the 
lack of LLS or AMS-C to group the samples. The subjec-
tive nature of LLS may lead to some bias, and although 
we used AMS-C to validate the analysis results, no esti-
mates were made for these biases. No further exploration 
of how AZU1 and PRKCG function in AMS or hypobaric 
hypoxia environments via the Neutrophil extracellular 
trap formation pathway was performed. Therefore, explo-
ration in larger cohorts and experiments is still needed in 
the future.

Conclusion
AZU1 (HBP or CAP37) and PRKCG (PKC-gamma) are 
associated with the severity of acute mountain sickness 
and may be key genes influencing the severity of acute 
mountain sickness. AZU1 and PRKCG can be used as 
good diagnostic or predictive indicators of the sever-
ity of AMS. This study helps elucidate Acute Mountain 
Sickness’s pathogenesis and the mechanisms affecting 
its severity. Our study provides a new perspective on it. 
Inhibition or targeting of these genes may improve the 
health effects of the high-altitude environment.
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