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Abstract

Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic
migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel
disorders, the identified genes code for proteins expressed in neurons, glial cells, or vessels, all of which increase sus-
ceptibility to cortical spreading depression. The study of monogenic migraines has shown that the neurovascular unit
plays a prominent role in migraine. Genome-wide association studies have identified numerous susceptibility variants
that each result in only a small increase in overall migraine risk. The more than 180 known variants belong to several
complex networks of “pro-migraine” molecular abnormalities, which are mainly neuronal or vascular. Genetics has

also highlighted the importance of shared genetic factors between migraine and its major co-morbidities, including
depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine
and then to understand how these genomic variants lead to migraine cell phenotypes.
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Migraine, a complex genetic condition

The goal of genetics is to identify key proteins in order to
better understand the pathophysiology of a disease, to define
new therapeutic targets and to find diagnostic biomarkers.
Migraine is a highly disabling, complex brain disorder with
a strong familial aggregation. Twin and family studies con-
ducted in the 1990s demonstrated the existence of heredi-
tary factors in migraine [1, 2]. In these studies, the estimated
heritability of migraine ranged from 35% to 60%. In popu-
lation-based studies, the relative risk of migraine for a first-
degree relative of an index case was 1.5- to 4-fold compared
with the general population [3]. The risk was higher for rela-
tives of cases with higher pain scores and attack frequency,
early age of onset, and migraine with aura (MwA).

More recent studies estimate the heritability of
migraine to be about 42%. They also reinforce the idea
that migraine is a complex disease resulting from inter-
actions between genes and the environment, interactions
between genes themselves, and as yet unknown factors
[3]. Heritability is higher in MwA than in migraine with-
out aura (MO) [4].
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Migraine is predominantly polygenic, with multiple
genetic variants, each with a minor-effect size, accumu-
lating to lead to the disease. A portion of MwA cases
could be explained by the conjunction of a small num-
ber of genetic variants with moderate effect size, or by a
single variant with a major functional effect as in mono-
genic migraines [5] (Fig. 1). In these much rarer disor-
ders, a pathogenic mutation in a single gene is sufficient
to produce the disease with almost complete penetrance.
The classical example of monogenic migraine is famil-
ial hemiplegic migraine (FHM), which is inherited in an
autosomal dominant fashion [6]. Migraines can also be
part of the clinical spectrum of other hereditary neuro-
logical conditions, such as cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencepha-
lopathy (CADASIL). Other examples will be discussed
further in this paper.

Familial hemiplegic migraine (FHM), a monogenic
form of migraine

Genetic heterogeneity and clinical variability

Hemiplegic migraine (HM) is a rare disease with an
estimated prevalence of 0.01% in the general popula-
tion [6, 7]. Familial HM, diagnosed when at least one
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first- or second-degree relative also has HM, accounts
for two-third of the cases. Sporadic HM (SHM), diag-
nosed in the absence of family history, accounts for
one-third of cases. HM attacks begin during youth
(mean age of onset 12—17years old), and comprise
motor weakness during the aura, always associated
with at least one other symptom of typical aura (visual,
sensory, speech and language) and often with brain-
stem aura symptoms (70%) [8, 9]. The frequency of
attacks varies from more than one per week to a few
over the course of a lifetime, with an average of 3 to 4
per year [10]. Duration of HM aura is often longer than
that of typical aura (several days to weeks) [11-13].
Severe attacks with confusion, coma, fever, seizures
and reversible brain edema may occur [14—17], some-
times triggered by mild head trauma [18-20]. HM can
be pure or associated with a combination of early-onset
epilepsy, cerebellar ataxia, learning disabilities, and/
or mental retardation, which may begin before or after
HM onset [21-25].

FHM is primarily a monogenic disorder, with an
autosomal dominant pattern of inheritance and high
penetrance; 70-90% of individuals with a patho-
genic mutation clinically express the disease. FHM is
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Fig. 1 Overview of migraine and genetics. An overview of the complex genetic architecture of migraine, from polygenic model on the left, to

monogenic model on the right. Created with BioRender.com
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genetically heterogeneous and is subdivided into FHM1,
FHM2 and FHM3, based on the presence of mutations in
the CACNAIA, ATP1A2 and SCNIA genes, respectively
[6, 26-28] (Table 1, Fig. 2). The PRRT2 gene should be
added to the main FHM genes because recent data have
shown that PRRT2 is involved at least as frequently as
SCN1A [29, 30]. For convenience, we will therefore refer
to FHM4 for HM associated with PRRT2 mutations.
Other genes have been reported in a small number of
cases and families, and additional data are needed before
they can be considered causal (Table 2).

Clinical studies of patients with mutations in the four
major FHM genes have shown that attacks of HM are
similar regardless of the gene involved, and that pro-
longed auras with confusion are possible in all FHM
types. The association of HM with epilepsy is present in
7% of overall HM patients [7, 49], but seems more fre-
quent in FHM2 [50].

Conversely, different mutations in the same gene can
influence the phenotype. In FHM1, the two mutations
most commonly involved in severe attacks with coma and
fever are T666M and S218L [17]. Moreover, the nature of
the mutated gene also influences the spectrum of mani-
festations associated with HM attacks [6]. Febrile comas
are frequent in FHM1 (up to 30%), possible in FHM?2
(up to 15%), and have not been described in FHM3 and
FHM4 [17, 51]. Cerebellar ataxia is common in FHM1
[52-56]; a phenomenon of repeated transient blindness
was observed only in FHM3 [57]; mental retardation has
been described in FHM1, 2 and 4 [22-24]; and finally, the
association of HM with paroxysmal dyskinesia or hyper-
somnia is suggestive of FHM4 [30]. Finally, there is great
variability in HM attacks and associated manifestations
between individuals who carry different mutations in the
same gene, and even between affected family members
who carry the same mutation. This variability suggests
that other genetic or environmental factors can modulate
the clinical phenotype [26].

FHM1 and CACNA1A mutations
CACNAIA, localized on 19p13, was the first identified
HM gene [58]. It encodes the main al pore-forming
subunit of the neuronal voltage-gated calcium channels
Cay2.1 or P/Q. These channels are expressed in synaptic
endings in the brain and the cerebellar, and play a role in
controlling neurotransmitter release. More than 25 CAC-
NA1A mutations have been identified in FHM1. Most are
missense mutations resulting in a gain of function, which
increases Ca’" influx, glutamatergic neurotransmission
and neuronal excitability [59].

There are two transgenic FHM1 knock-in (KI) mouse
models [60, 61]. KI mice for the R192Q mutation, which
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causes pure FHM1, show no clinical abnormalities. KI
mice for the S218L mutation, which causes very severe
FHM1, show cerebellar ataxia, transient hemiparesis
and epilepsy. FHM1-KI mice exhibit increased Cay2.1
currents and neurotransmitter release, loss of balance
between excitatory and inhibitory cortical neurotrans-
missions, enhanced cortical excitatory transmission in
visual cortex [62] and increased susceptibility to corti-
cal spreading depression (CSD). These transgenic mice
have also been shown to exhibit head pain [63], increased
trigeminal activity, tissue anoxia during prolonged aura,
increased sensitivity to cerebral ischemia, and altered
trigeminal nociception mediated by CGRP [64].

The CACNAIA gene is also mutated in other neuro-
logical disorders. Episodic ataxia type 2 (EA2), charac-
terized by paroxysmal ataxia, dizziness and nausea, is
associated with CACNA1A mutations responsible for
loss of function and decreased Ca*" influx [65]. Spi-
nocerebellar ataxia type 6 (SCA6), characterized by
progressive cerebellar ataxia, is caused by an expan-
sion of a CAG repeat in the terminal portion of CAC-
NA1A, which results in toxic degeneration of cerebellar
Purkinje cells [16].

FHM2 and ATP1A2 mutations

The ATPIA2 gene on 1q23.2 encodes the a2 isoform of
the catalytic subunit of the A1A2 ATP-dependent trans-
membrane pump (a, Nat/KT-ATPase) [66]. In the CNS
of adults, this pump is primarily expressed in astrocytes,
where it provides extracellular K* clearance and pro-
duces a Na' gradient necessary for glutamate reuptake
from the synaptic cleft. More than 80 ATPIA2 muta-
tions have been identified in FHM2. Missense mutations
are the most common, but small deletions, a stop-codon
altering mutation, and an exonic duplication have also
been reported. These mutations result in a variable
loss of function of the a, Na™/K"-ATPase pump. The
mutated pumps are reported to have lower glutamate
uptake, slowing down recovery from neuronal excitation
and promoting excitatory cortical transmission, thereby
facilitating the initiation of CSD waves. There are sev-
eral models of FHM2-KI transgenic mice. Heterozygous
transgenic mice show no clinical abnormalities but have
increased susceptibility to CSD [67, 68]. Mice with par-
tially knock-out (KO) of ATPIA2 also show increased
susceptibility to CSD [69]. Another mouse model with
complete KO of ATPIA2 in astrocytes showed episodic
paralysis and spontaneous waves of CSD with decreased
EEG activity [70]. These animals had abnormalities in
brain metabolism with increased serine and glycine. A
serine- and glycine-free diet suppressed attacks of paraly-
sis in these mutants.
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Fig. 2 Genetics of familial hemiplegic migraine (FHM). Glutamatergic synapse of the central nervous system with proteins encoded by genes
involved in familial hemiplegic migraine and their functional roles. Created with BioRender.com

FHM3 and SCN1A mutations

SCNIA on 2q24.3 encodes the a; subunit forming the
pore of Nay1.1 channels [71]. These voltage-dependent
neuronal sodium channels are involved in the genesis
and propagation of action potentials in cortical neu-
rons, particularly in GABAergic inhibitory interneu-
rons [72]. SCNIA was already known as an epilepsy
gene with over 100 missense and nonsense mutations
identified in various forms of childhood epilepsies. A
dozen SCNIA mutations, mainly missense variants lead-
ing to a gain of function, have been identified in FHM3.
Their functional consequences are complex [73, 74].
The mouse model carrying the L1649Q variant showed
an increased susceptibility to CSD. The L1649Q muta-
tion results in a defect in Na+ channel inactivation with
increased Na+currents and hyperactivity of inhibitory
interneurons.

FHM4 and PRRT2 mutations

PRRT2 encodes the PRRT2 protein, which plays an
important role in brain development, synapse forma-
tion, and neurotransmitter release. PRRT2 is expressed in
presynaptic terminals and interacts with proteins of the
exocytosis complex. Mutations in PRRT2 have now been
identified in several dozen cases of FHM4, two-thirds of
which have pure FHM, and one-third of which have FHM
associated with epilepsy, mental retardation or dyskinesia

[21, 75—-80]. Mutations in PRRT2 are also associated with
several other neurological diseases, including benign
familial infantile epilepsy (BFIE), infantile seizure syn-
drome with choreoathetosis (ICCA) and paroxysmal
kinesigenic dyskinesia (PKD) [81, 82].

The different mutations in PRRT2 (point duplication,
small deletions, missense, total deletions) all induce a loss
of function leading to haploinsufficiency. A given PRRT2
mutation can be associated with several diseases. Indeed,
the ¢.649dupC mutation is common in FHM4, but is also
the main causative mutation in PKD and BFIE.

PRRT2-KO mice exhibit paroxysmal abnormal move-
ments upon acquisition of locomotion, develop abnor-
mal audiogenic motor behaviors in adulthood, and have
a lowered seizure threshold [83]. Their excitatory hip-
pocampal neurons display increased excitability. Human
and murine homozygous KO-PRRT2 neurons in culture
express overactive Nay1.2 and Na,1.6 channels, indicat-
ing that PRRT2 inhibits voltage-gated sodium channels.

Further experiments are needed to understand the fac-
tors underlying the great phenotypical variability associ-
ated with PRRT2 mutations, and the potential influence
of modifier genes or of the non-mutated allele.

Other potential FHM genes
Mutations in several other genes have been identified in
HM (Table 2) [29]. All these genes were already known to
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Table 2 Other genes potentially implicated in familial hemiplegic migraine (FHM)
Genes Number Percentage of affected subjects Protein encoded and role Involvement of the gene in References
potentially of cases  in the cohort by Sutherland other conditions
implicated and et al, 2020 [29]
families
reported
in
literature
PKND 4 2 0,4% PKND protein Main gene for paroxysmal non- [33,34]
= Interaction with proteins of the = kinesigenic dyskinesia
synaptic termini to modulate the
release of neurotransmitters
SLC4A4 15 11 39% Na+ —HCO3 NBCe1 cotransporter Renal tubular acidosis [35-37]
= Expressed in astrocytes, regula-
tion of synaptic pH and neuro-
transmission
ATP1A3 3 3 0,9% a3 subunit of the Na+/K+-ATPase  Alternating hemiplegia of child- [38,39]
pump hood
—> Maintain of electrochemi-
cal gradients across neuronal
membranes and regulation of
excitability at inhibitory synapses
SLC1A3 4 4 0,4% EAATT transporter Episodic ataxia type 6 [40-43]
—> Capture of glutamate into
astrocytes
SLC2A1 6 6 1,3% Glucose transporter GLUTT (or Paroxysmal exercise-induced [33, 44-47]
EAAT2) dyskinesia, De Vivo disease and
=> Entry of glucose into the brain  GLUT1 deficiency syndrome
across the blood-brain barrier
ATP1A4 15 13 52% Sodium/potassium-transporting Charcot-Marie-Tooth Disease, [29, 48]

ATPase subunit alpha-4

Axonal, Type 2Dd
Alternating hemiplegia of child-
hood

be involved in other inherited diseases. In a large cohort
of index HM cases from New-Zealand and Australia,
analysis of potential new HM genes increased the diag-
nosis rate from 21% to 27,8% (PKND 0,4%; SLC4A4 3,9%;
ATP1A30,9%; SLC1A3 0,4%; SLC2A1 1,3%) [29]. Analysis
of other large cohorts of index cases, as well as functional
studies assessing CSD in animal models would be impor-
tant to confirm that these genes actually cause FHM.

Genetic architecture of hemiplegic migraine

Among index cases suspected of having HM and referred
for genetic diagnosis, a minority has a mutation in one
of the four major genes, 15% in a French cohort of 697
patients [78], and 21% in a New Zealand and Austral-
ian cohort of 230 patients [29]. These two independent
studies yielded similar results, with the most frequent
mutations found in the ATPIA2 gene (6,3-10%) fol-
lowed by CACNAIA (3,7-7%), PRRT2 (2,2-3,5%) and
finally, SCN1A (1,7 -2,1%). In contrast, a Dutch study of a
cohort of 301 patients found higher rates of mutations in
major genes: CACNAIA in 107/301 (35.5%), ATPIA2 in
75/301 (24.9%), SCN1A in 26/301 (8.6%), and PRRT2 in
1 /47 (2.1%) [21]. In addition, only three mutations were

identified in a Finnish cohort of 293 HM patients: one in
CACNAIA (0.34%) and two in ATPIA 2(0.68%) [31]. The
PRRT2 gene was not screened in the Finnish study [31].
These differences could be due to different recruitment
methods of the cohorts.

In typical HM cases in whom there are no mutations
in the four main genes, additional single-gene variants
may be identified by future systematic studies, such as
exome studies, and full genome sequencing. New vari-
ants with large-effect sizes are expected to be involved
in only a small proportion of familial and sporadic cases.
In other cases of HM, the inheritance may be polygenic,
involving multiple variants with each a small-effect size,
or oligogenic, with a combination of one or few variants
with a moderate-effect size with or without multiple pro-
migraine variants of small-effect size.

SHM, diagnosed in the absence of any affected rela-
tive, can result from a de novo mutation of one of the
FHM genes in a subject whose two parents do not have
a mutation [47, 84—88]. These de novo mutations can be
passed to offspring, transforming SHM into FHM. SHM
can also result from mutations in known FHM genes
with low penetrance, mosaicism in the transmitting
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parent, or pathogenic variants in as yet unknown genes.
Other SHM types might have a different mode of inher-
itance, either recessive with compound heterozygotes
or polygenic [26]. Finally, environmental and psychoso-
cial factors including exposure to stress, psychological
and physical trauma, abuse, or negative life events may
also play an important role in SHM. According to the
US military personnel HM cohort, the incidence of HM
was zero from 1997 to 2007, and then steadily increased,
with a 25-fold increase in new cases between 2008 and
2017 [89].

Links between FHM and the common varieties of migraine
FHM is a model of hereditary severe migraine with
aura. Some authors have suggested that the mechanisms
of FHM, namely increased sensitivity to CSD, may be
involved in common migraine, with and without aura.
Danish studies have shown that the risk of migraine with
typical aura (eg without motor deficit) was increased in
individuals with FHM compared with the general popu-
lation, whereas the risk of MO was similar [90, 91]. Thus,
FHM is a major model for migraine aura associated with
cortical excitability, with subsequent headache triggered
by CSD, and FHM genes do not play a major role in the
genetics of the common varieties of migraine [92, 93]. A
recent study has identified a polymorphism in the FHM1
CACNAIA gene as a susceptibility locus for common
varieties of migraine, among 122 other loci [94].

Other monogenic varieties of migraine

Monogenic migraine with aura and TRESK mutations
TRESK is a two-pore K™ channel responsible for main-
taining membrane excitability. By a free flow of K ions,
it contributes to the formation of leakage currents in the
trigeminal ganglion and dorsal root ganglia. It is there-
fore though to play a role in pain processing mechanisms.
Mice with a functional knock-out of TRESK show a ‘pain-
ful’ behavioural phenotype, and exhibit hyperexcitability
of the dorsal root and trigeminal ganglia. In addition, in
the trigeminal ganglion, TRESK expression is restricted
to nociceptive neurons [5, 95].

A frameshift mutation in KCNK18, which encodes the
TRESK channel, was described in a large family with
visual MwA following autosomal dominant inherit-
ance [96]. All family members with migraine carried the
p-(F139Wfs*24) mutation, which has been shown to exert
a dominant negative effect resulting in complete loss of
TRESK function and increased neuronal excitability [97].

The causal link between TRESK mutations and
migraine has been called into question by the discovery
of another mutation with a dominant negative effect,
C110R, in individuals without migraine [98]. However,
further research revealed that the p.(F139Wfs*24) variant
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introduces an alternative start codon that shortens the
TRESK protein and damages its function resulting in
hyperexcitability of nociceptors. Such effects were not
observable for C110R [97, 99]. Another missense muta-
tion in the KCNK18 gene (W101R) was identified in a
12-year-old male with migraine with brainstem aura and
intellectual disability. This variant was inherited from his
mother, who had migraine with aura [100]. Further inves-
tigations revealed impaired TRESK channel function
associated with this variant [101]. In another study, phar-
macological inhibition of TRESK influenced the response
to capsaicin, a TRPV1 receptor agonist, and resulted in
increased CGRP release and meningeal blood flow [102].
These data suggested that MwA can be caused by a rare
genetic variant inducing a major functional effect.

A study of 200,000 exome-sequenced UK Biobank par-
ticipants conducted in 2022 found the frameshift variant
p.(F139Wfs*24) in 196 (0.10%) of the 193,433 partici-
pants classified as controls and in 10 (0.14%) of the 7194
migraine cases (p=0.33) [103]. The authors concluded
that KCNK18 should no longer be regarded as being
involved in migraine etiology. A major limitation of this
study is that the clinical status of healthy controls was not
assessed in details. This may imply that a proportion of
the 193,433 participants may in fact have been affected
by migraine, as mis- and underdiagnosis of migraine and
migraine aura is highly common [104]. Studies of cohorts
of patients with a firm diagnosis of MwA and well char-
acterized healthy controls are needed to further elucidate
the role of KCNKI8 and its product, TRESK in migraine.

Familial advanced sleep-phase syndrome (FASP), migraine
and CSNK1D mutations

FASPS, which causes an extreme tendency to wake-up
early in the morning, can be caused by mutation in a
circadian clock gene, CSNK1D, which codes for casein
kinase 1 delta (CKIJ). In the two large families with a
CKIS§ mutation, the sleep disorder was associated with
migraine [105]. Transgenic mice expressing T44A variant
of CSNK1D displayed a high propensity for nitroglycerin-
induced mechanical hyperalgesia, and a reduced thresh-
old for CSD. These findings suggest that migraine may be
caused by a mutation in a gene that encodes neither an
ion channel nor a protein involved in glutamate signal-
ing. In addition, the link between migraine and FASPS
is consistent with the known role of hypothalamus in
migraine [106, 107].

ROSAH syndrome, migraine and ALPK1 mutations

ROSAH syndrome (retinal dystrophy, optic nerve edema,
splenomegaly, anhidrosis, migraine headache) is an auto-
somal dominant condition caused by a missense muta-
tion in the ALPKI gene which was identified in five
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families. ALPKI encodes Alpha Kinase 1, which plays a
role in inflammation, cellular trafficking, and possibly
also affects CGRP activity [26, 108]. Its role in migraine
is unknown.

Monogenic cerebral vasculopathies and migraine
CADASIL (Cerebral autosomal dominant arteriopa-
thy with subcortical infarcts and leukoencephalopathy)
is the commonest type of familial cerebral small-vessel
disease responsible for recurrent lacunar stroke, leading
to dementia and premature death [27, 109]. CADASIL
is caused by NOTCH3 mutations, which cause progres-
sive destruction of vascular smooth muscle cells [110].
Migraine is very common in CADASIL (up to 75%),
mainly migraine with typical aura, but also hemiplegic
migraine or migraine without aura. Migraine is often the
first manifestation of the disease, 15 to 20years before
cerebral infarctions [111, 112]. Mutant mice, either
knock-in for a CADASIL mutation or NOTCH3-knock-
out, have shown increased sensitivity to CSD [113].

Retinal vasculopathy with cerebral leukodystrophy
(RVCL) caused by mutations in TREXI, and disorders
due to COL4A1 and COL4A2 mutations are other small-
vessel diseases that frequently involve migraines [27].

The study of these conditions, especially CADASIL,
showed that gene expressed only in vessels could be
implicated in migraine, which was later on confirmed by
studies in polygenic migraines.

Susceptibility genes for migraine with aura

and migraine with aura

Genome-wide association studies (GWAS)

Identification of gene variants involved in migraine has
proven difficult, and there have been 30years of stud-
ies without significant results. Because MO and MwA
display strong familial aggregation, which may suggest
Mendelian inheritance, the initial hope was that the tech-
niques used successfully in FHM would identify the genes
for the most common migraines. Initial studies showed
that the FHM genes were not involved in the common
varieties of MO and MwaA. Linkage analysis studies iden-
tified dozens of loci that were presented as possibly con-
taining genes involved in migraine, but these were never
discovered [5, 114].

Researchers turned to genome-wide association study
(GWAS), which examines millions of polymorphisms
called SNPs (single nucleotide polymorphisms) in very
large cohorts of patients and healthy controls. Each SNP
is a variation in the genetic code at a single DNA base
pair. More than 100 million SNPs exist in the human
genome, and 4-5 million SNPs are distributed through-
out an individual genome [115]. A GWAS identifies
SNPs that are significantly associated with the disease
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of interest, by assessing differences in allele frequencies
between large numbers of patients and controls. For each
SNP, the level of significance is very difficult to reach
(5 x 107 8) because of the multiplicity of tests performed.

In 2010, the first GWAS identified a single migraine
susceptibility locus [116] (Table 3) Over the past dec-
ade, the International Headache Genetics Consortium
(IHGC; www.headachegenetics.org/) has conducted
several migraine GWAS, and with increasing sam-
ple sizes, the number of associated genetic variants
has progressively increased [117-119]. The 2016
migraine GWAS, including 59,674 migraine sufferers
and 316,078 controls, identified 38 distinct genomic
loci associated with migraine [120]. Tissue expression
enrichment analyzes clearly demonstrated the enrich-
ment in genes involved in arterial and smooth-muscle
function [120, 121]. The other pathways identified were
the neuronal pathway [122], and the pathway related to
homeostasis of iron ions and other metals [120].

In a third recent migraine GWAS from 2021, 79 inde-
pendent loci were significantly associated with migraine
[127]. Of note, this was an ethnically diverse study that
included adult individuals (28,852 cases vs. 525,717 con-
trols) from East Asian, African American, and Hispanic/
Latino descent.

The most recent migraine GWAS published in 2022
by Hautakangas et al. [94] included 102,084 cases and
771,257 controls and identified 123 distinct loci associ-
ated with migraine, of which 86 were novel compared
to the 2016 GWAS. Additional analyses even increased
the number of independent SNPs to 167. Enrichment
analyses in the 2022 migraine GWAS clearly pointed to
both vascular and central nervous system tissues and cell
types. The newly identified loci involve genes encoding
known migraine drug targets, namely calcitonin gene-
related peptide (CGRP, encoded by CALCA/CALCB),)
and serotonin 1F receptor (HTRIF). The former is the
target for CGRP antibodies, and the latter for ditans.
In addition, an analysis of about 30,000 patients from
the 2022 GWAS with a precise diagnosis of the type of
migraine (eg, MO or MwA) showed that three risk vari-
ants were specific for MwA (including a SNP in CAC-
NAIA the FHM1 gene), two were specific for MO and
nine were associated with both types.

Given that some risk loci were found in the Hautakan-
gas 2022 GWAS only, some in the Choquet 2021 GWAS
only, and some in both studies, there are now about 180
migraine risk loci.

In addition to these large GWAS including mainly
cases with European ancestries, other smaller GWAS
conducted in Asia replicated some of the results obtained
in European cases and yielded other new SNPs [128].
Another GWAS study conducted in Asian population
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identified eight novel susceptibility loci correlated with
age of migraine onset [129].

Altogether, migraine GWAS have identified more than
180 low-effect-size genetic variants all across the genome,
with enrichment in vascular and neuronal cells/tissues,
confirming that migraine is a polygenic neurovascular
disorder. Recent GWAS demonstrated that all migraine
varieties share common molecular mechanisms, and that
MO and MwA have specific genetic risk factors and dis-
tinct mechanisms. Due to the large size of the samples,
clinical data in GWAS were limited and did not permit
to study other migraine varieties, such as “pure” MwA
(patients having only attacks of MwA and never MO) or
chronic MO.

Future studies will have to determine which are the
causal genes modified by the SNPs, which are mostly
located in non-coding regions, and do not necessar-
ily affect the closest gene. A first challenging step will
be to select the list of most-likely causal genes based on
GWAS results. For example, the intronic SNP rs9349379
near PHACTRI is a proven risk loci for migraine, coro-
nary artery disease, fibromuscular dysplasia, hyperten-
sion and cervical artery dissection [130]. A functional
study showed that this SNP had no effect on PHACTRI
but on the gene encoding endothelin-1 (ET-1; EDN1), a
strong vascular smooth muscle cells constrictor located
600 kB upstream of the risk SNP [130]. More recent
data suggested that SNP rs9349379 may in fact regu-
late the expression of PHACTRI, and not EDNI, and
that PHACTRI could have a role in arterial compliance
[131]. This debate on a single SNP shows that enormous
amounts of experiments will be necessary to study the
180 migraine SNPs.

In addition, some variants not identified by the mean
of GWAS could also be implicated in migraine suscep-
tibility through gene-gene interactions. A case-control
study suggested that synergetic effects between a vari-
ant in NRXN2, coding a component of the synaptic vesi-
cle machinery, and two other genes, GABRE and CASK,
were associated with migraine [132].

Polygenic risk score and genetic architecture of migraine
The almost 200 variants identified by the latest GWAS
each explain only a small fraction of the genetic risk, and
their sum do not explain the full heritability of migraine.
The Polygenic Risk Score (PRS) assesses the individual
genetic risk of migraine as the sum of all SNPs and alleles
that increase the risk of migraine carried by an individ-
ual. The PRS may be used to analyze the genetic links
between the different primary headaches and the dif-
ferent forms of migraine, and between migraine and its
comorbidities. The PRS can also assess pharmacogenetic
effects [5].
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In a study of 1589 migraine sufferers from the Finn-
ish population, familial cases had a significantly higher
PRS than non-familial cases [133]. The genetic burden
was higher in MwA and FHM compared to MO, and
was associated with an earlier age of onset of migraine.
These data show that migraine is primarily due to an
accumulation of minor variants that produce a favora-
ble (pro-migraine) genetic background, and not to highly
deleterious single gene mutations. Noteworthy, a recent
study using a PRS derived from 38,872 variants associ-
ated with migraine in 8602 subjects in Finland showed
a correlation between PRS and migraine diagnoses
according to ICHD3 criteria [134]. Non-headache, non-
migraine headache, probable migraine, migraine head-
ache, migraine with typical visual aura and hemiplegic
migraine formed a continuum along the increasing PRS,
which paves the way for the potential concept of genetic
classifications [134].

The known small-effect-size pro-migraine variants do
not explain the full heritability of migraine. The “miss-
ing heritability” may be explained by several hypothesis.
First, there are probably hundreds of other small-effect-
size variants, which increase the risk of migraine but fall
below the required levels of significance in GWAS. Sec-
ond, persons with multiple disease associated SNPs may
have an additive effect conferring a greater overall risk.
Third, technical limitations in short read sequencing and
Sanger analyses may account for part of this “missing her-
itability” Finally, variants with minor or moderate-effect-
size probably explain a part of the missing heritability,
and cannot be identified by GWAS. A study sequenced
the genomic areas associated with migraine in a large
cohort of patients and identified four rare variants alter-
ing regulatory areas close to four variants discovered by
GWAS [135]. Another study analyzed RNA sequencing
using a coexpression network of aorta, trigeminal gan-
glion and visual cortex, combined with a whole sequence
genoming. The authors identified a ‘gene module; a set of
coexpressed genes, in the visual cortex that had increased
mutations in migraine. Pathway analysis of this module
revealed association with hormonal signaling, Alzhei-
mer’s disease, serotonin receptors and heterotrimeric G
protein signaling pathway. Noteworthy, mutations in two
genes involved in glutamate signalling, CACNA1B and
ATXNI, were found in several migraine families [136].
Using whole-exome sequencing in small populations,
new SNPs have been associated with responsiveness to
verapamil as a preventive therapy [137], and neurologi-
cal outcome, including migraine, after head trauma [138].
Finally, “private” large-size-effect variants may be identi-
fied by chance, such as in the very rare families carrying
mutations of KCNK18 or CSNKID. In these families, the
strong penetrance of the migraine phenotype could result
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Fig. 3 Shared genetic background of migraine and its comorbid diseases. Genetic relation of migraine and some of its clinically most relevant
comorbidities. Dotted arrow: Genetic association or correlation as demonstrated by GWAS or genetic correlation studies. Solid arrow: Causal
association of genetic variants as demonstrated by Mendelian randomization studies. +, liability to one disease increases risk for the comorbidity;
—, liability to one disease decreases risk for the comorbidity; ADHD, attention deficit hyperactivity disorder; BP, blood pressure; CAD, coronary artery

disease; CeAD, cervical artery dissection. Created with BioRender.com

from the cosegregation of the “private” large-size-effect
mutation and a pro-migraine genetic background due to
a high PRS, whereas most carriers of the same rare vari-
ant would not express a migraine phenotype thanks to a
non-permissive genetic background. Some authors have
even hypothesized that FHM would not be truly autoso-
mal dominant but the result of a rare mutation on a pro-
migraine background.

The genetics of migraine thus seems very com-
plex, based on the interaction of hundreds of common

small-effect-size variants with rare variants affecting
regulatory areas, and with possible “private” moderate to
large-effect-size variants.

Shared genetic background of migraine and its comorbid
diseases and traits

The comorbidities of migraine are diseases whose prev-
alence is increased in migraine sufferers compared to
controls and for which certain pathological mechanisms
could be shared (Fig. 3). Genetics is a tool to explore
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some of the common mechanisms, firstly by identifica-
tion of genes associated with both conditions (GWAS),
secondly, by estimation of the genetic correlation, namely
the proportion of variance the two conditions share due
to genetics (genetic correlation studies), and finally, by
evaluation of causal relationships between two condi-
tions by using genetic variants as proxies of an exposure
(Mendelian randomization [MR] studies) [5, 139].

With regard to genetic studies of associations and cor-
relations, several large studies based on the comparison
of GWAS data have shown the existence of a shared
genetic susceptibility between migraine and various
disorders, including psychiatric disorders [140, 141],
ischemic stroke [142], coronary artery disease [143],
hypertension [144, 145], sleep disorders [146], and also
endometriosis [147], fibromuscular dysplasia [148],
type 2 diabetes, hyperlipidemia, autoimmune diseases,
asthma, other respiratory conditions [144], restless legs
syndrome [149] and hemostatic profile [150]. In contrast,
one study found no causal link between genetic suscep-
tibility to migraine and Alzheimer’s disease, intelligence,
and brain size [151].

Mendelian randomization studies have provided
evidence of causal associations between genetic vari-
ants predisposing for migraine and those predisposing
for some of the above-mentioned conditions. Findings
of Mendelian randomization studies on migraine and
comorbid conditions are summarized in Table 4.

Other recent genetic findings

Genetics of headache

A 2018 British GWAS studied 74,461 individuals who
had had a headache interfering with daily activities in the
previous month and 149,312 controls [170]. The majority
of patients probably had tension headache and less often
migraine. This study identified 28 headache susceptibil-
ity loci of which 14 had already been identified by GWAS
in migraine, and 14 were new. The majority of the poten-
tial headache genes were neuronal and not vascular. This
study also found a shared genetic background between
the headache phenotype and many psychological traits
associated with vulnerability to depression and negative
emotions, highlighting the importance of links between
psychiatric conditions and painful conditions.

Another recent GWAS including 2084 Taiwanese
patients and 11,822 age- and sex-matched controls iden-
tified two loci, rs10493859 in TGFBR3 and rs13312779 in
FGF23, both functionally relevant to vascular function
and migraine, to be significantly associated with self-
reported headache [171].

Until recently, studies on genetics of Cluster headache
(CH) have been dominated by candidate gene studies
with conflicting findings [172, 173]. A first Italian GWAS
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on 99 patients and 360 controls identified ADCYAPIRI
and MME gene variants as possibly associated with sus-
ceptibility for CH [174]. These findings were not rep-
licated in a larger Swedish cohort [175]. In 2021, two
GWAS out of which one included Dutch cases (1 =840)
and controls (n=1457) and Norwegian cases (n=144)
and controls (#=1800) [176], and the second one UK
cases (n=_852) and controls (7 =5614) and Swedish cases
(n=591) and controls (n=1134) [177] independently
identified four risk loci for CH on chromosome 1, chro-
mosome 2 (two loci), and chromosome 6, respectively.
Subsequently, a meta-analysis of both studies analyzing
8,039,373 variants confirmed a significant association
of all 8 index variants (in the 4 loci) and identified three
additional loci with genome-wide significance on chro-
mosomes 7, 10 and 19. The nearest genes to the loci
on chromosome 2 and 6 are MERTK and UFL1/FHLS,
respectively. Interestingly, as stated in Table 3, UFL1/
FHLS has previously been identified as a migraine risk
locus [120].

Genetics of chronic migraine

Chronic migraine is the most disabling form of migraine,
and causes for migraine chronification remain incom-
pletely understood. In order to identify genetic variants
contributing to migraine chronification, a comparison of
patients with chronic migraine and patients with episodic
migraine is necessary, whereas most studies attempt-
ing to find genetic risk factors have compared chronic
migraineurs to healthy controls. Recent studies comparing
chronic and episodic migraine have found genetic variants
in the TRPMS8 gene [178], the TRPV1 gene [179], and HLA
class I alleles [180] to be associated with chronic migraine.

Previous to these studies, a candidate gene-associa-
tion study examined 144 SNPs from 48 candidate genes
in patients with chronic or high-frequency episodic
migraine compared to healthy controls, and did not
reveal any significant findings [181].

The first study assessing whole-genome sequencing data
in patients with chronic compared to episodic migraine did
not show any significant difference [182].

Further studies are needed to determine the proportion
of genetic and environmental factors in chronic migraine.

Genetics factors underlying treatment response

Genetic factors strongly influence the absorption, dis-
tribution, metabolism and excretion of drugs. Studies
addressing genetic factors underlying treatment response
to triptans have described GNB3 C825T gene polymor-
phism to be associated with a better response to triptans
in CH patients, and polymorphisms in the PRDM]I6,
SLC6A4 and DRD?2 genes to be associated with a better,
inconsistent and worse response to triptans in migraine
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patients, respectively [183]. Another study showed that
a polygenic risk score doubling the risk of migraine was
associated with a better response to triptans [184].

Recently, whole-exome sequencing in a discov-
ery cohort of migraine patients treated by verapamil
(definitive responders m=21 and definitive non-
responders n =14), followed by genotyping in a confir-
mation cohort (n =185), identified 13 SNP, which were
highly correlated with the changes in the number of
migraine days [137].

In the future, determining the genetic profile of an indi-
vidual could allow the choice of treatments with the best
profile of efficacy and tolerance [5].

Mitochondrial DNA and migraine

Mitochondrial dysfunction has been suspected to con-
tribute to migraine pathophysiology, since migraine-like
headache is a clinical feature of several mitochondrial dis-
eases [185-187], presumable mitochondrial biomarkers
have been found to be elevated in migraine patients [188],
and several studies have reported mitochondrial DNA
(mtDNA) candidate variants possibly associated with
migraine [189, 190]. However, the first GWAS assessing
775 mitochondrial DNA variants in 4021 migraine suf-
ferers and 14,288 controls found no migraine-associated
variants, ruling out the mitochondrial hypothesis sug-
gested by older studies [191]. Limitations discussed by the
authors were the diagnosis of migraine based on a ques-
tionnaire covering symptoms during the past 12months
instead of a clinical interview, and the absence of consid-
eration of heteroplasmic variation, copy-number varia-
tions and epigenetic changes.

Conclusion

Genetics of migraine have made significant progress over
the past 15years [5, 28, 114]. The study of monogenic
migraines identified key proteins of the susceptibility to
CSD and helped to better appreciate the links between
migraine and vascular disorders. GWAS have identified
multiple susceptibility genes revealing several complex
networks of “pro-migraine” molecular abnormalities,
mainly neuronal and vascular (Fig. 1). Genetics has also
underscored the importance of genetic factors shared
between migraine and its major co-morbidities including
depression and high blood pressure. Very large-scale stud-
ies are still needed to map all of the susceptibility loci to
migraine and then to understand how these genomic vari-
ants lead to migraine cell phenotypes. Ultimately, the main
pathophysiological mechanism in a given patient, neuronal
or vascular or otherwise, could be determined through its
genetic risk profile. Pharmacogenetics could help predict
the therapeutic response and thus help prescribe the treat-
ment with the best safety and efficacy profile.
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