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Abstract

Motivation: Predicting molecule–disease indications and side effects is important for drug development and phar-
macovigilance. Comprehensively mining molecule–molecule, molecule–disease and disease–disease semantic
dependencies can potentially improve prediction performance.

Methods: We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations
(M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients.
Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical
semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding
space shared by drugs, diseases and other common clinical concepts. To infer molecule–disease relations, M2REMAP com-
bines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects.

Results: We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show
that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement
over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP over-
comes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.

Availability and implementation: The code is available at https://github.com/celehs/M2REMAP, and prediction
results are provided at https://shiny.parse-health.org/drugs-diseases-dev/.

Contact: tcai@hsph.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Traditional approaches to drug discovery mainly rely on bench experi-
ments, which can be costly and time-consuming. Bringing a new drug
to the market, on average, costs about 2.6 billion dollars (DiMasi
et al., 2016) and takes over 12years (Mohs and Greig, 2017). With
the increasing availability of large-scale biomedical data and biologic-
al knowledge sources, including molecule, chemical and biological
properties, computational approaches to predicting molecule indica-
tions or side effects hold great promise in improving the efficiency of

the drug discovery process. Even for drugs approved for specific indi-
cations, computational methods can identify new indications or side
effects of a single drug or from drug–drug interactions. Such informa-
tion can assist in drug re-purposing and reducing the risk of adverse
drug events. Since we focus on small-molecule drugs, we use ‘drugs’
and ‘molecules’ interchangeably throughout this paper.

Existing machine learning approaches to predicting drug–disease rela-
tions either rely on molecule chemical structure only (Zhou et al., 2020)
or further combine it with molecule biological properties (Jamal et al.,
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2017; Lee and Chen, 2021; Liu et al., 2012; Mu~noz et al., 2019; Zhang
et al., 2015) via multimodal methods. Chemical-only approach can effect-
ively serve as a tool to virtually screen large chemical libraries and identify
molecules to maximize the yield of downstream biological experiments.
Multimodal approaches improve performance by further leveraging cura-
ted molecule properties, including target proteins, enzymes, pathways
and phenotypic indications (Liu et al., 2012; Mu~noz et al., 2019; Zhang
et al., 2015; Zitnik et al., 2018). However, because chemical and bio-
logical properties do not contain clinical semantic information, existing
methods do not comprehensively exploit drug–drug, disease–disease and
drug–disease semantic dependencies. Drug–drug semantic dependency
can be helpful for prediction since close molecules tend to treat or cause
similar diseases (Mu~noz et al., 2019; Zhang et al., 2016). For example,
‘statin’ drugs such as ‘atorvastatin’ and ‘fluvastatin’ are therapeutic in
lowering cholesterol and the risk of cardiovascular diseases. Disease–dis-
ease dependency promotes semantically close diseases to be correlated as
side effects or indications. For example, a drug that causes the side effect
of ‘depression’ may also cause ‘anxiety’. Drug–disease dependency can
serve as prior knowledge on a class of drugs and diseases, such as the
high correlation between chemotherapeutic molecules and the side effect
of ‘alopecia’. In this study, we hypothesize that effectively integrating
such semantic dependency information with the chemical or biological
properties can further improve the prediction.

We aim to improve the prediction of molecule–disease relations
by exploiting clinical semantic information learned from electronic
health records (EHR). Previous studies have suggested that semantic
relationships between clinical concepts, including drugs and dis-
eases, can be captured in an embedding vector space derived from
concept co-occurrence patterns extracted from large-scale EHR data
(Beam et al., 2019; Hong et al., 2021a). Clinical knowledge drawn
from EHR data can augment existing knowledge on drug–disease
relationships and drug chemical or biological properties. To synthe-
size information from molecule chemicals and EHR clinical seman-
tics, we propose a Multi-Modal REpresentation Mapping Approach
to Predicting molecular-disease relation (M2REMAP).

Specifically, M2REMAP first learns from large-scale EHR data the
clinical semantic embedding vectors of five broad categories of codified
and narrative medical concepts, i.e. drug prescription codes, diagnostic
billing codes, laboratory codes, procedure codes, as well as large scale
clinical concept unique identifiers (CUIs) of the Unified Medical
Language System (UMLS) extracted from free-text narrative notes via
natural language processing (NLP). The NLP concepts cover a broad
range of semantic types, including diseases, symptoms, clinical attributes
and findings, and are particularly helpful in capturing drug side effects
which are often symptoms and not well coded. For example, nausea is a
side effect of many cancer treatments, but it is unlikely for cancer patients
to receive a diagnostic code of nausea due to treatment side effects. In the
second step, M2REMAP uses a deep neural network to train a multi-
modal molecule representation that fuses molecule chemicals and clinical
semantics. Finally, M2REMAP infers molecule–disease relations by train-
ing a relation predictor that combines the molecule representation and
disease semantic embedding to jointly learn indications and side effects.

M2REMAP extends its generalization to novel diseases and
novel molecules. This is achieved by performing a distribution
matching of embedding vectors between large-scale molecules and
EHR concepts. By representing molecules, indications, side effects,
and varied clinical concepts in the same semantic embedding space,
M2REMAP achieves improved generalization and high label effi-
ciency across molecules and diseases, outperforming state-of-the-art
approaches by 30.2% in PRC-AUC for side effect prediction. In
addition, M2REMAP is a general molecule–disease relation predict-
or and addresses a critical unmet need, i.e. to effectively predict po-
tential therapeutic molecules for novel diseases such as COVID-19,
which do not have any annotated data for training.

2 Materials and methods

2.1 Overview
M2REMAP infers molecule-disease relations based on molecule
chemical structures and disease clinical embeddings. As outlined in

Figure 1, it consists of two steps: (i) Clinical embedding learning in
which we learn semantic embeddings of clinical concepts from EHR
data and transform large-scale molecule chemicals to the embedding

space using a deep neural network; and (ii) Molecule–disease rela-
tion prediction in which we train a predictor network to infer mol-

ecule–disease relations by combining molecule chemicals and
disease EHR embeddings. The key steps of M2REMAP are summar-
ized in Supplementary Algorithm S1.

2.2 Clinical semantic learning
2.2.1 EHR data

We learn semantic embedding of clinical concepts using EHR data
between 1999 and 2019 from the Department of Veterans Affairs

(VA) Corporate Data Warehouse (CDW), containing data from
over 150 VA facilities. We include all inpatient and outpatient data

from 12.6 million patients who had at least one visit. Codes occur-
ring multiple times for the same patient within the same day are
counted once per day. We include five types of clinical concepts, (i)

four broad classes of codified elements, namely drugs, diagnosis,
procedures and lab measurements; as well as (ii) CUIs extracted

from unstructured clinical notes via the NILE software (Yu et al.,
2013), restricting to a subset of clinically relevant semantic types. As
in Hong et al. (2021a), all drugs are aggregated at the ingredient

level and mapped to RxNorm codes; diagnostic codes are mapped
to PheCode; and procedure codes are mapped to the clinical classifi-
cation software (CCS) categories (https://www.hcup-us.ahrq.gov/

toolssoftware/ccs_svcsproc/ccssvcproc.jsp).

2.2.2 Semantic embedding learning from EHR

We obtain clinical semantic embeddings for EHR concepts based on

the matrix factorization variant of the skip-gram algorithm, which
only requires a pairwise co-occurrence matrix of the concepts as the

input (Levy and Goldberg, 2014). Specifically, we count co-
occurrences between any pair of clinical concepts within a 30-day
window of each patient and aggregate across all patients. To ensure

embedding quality, we remove co-occurrence pairs with a frequency
below 5000. This results in 138 193 entities, with 9211 codified

concepts and 128 982 CUIs. From the co-occurrence matrix, we
compute the shifted positive pointwise mutual information (SPPMI)
matrix and then obtain 500-dimensional semantic embedding vec-

tors by performing a singular value decomposition (SVD) on the
SPPMI matrix. The semantic relationship of EHR concepts is well

encoded in the learned embedding space, as shown previously
(Beam et al., 2019; Hong et al., 2021a).

2.2.3 Molecule embedding learning

We next map molecule chemical structures onto the EHR semantic
embedding space via a supervised deep neural network. The mole-
cules with the corresponding EHR semantic embedding are denoted

as ‘mapped’ and the rest as ‘unmapped’. Based on those ‘mapped’
molecules, we train a supervised deep neural network that maps
their chemical structures onto semantic embeddings, minimizing the

L2 distance between the EHR embedding of the molecule and the
mapped embedding.

To map the molecule structure to the space of EHR embeddings,
the molecule-embedding mapping module consists of a Feature

Extractor network (E) that transforms molecule chemical structures
into multimodal representation and a Linear Mapper (M) that distills
semantic embeddings from molecule representation. The feature ex-

tractor receives molecular SMILES as inputs and mainly consists of an
embedding layer, 1D convolutional operations to capture the local

interactions between tokens, and a bi-directional GRUs layer to cap-
ture the long-range sequential dependency. The CNNþbi-GRU archi-
tecture has performed well in other molecular computational tasks

(Gómez-Bombarelli et al., 2018; Zagidullin et al., 2021). We discuss
alternative architectures for this step in the discussion section. We
minimize the mean squared prediction error
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Lemb ¼ Exi�Dmapped
ðMðEðxiÞÞ � exi

Þ2; (1)

to train E and M simultaneously, where xi is from Dmapped which
consists of ‘mapped’ molecules and exi

denotes its semantic embed-
ding vector.

We then employ transfer learning to generalize the embedding
learning to “unmapped” or novel molecules not included in EHR.
Specifically, we additionally encourage the embeddings of large-
scale molecule chemicals from the Drugbank (Wishart et al., 2018)
to be encoded by E onto the same semantic embedding space. This is
achieved by requiring “unmapped” molecules to follow the same
embedding distribution as those EHR medical concepts. To this end,
the feature extractor E is optimized with an additional objective Lun

to measure the embedding distribution discrepancy between
Drugbank molecules and EHR clinical concepts. Motivated by ad-
versarial transfer learning, we train an additional discriminator net-
work Demb to distinguish the EHR embeddings from the molecule
embeddings and quantify their distribution discrepancy. The E, to-
gether with M, is then trained to transform novel molecules into se-
mantic embeddings with distributions similar to the EHR concepts.
Such a minmax learning procedure is formulated as:

minE;M maxDemb
Lemb
novel ¼ Exi�Ddb

log½DembðMðEðxiÞÞÞ�

þEej�Dehr
log½1�DembðejÞ�;

(2)

where xi denotes a molecule chemical structure from Drugbank Ddb

and ej is a semantic embedding from Dehr which consists of all clinic-
al concepts. We use a multi-layer perception network as the discrim-
inator Demb parameterized by hDemb

.

2.3 Molecule–disease relation prediction
2.3.1 Multimodal molecule representation

To optimize the prediction of molecule–disease relations,
M2REMAP further fine-tunes the representation of molecules based
on observed labels on the known relationships. To this end, the fea-
ture extractor E is further refined in a multi-task manner to minim-
ize the two aforementioned embedding learning losses Lemb in (1)
and Lemb

novel in (2) and also the binary cross-entropy prediction loss:

Lpred ¼ �Eðxi ;di ;yiÞ�Dlabel
ðyi � logðPðEðxiÞ; edi

ÞÞ

�ð1� yiÞ � logð1� PðEðxiÞ; edi
ÞÞÞ;

(3)

where i indexes the relationship pair with label yi sampled from
annotated molecule–disease dataset Dlabel, and edi

denotes the

embedding of disease di from Dehr. We next detail the construction
of the relation predictor P, which takes separate forms for indica-
tions versus side effects.

2.3.2 Relation learning

To comprehensively capture drug–drug, disease–disease and drug–
disease semantic dependencies, M2REMAP infers general molecule–
disease relations by sharing the pairwise relation predictor P across
multiple diseases and drugs. To achieve this, P combines multimodal
molecule representation and disease semantics and is trained to learn
invariant relation representations across novel molecule–disease
combinations of novel molecules or diseases, as shown in Figure 1.
Therefore, P is additionally optimized by Lrelanovel:

minP maxDrela
Lrelanovel ¼ Exi�Ddb ;di�Dehr

log½DrelaðPðEðxiÞ; edi
ÞÞ�

þEðxj ;djÞ�Dlabel
log½1�DrelaðPðEðxjÞ; edj

ÞÞ�;
(4)

where Drela, with the same architecture as the Demb, is a discrimin-
ator network trained to distinguish the relation representation of
annotated molecule–disease combinations from those of novel com-
binations. Molecule xj and dj, with embedding edj

, are from the
annotated molecule–disease data Dlabel.

Integrating all steps, the M2REMAP model is trained with a
joint objective Ljoint, which is formulated as:

Ljoint ¼ Lindipred þ Lsidepred þ bLemb þ cLemb
novel þ dLrelanovel; (5)

where Lindipred and Lsidepred denote the prediction loss, defined in
Equation (3), of indication and side effects, respectively. b, c and d
are hyper-parameters that balance the multiple objectives. When
minimizing Ljoint, some nuisance parameters should be optimized
using specific components. For example, the embedding mapper M
can be optimized only using Lemb. The hyper-parameter selection is
detailed in Supplementary Note S6.

2.3.3 Semantic-guided sampling of negative drug–disease relations

Each drug is typically reported to have some indications or side
effects, often noted in the widely used SIDER (Liu et al., 2012) and
FDA reports (Zhang et al., 2021), which constitute the positive
drug–disease pairs. However, validated annotations on negative
drug–disease relationship pairs are scarce. Most existing methods
treat the unreported drug–disease pairs as the negatives (Mu~noz
et al., 2019; Yamanishi et al., 2012; Zhang et al., 2016). This could
be problematic and result in false negatives due to incomplete

Fig. 1. Overview of M2REMAP. By learning clinical semantic embeddings from EHR data, M2REMAP synthesized molecule chemicals and EHR semantics to attain multi-

modal molecule representation combined with disease EHR semantics to jointly infer indications and side effects
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annotations, causing bias in both training and evaluation. To allevi-
ate this issue, M2REMAP guides the selection of negative molecule–
disease relations by exploiting the semantic similarity as prior know-
ledge. Specifically, for each drug, we require the negative indications
or side effects to be semantically dissimilar to all of the drug’s
reported or annotated indications or side effects. In this case, for a
drug with the partially annotated side effect of ‘C0011603 (dermati-
tides)’, the side effects of ‘C0037274 (dermatosis)’ and ‘C0023530
(itch)’, which co-occur with ‘C0011603 (dermatitides)’ frequently as
side effects, would not be incorrectly treated as negatives. To
achieve this, we measure the disease closeness using the semantic co-
sine similarity and remove the diseases from the negatives with high
cosine similarity to the annotated diseases.

In addition, we also study using validated negative drug side
effects pairs for extra validations by creating a small dataset based
on literature reviews of clinical-trials meta-analysis results (Edwards
et al., 1999; Fioravanti et al., 2014; Golder et al., 2011), which is
provided in Supplementary Note S7.

3 Experiments

We validate M2REMAP in three parts. (i) We visualize the learned
EHR clinical semantic embedding vectors and show that it captures
drug–disease semantic relationship; (ii) we numerically evaluate
M2REMAP in learning molecule indications and side effects using
annotated datasets; (iii) we investigate the novel prediction of mol-
ecule–disease relations.

3.1 EHR embedding visualization
3.1.1 Settings

We first examine the relationships between drugs and diseases by
visualizing the EHR embedding space. The embedding vectors are
first reduced to two dimensions via PCA and then visualized using t-
SNE (Van der Maaten and Hinton, 2008). We visualize 46 cancer
drugs (https://www.cancer.gov/about-cancer/treatment/drugs) and
26 psychotropic drugs (https://www.healthpartners.com/ucm/
groups/public/@hp/@public/documents/documents/entry_194823.
pdf), which are commonly used in clinical settings, and their related
top-30 indications reported on PrimeKG dataset (Chandak et al.,
2022) in Figure 2a and their top-30 reported side effects on the
SIDER 4.1 dataset (Kuhn et al., 2016) in Figure 2b. Meanwhile, we
also visualize all EHR concepts and Drugbank molecules in
Supplementary Figure S3a, showing that they are well-aligned in the
embedding space.

3.1.2 Results

As shown in Figure 2a, cancer drugs generally cluster together in the
semantic embedding space and are far away from the psychotropic
drugs. Most of the indications are close to the corresponding drugs,
and the indications of cancer drugs are distinct from those of psy-
chotropic drugs in the embedding space. That is, indications are an
important indicator of drug semantics, which explains why observ-
ing indications considerably improves the learning of drug side

effects in (Liu et al., 2012; Zhang et al., 2015). A few drugs indi-
cated for cancers of specific organs are far from the majority in the
embedding space. For example, ‘Sorafenib’ is used for ‘Renal cell
carcinoma’, and ‘Temozolomide’ is used for brain cancer and is rea-
sonably close to psychotropic drugs in the embedding space.

The semantic dependencies between drugs and side effects are
more complex than those between drugs and indications. Side effects
generally do not cluster together with the corresponding medica-
tions in the embedding space, as shown in Figure 2b. This is because,
in contrast to the high co-occurrence between indications and the
corresponding drugs in EHR data, side effects occur less frequently
and hence have fewer co-occurrences with the corresponding drugs.
In addition, many side effects, such as ‘nausea’ and ‘decreased appe-
tite’, are often not specific and shared across drugs.

3.2 Molecule indication prediction
3.2.1 Settings

Based on annotated drug–disease indications, we comprehensively
evaluate M2REMAP under three different settings. (i) Cross-mol-
ecule validation where we randomly choose 70% molecules for
training, 10% for validation and 20% for evaluation, which is the
default setting unless noted; (ii) Cross-year validation where we use
the drugs reported in SIDER 4.1 (Kuhn et al., 2016), marketed be-
fore 2015, for training and the drugs marketed since 2015 for evalu-
ation; and (iii) Cross-disease validation in which we randomly select
70%, 10% and 20% diseases for training, validation and evalu-
ation, respectively. Cross-year validation aims to evaluate model
generalization to predict newly marketed drugs with already on-
market drugs as training. Cross-disease validation test model ability
to generalize to novel diseases not encountered by the model during
training.

We experiment on PrimeKG (Chandak et al., 2022), which
includes annotated drug-indication relations and SIDER 4.1 (Kuhn
et al., 2016), which consists of reported side effects for joint train-
ing. There are 349 indications included that are observed by at least
three drugs in PrimeKG. Both datasets are detailed in Table 1.
Instead of using the raw 500-D VA embedding, we reduce its dimen-
sionality to 100 by performing PCA among the drugs and diseases
observed in PrimeKG and SIDER 4.1. Sensitivity analysis on the
embedding dimensionality is provided in Supplementary Note S9. In
addition to the proposed M2REMAP, we report five variants of
M2REMAP to show how different components affect the perform-
ance: (i) M2REMAP(w/o multimodal) in which the molecule repre-
sentation is not trained to incorporate EHR semantic information,
i.e. removing Lemb and Lemb

novel from the objective function; (ii)
M2REMAP(w/o semantic) in which no EHR semantic information
is used and diseases are represented by one-hot encoding; (iii)
M2REMAP(w/o joint) in which indications and side effects are
trained separately; (iv) M2REMAP(w/o Lnovel) in which compo-
nents for generalizing to novel molecules and diseases, Lemb

novel and
Lrelanovel, are removed; and (v) M2REMAP(base) denotes the baseline
deep neural network without incorporating semantics and joint
training. In the base model, the diseases are one-hot encoded. Still,
the predictor is shared across all diseases, a practice found to achieve
better performance than training each disease independently (Liu
et al., 2012; Mu~noz et al., 2019; Zhang et al., 2016). Since the drug
indication and drug side effects are jointly trained, diseases that are
reported as indications and side effects simultaneously would be
treated as indications only. To measure the performance, we report
the area under the receiver operating characteristics curve (ROC-
AUC), the area under the precision-recall curve (PRC-AUC), and the
average precision at k (AP@k). The results are averaged over five
random partitions of the training versus test data.

3.2.2 Results

As shown in Table 2, M2REMAP achieves a PRC-AUC of 0.649,
which improves from the 0.525 of the baseline model by 23.6%.
The AP@3 is 0.295, which is reasonably high considering that there
are only 2.9 reported indications on average for each molecule.
Compared to the LSP-ADR (Liu et al., 2012) and MEDICASCY

Fig. 2 Drug–disease embedding visualization. We visualize the EHR semantic

embedding of cancer and psychotropic drugs and their reported indications and side

effects. (a) drugs and indications; (b) drugs and side effects
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(Zhou et al., 2020), performance gains of M2REMAP are consider-
able, outperforming state-of-the-art chemical-only model,
MEDICASCY, by 5.9% in ROC-AUC and 37.5% in PRC-AUC.
Without incorporating EHR embeddings, M2REMAP(w/o seman-
tic) performs only comparably to the baseline model. Reduced ver-
sion M2REMAP(w/o multimodal) performs worse than the baseline
model in PRC-AUC and AP@3, which verifies the importance of
multimodal molecule representation. In addition, we find that joint-
ly learning indications and side effects helps boost performance.
This is consistent with the results reported in Zhou et al. (2020),
Zhang et al. (2016) and Liu et al. (2012). The training objective
Lnovel improves model generalization cross molecules and brings
improvements of 5.5% in PRC-AUC, 2.0% in ROC-AUC and 6.1%
in AP@3.

For the cross-disease prediction, namely, to predict the relations
involving novel diseases, M2REMAP drops by 36.2% in PRC-AUC
and by 14.1% in ROC-AUC over cross-molecule, which is substan-
tially worse than the cross-year setting. One of the reasons is that
M2REMAP is trained from <350 diseases, thus with weaker cross-
disease generalization than over cross-molecule. Since existing meth-
ods require annotated data for predicted diseases and cannot always
successfully generalize to novel diseases, M2REMAP encouragingly
outperforms the random guess by 613.8% in PRC-AUC and 48.9%
in ROC-AUC. In Supplementary Note S8, we provide a detailed
analysis of performance gains across different drug/indication
groups brought by the EHR embedding vectors. We observe that
drugs from ‘musculo-skeletal system’ and ‘respiratory system’ bene-
fit the most from the semantic embedding, while for diseases, the im-
provement from ‘nervous system diseases’ is the most significant,
followed by ‘metabolic diseases’.

3.3 Side effects prediction
3.3.1 Settings

For side effect prediction, we evaluate drug side effects caused by a
single drug or drug interactions. The same three settings as in the
molecule indication prediction are used. For mono-drug side effects,

we experiment on SIDER(Liu) (Liu et al., 2012), SIDER(Zhang)
(Zhang et al., 2015), nd SIDER-FAERS(mono) which aims for
cross-year validation by learning on SIDER 4.1 (Kuhn et al., 2016)
with annotated drugs marketed before 2015 and evaluating on
FAERS2021 (Zhang et al., 2021) with newly marketed drugs since
2015. For side effects by drug–drug interactions, we evaluate on
TWOSIDES (Zitnik et al., 2018), following the protocols of Yu
et al. (2021) and FAERS2021 (Zhang et al., 2021). Of note, for
DDIs, most existing methods (Grover and Leskovec, 2016; Yu et al.,
2021; Zitnik et al., 2018) assume all drugs available for training and
aim to learn models that predict the interaction by their new combi-
nations. To study the generalization to novel diseases, we construct
SIDER-FAERS(DDIs) based on FAERS2021 annotations, namely
using drugs in SIDER 4.1 (Kuhn et al., 2016) for training and the
rest of the drugs in FAERS2021 for evaluation. The datasets are
detailed in Table 1.

3.3.2 Results

As shown in Table 3 for mono-drug side effects, M2REMAP attains
substantially higher PRC-AUC compared to ISRNS (Zheng et al.,
2019), the best performing existing method evaluated on
SIDER(Liu), and MEDICASCY (Zhou et al., 2020), the SOTA
model on SIDER(Zhang). M2REMAP improves the PRC-AUC from
0.542 of ISRNS to 0.626 on the SIDER(Liu), and from 0.394 of
MEDICASCY to 0.513 on SIDER(Zhang). Supplementary Note S8
provides a detailed analysis of performance gains across different
drug/side effect groups brought by the EHR embedding vectors. We
observe that drugs from different groups consistently benefit from
the semantic embedding, and the improvements from ‘respiratory
system’ and ‘dermatologicals’ are the most substantial. When group-
ing side effects into different categories, most categories attain
higher accuracy, with the ‘eye/ear diseases’ benefiting the most, fol-
lowed by ‘mental disorders’.

The results of side effects caused by drug–drug interactions are
reported in Table 4. For TWOSIDES, which reports each side effect
with at least 900 drug–drug combinations, we report AP@50, while
for FAERS2021, which reports each side effect only with 25.9 drug
pairs on average, we report AP@3. On the TWOSIDES, M2REMAP
attains PRC-AUC and AP@50 of 0.978 and 0.993, respectively,
which are substantially higher than the 0.934 and 0.888 of the
SOTA method SumGNN (Yu et al., 2021). For drug–drug inter-
action with novel drugs, M2REMAP is observed with significant
performance drops on the SIDER-FAERS, with PRC-AUC falling by
7.9% and AP@3 by 11.9%, compared to the cross-molecule valid-
ation on FAERS2021. The results indicate that its challenging for
drug–drug interaction learning to generalize to novel drugs.

3.4 Case studies of novel predictions
We conduct case studies to examine M2REMAP’s novel molecule–
disease predictions. First, we study the molecules predicted to be
therapeutic to cancers. Then, we predict potential molecules for
COVID-19, a novel disease, considering available treatment infor-
mation. Finally, we examine side-effect predictions of drugs recently
withdrawn due to severe adverse events.

Table 2. Results of molecule indication learning on the PrimeKG

dataset (Chandak et al., 2022)

Methods ROC-AUC PRC-AUC AP@3

LSP-ADR (Liu et al., 2012) 0.821 0.439 0.123

MEDICASCY (Zhou et al., 2020) 0.833 0.472 0.173

M2REMAP(base) 0.826 0.525 0.262

M2REMAP(w/o multimodal) 0.846 0.458 0.225

M2REMAP(w/o semantic) 0.849 0.517 0.268

M2REMAP(w/o joint) 0.853 0.577 0.257

M2REMAP(w/o Lnovel) 0.865 0.615 0.278

M2REMAP 0.882 0.649 0.295

M2REMAP(cross-year) 0.853 0.573 0.256

M2REMAP(cross-disease) 0.758 0.414 0.175

Random guess(cross-disease) 0.509 0.058 0.022

Table 1. Datasets details of the annotated drug–disease relations

Setting Dataset Drug Disease Sample

Drug indications PrimeKG (Chandak et al., 2022) 1281 349 3718

SIDER-PrimeKG 1242:39 349 3718

Side effects(mono) SIDER(Liu) (Liu et al., 2012) 769 1228 43719

SIDER(Zhang) (Zhang et al., 2015) 747:263 2853 80177

SIDER 4.1 (Kuhn et al., 2016) 1355 2923 99159

SIDER-FAERS(mono) 1355:159 3355 104223

Side effects(DDI) TWOSIDES (Yu et al., 2021) 645 200 54261

FAERS2021 (Zhang et al., 2021) 925 2453 70385

SIDER-FAERS(DDI) 846:79 2453 70385

Note: The PrimeKG consists of drug-indication pairs. Both mono-drug and drug–drug interaction (DDI) are included for side effects.
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3.4.1 Cancer-therapeutic molecules

We first examine the Drugbank (Wishart et al., 2018) molecules
that M2REMAP predicts to be potentially therapeutic to cancers.
We rank the molecules based on cumulative confidence, which sums
up the probability of cancer-related indications among their top 50
predictions. Among the top 20 molecules, we can find 9 with litera-
ture supports as shown in Table 5, which provides each molecule

with the top two cancer-related predictions. The investigational
DB03701 (Vanoxerine), which is semantically close to liver-related
diseases as shown in Supplementary Figure S2b, is predicted with
indications of ‘liver cell carcinoma (C2239176)’. This is supported
by Zhu et al. (2021), which has shown its therapeutic effect on hepa-
tocellular carcinoma. The DB14184 (Cinnamaldehyde), in an ex-
perimental stage, is predicted to treat ‘malignant tumor of breast’,

Table 3. Results of predicting mono-molecule side effects

Dataset Method Feature ROC-AUC PRC-AUC

SIDER(Liu) LSP-ADR (Liu et al., 2012) Multimodal 0.885 0.251

FS-MLKNN (Zhang et al., 2015) Multimodal 0.903 0.480

LNSM-CMI (Zhang et al., 2016) Multimodal 0.909 0.491

ISRNS (Zheng et al., 2019) Multimodal 0.909 0.542

M2REMAP(base) Chemical 0.905 0.517

M2REMAP Chemical 0.915 0.626

SIDER(Zhang) MLP (Mu~noz et al., 2019) Chemical 0.894 0.355

FS-MLKNN (Zhang et al., 2015) Chemical 0.872 0.365

LNSM-CMI (Zhang et al., 2016) Chemical 0.885 0.380

MEDICASCY (Zhou et al., 2020) Chemical 0.902 0.394

M2REMAP(base) Chemical 0.889 0.405

M2REMAP Chemical 0.901 0.513

SIDER-FAERS(cross-year) M2REMAP Chemical 0.873 0.507

SIDER 4.1(cross-disease) M2REMAP Chemical 0.788 0.288

Random guess Chemical 0.513 0.065

Table 4. Results of molecule side effects caused by drug–drug interactions

Dataset Method Feature ROC-AUC PRC-AUC AP@k

TWOSIDES MLP (Rogers and Hahn, 2010) Multimodal 0.826 0.812 0.735 (@50)

Node2Vec (Grover and Leskovec, 2016) Multimodal 0.907 0.889 0.830 (@50)

SumGNN (Yu et al., 2021) Multimodal 0.949 0.934 0.888 (@50)

M2REMAP(base) Chemical 0.901 0.912 0.897 (@50)

M2REMAP Chemical 0.986 0.978 0.993 (@50)

FAERS2021 M2REMAP(base) Chemical 0.912 0.897 0.858 (@3)

M2REMAP Chemical 0.987 0.985 0.975 (@3)

SIDER-FAERS (cross-year) M2REMAP(base) Chemical 0.835 0.776 0.597 (@3)

M2REMAP Chemical 0.912 0.907 0.859 (@3)

Table 5. Literature validation of Drugbank molecules predicted to be therapeutic to cancers

Molecule M2REMAP prediction Stage Evidence

DB14980(AZD-6482) Malignant lymphoma, glioblast-

oma multiforme

Investigational Anti-proliferation (Zhao et al.,

2021)

DB14017(H3B-8800) Hairy cell leukemia, acute myeloid

leukemia

Investigational Antitumor (Seiler et al., 2018)

DB15190(GLPG-0259) Non-small cell lung cancer, meta-

static malignant melanoma

Investigational Tumor metastasis (Wang et al.,

2021)

DB03701(Vanoxerine) Medullary thyroid carcinoma, liver

cell carcinoma

Investigational Hepatocellular carcinoma (Zhu

et al., 2021)

DB06266(Lonidamine) Malignant tumor of breast, medul-

lary thyroid carcinoma

Investigational Antitumour (Huang et al., 2020)

DB11455(Robenacoxib) Hairy cell leukemia, malignant

tumor of breast

Experimental antitumour (Nikas et al., 2020)

DB14184(Cinnamaldehyde) Malignant tumor of breast, meta-

static malignant melanoma

Experimental Breast cancer (Liu et al., 2020)

DB00715(Paroxetine) Malignant tumor of breast, gesta-

tional trophoblastic neoplasia

Approved Anticancer activity (Cho et al.,

2019)

DB02701(Nicotinamide) Neoplasm of prostate, malignant

tumor of cervix

Approved Cancer therapy (Sauer et al., 2021)
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which is supported by Chiang et al. (2019) and Liu et al. (2020).
There are also two approved drugs. DB00715 (Paroxetine), which is
predicted to treat ‘malignant tumor of breast’, is a type of anti-
depressant and labeled with psychotropic indications including
‘major depressive disorder’, ‘obsessive-compulsive disorder’, etc.
Some recent studies have revealed its anti-cancer effects, for ex-
ample, breast cancer in Cho et al. (2019) and colon cancer in Jang
et al. (2019). DB02701 (Nicotinamide) is a water-soluble vitamin
B3 or niacin and is labeled with indications of ‘acne vulgaris’, ‘pel-
lagra’ and ‘niacin deficiency’. M2REMAP predicts it with indica-
tions of ‘neoplasm of prostate (C0033578)’ and ‘malignant tumor of
the cervix (C0007847)’. The effectiveness of the drug as cancer che-
moprevention and therapy is supported by Nikas et al. (2020) and
Scatozza et al. (2020).

3.4.2 Molecules for COVID-19

We next study the generalization of M2REMAP in predicting thera-
peutic molecules for COVID-19 as a novel disease. To this end, we
first train an embedding vector for COVID-19, which is represented
by the EHR concept of ‘COVID-19 PCR test positive’, based on the
skip-gram algorithm using the co-occurrence matrix of EHR con-
cepts assembled for VA patients with a COVID-19 diagnostic code
between March 2020 and September 2021. This allows us to create
a new set of embeddings for 5272 EHR concepts, including COVID-
19, and a subset of 2105 diagnosis codes shared with the existing
VA EHR concepts. To map the COVID-19 embedding to the VA
embedding space, we train a neural network in a supervised manner
to learn the mapping from the new embeddings with COVID-19 to
the previously trained VA embedding. Therein, we obtain the VA
embedding vector of COVID-19. The detailed learning procedures
are provided in Supplementary Note S2. With the newly trained
COVID-19 embedding and the relation predictor, we identify the
top Drugbank molecules with a high likelihood of having COVID-
19 as their indications. We rank the molecules by the prediction
scores given by M2REMAP. In addition, as described in Section 3.1,
molecules tend to be close to the corresponding target indications.
Therefore, we refine the prediction results by removing the mole-
cules with a cosine similarity of <0.1 to COVID-19.

The results are provided in Table 6. Among the top 20 predic-
tions by M2REMAP, which are visualized in Supplementary Figure
S2, seven molecules are found with literature evidence. M2REMAP
successfully predicts DB14761 (Remdesivir), which FDA approved
to treat COVID-19. The top candidate predicted by M2REMAP is
DB00481 (Raloxifene), a selective estrogen receptor modulator for
the treatment and prevention of postmenopausal osteoporosis and
cancer, which is recently shown to potentially treat SARS-CoV-2 in-
fection in Hong et al. (2021b) and Allegretti et al. (2022). The
DB01268 (Sunitinib), a kinase inhibitor, is also of great potential as
an anti-coronavirus drug, as shown in Wang et al. (2020). Three
molecules are still not marketed. Specifically, DB13527
(Proglumetacin), at an experimental stage, is shown to inhibit
SARS-CoV-2 in Alves et al. (2021), DB12181 (Dalcetrapib), at an
investigational stage, is shown to have inhibitory effects on the
SARS-CoV-2 3CL protease and viral replication (Niesor et al.,
2021), and DB05420 (Gallium maltolate), at an investigational
stage, is shown to inhibit the replication of SARS-CoV-2 (Bernstein
and Zhang, 2020).

3.4.3 Drug withdrawal prediction

We examine the side effect predictions of the 12 drugs withdrawn
from the market because of severe adverse effects (https://en.wikipe
dia.org/wiki/List_of_withdrawn_drugs) since 2008. We train
M2REMAP on the SIDER 4.1 (Kuhn et al., 2016). As shown in
Table 7, the results are in three parts. In the first part, four drugs are
not included in SIDER 4.1 and thus are considered novel molecules.
M2REMAP correctly predicts the leading causes of withdrawal. The
second part in Table 7 contains three drugs included in SIDER 4.1,
but no side effects related to the withdrawal are reported. The three
drugs, Lorcaserin, Ranitidine and Ingenol mebutate, are withdrawn
because of the increased risk of cancers, which aligns with
M2REMAP predictions. For those seven drugs without withdrawal-
related side effects reported on the SIDER 4.1, M2REMAP achieves
a recall@50 of 1.0, significantly better than a random guess of
0.141. The third part in Table 7 consists of five drugs with related
side effects reported in SIDER 4.1, and M2REMAP also successfully
specifies the withdrawal causes.

4 Discussions

M2REMAP attains higher accuracy and generalizability for predict-
ing molecule–disease relations over existing methods by effectively
combining chemical structure, and semantic representations of clin-
ical concepts learned from EHR. By mapping large-scale clinical
concepts, including indications, side effects and drug molecules,
onto a shared semantic embedding space, M2REMAP bridges the
semantic gap between molecule chemicals and clinical concepts.
M2REMAP is flexible and relatively robust to the choice of different
pipelines for feature extractors. For example, the current implemen-
tation of the feature extractor E in M2REMAP uses the CNNþbi-
GRU architecture, which can potentially be replaced by alternative
network architectures such as the Transformer (Vaswani et al.,
2017) with molecular SMILE as input and MPNN (Gilmer et al.,
2017) with molecular graphs as input. As shown in Supplementary
Note S1, M2REMAP with different network architectures has com-
parable performances although CNNþbi-GRU appears to be the
most robust.

When integrating EHR embedding information with chemical
structures and existing labels on side effects and indications, it is
critical to leverage both structured and textual EHR data extracted
via NLP, especially for studying side effects. Drug side effects are
often symptoms that cannot be well captured by diagnostic codes
but can be well represented by UMLS CUIs that cover a broader
range of semantic types, including disease, symptoms, clinical attrib-
utes and findings. In addition, even for side effects that can be
mapped to diagnostic codes, physicians may record the side effects
information in clinical notes but only assign diagnostic codes associ-
ated with the disease the patient is treated for.

As demonstrated by the COVID-19 case study, M2REMAP ena-
bles predictions of therapeutic molecules for novel diseases by lever-
aging EHR as a live system to learn semantic representation for
novel diseases. This is a key advantage of M2REMAP over existing
methods which typically require the diseases to be pre-defined with
annotated drug–disease relations. Furthermore, there is currently no
effective strategy to represent novel diseases when limited know-
ledge exists. Neither one-hot encoding nor text description can fully

Table 6. Drugbank molecules predicted to be therapeutic to COVID-19

Molecule Ranking Stage Evidence

DB14761(Remdesivir) 17 Approved; investigational Approved for COVID-19

DB00481(Raloxifene) 1 Approved; investigational Hong et al. (2021b)

DB01268(Sunitinib) 3 Approved; investigational Wang et al. (2020)

DB05420(Gallium maltolate) 5 Investigational Bernstein and Zhang (2020)

DB13527(Proglumetacin) 6 Experimental Alves et al. (2021)

DB12181(Dalcetrapib) 13 Investigational Niesor et al. (2021)

DB11753(Rifamycin) 14 Approved; investigational Pathak et al. (2021)
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capture the clinical characteristics of a novel disease. On the
other hand, results from the COVID-19 case study suggest that the
co-occurrence patterns of EHR concepts can effectively train
embeddings to represent novel diseases, which can then be integrated
into the M2REMAP pipeline for the prediction of indications.

There are several directions for future study. First, by linking
with all EHR concepts, the semantic embedding can also be used to
infer the relationship between molecules and other clinical concepts,
for example, laboratory and therapeutic procedures, and improve
molecule-related research such as predicting molecule properties,
target proteins, etc. The current implementation of M2REMAP
achieved robust performance by combining information from chem-
ical structure and clinical information from EHR. However, we ex-
pect that M2REMAP can be modified to gain higher accuracy by
further leveraging molecule biological properties such as target pro-
teins, enzymes, pathways, etc., which are available for a subset of
molecules via semi-supervised learning.
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