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Persistent mutation burden drives sustained 
anti-tumor immune responses

Noushin Niknafs1, Archana Balan1, Christopher Cherry1, Karlijn Hummelink2, 
Kim Monkhorst2, Xiaoshan M. Shao    1, Zineb Belcaid1, Kristen A. Marrone1, 
Joseph Murray    1, Kellie N. Smith    1,3, Benjamin Levy1, Josephine Feliciano1, 
Christine L. Hann1, Vincent Lam1, Drew M. Pardoll1,3, Rachel Karchin    1,4, 
Tanguy Y. Seiwert1, Julie R. Brahmer1,3, Patrick M. Forde    1,3, 
Victor E. Velculescu    1,3 & Valsamo Anagnostou    1,3 

Tumor mutation burden is an imperfect proxy of tumor foreignness and has 
therefore failed to consistently demonstrate clinical utility in predicting 
responses in the context of immunotherapy. We evaluated mutations in 
regions of the genome that are unlikely to undergo loss in a pan-cancer 
analysis across 31 tumor types (n = 9,242) and eight immunotherapy-treated 
cohorts of patients with non-small-cell lung cancer, melanoma, 
mesothelioma, and head and neck cancer (n = 524). We discovered that 
mutations in single-copy regions and those present in multiple copies per 
cell constitute a persistent tumor mutation burden (pTMB) which is linked 
with therapeutic response to immune checkpoint blockade. Persistent 
mutations were retained in the context of tumor evolution under selective 
pressure of immunotherapy and tumors with a high pTMB content were 
characterized by a more inflamed tumor microenvironment. pTMB 
imposes an evolutionary bottleneck that cancer cells cannot overcome 
and may thus drive sustained immunologic tumor control in the context of 
immunotherapy.

The current working hypothesis for tumor-intrinsic features that deter-
mine the magnitude of anti-tumor immune responses relies on the 
assumption that each mutation contributes equally to a composite 
measure of tumor foreignness, reflected in the number of sequence 
alterations per coding DNA sequence or tumor mutation burden (TMB). 
However, with the exception of mismatch repair-deficient tumors, 
TMB has failed to consistently demonstrate clinical utility in predict-
ing responses to cancer immunotherapy. Efforts to separate subsets 
of alterations that may predominantly drive an effective anti-tumor 
immune response have yet to reveal a universal genomic predictive bio-
marker1,2. We have previously shown that heterozygous mutations and 
neoantigens can be selectively eliminated through chromosomal dele-
tions and loss of heterozygosity (LOH) conferring acquired resistance to 

immune checkpoint blockade (ICB)3. In line with these findings, we have 
discovered that a higher number of sequence alterations contained 
in single-copy regions of the genome differentiate responding from 
nonresponding tumors in the context of immunotherapy4. Together, 
these findings suggested that mutations and associated neoantigens 
contained in regions of the genome present in a single copy per cancer 
cell are less likely to be eliminated by chromosomal loss under the 
selective pressure of therapy and therefore may mediate sustained 
neoantigen-driven immune responses and long-term clinical benefit4.

To extend these findings beyond single-copy genomic regions, we 
hypothesized that tumors with a higher frequency of sequence altera-
tions in either haploid regions or multiple copies would have a fitness 
disadvantage in the context of immunotherapy, as these alterations 
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Spearman ρ = 0.26, P = 0.03; NSCLC-Shim: Spearman ρ = 0.41, 
P = 2.3 × 10−8; Fig. 2c and Supplementary Table 9). Collectively, these 
findings further support the notion that pTMB is distinct from TMB 
and that tumors are differentially ranked by their pTMB content in a 
cancer lineage-dependent manner.

We theorized that the impact of pTMB would be exemplified in 
the context of ICB treatment, where inherent anti-tumor immune 
responses would be enhanced and sustained in the presence of contin-
ued persistent mutation-associated neoantigen (pMANA) stimulation. 
As our analyses pointed towards subsets of mutations within TMB that 
may carry differential weights in demarcating tumor foreignness, we 
evaluated persistent mutations in comparison with mutations that 
are more likely to be lost in the context of tumor evolution. We refer to 
the latter as ‘loss-prone’ mutations and these account for the majority 
of coding alterations that constitute a tumor’s TMB. We next asked 
the question of whether there are differential clonal compositions 
between the persistent and loss-prone mutation subsets. In the HNSCC, 
mesothelioma and NSCLC cohorts, we did not detect a difference in 
the fraction of clonal alterations between persistent mutations and 
loss-prone mutations, while in the melanoma cohort, persistent muta-
tions tended to be more clonal (Extended Data Fig. 4). When multi-copy 
mutations were considered separately, higher cellular fractions were 
noted for the multi-copy subset compared with loss-prone mutations 
in melanoma and HNSCC, in line with the notion that multi-copy muta-
tions may be acquired before somatic copy number gains. To further 
study the clonal architecture of persistent mutations, we evaluated 
the correlation between pTMB and the fraction of clonal mutations 
in 31 TCGA tumor types and in the ICB cohorts. In the TCGA dataset, 
we observed a wide range of correlations between pTMB and fraction 
of clonal mutations (Spearman ρ range: −0.11 to 0.59; Extended Data 
Fig. 4 and Supplementary Table 3). We found a moderate degree of 
anti-correlation between clonal mutation fraction and the number of 
only-copy mutations in most tumor types (Spearman ρ range: −0.57 to 
0.07), while a moderate degree of correlation was detected between 
the fraction of clonal mutations and multi-copy mutations (Spearman 
ρ range: 0.01–0.60; Extended Data Fig. 4). In the ICB cohorts, we did 
not detect strong correlations between tumor clonal heterogeneity 
and persistent mutations (Spearman ρ range: −0.25 to 0.33) (Supple-
mentary Fig. 1 and Supplementary Table 9). These findings suggest that 
persistent mutations are encountered at the full spectrum of tumor 
clonal heterogeneity.

Conceptually, persistent mutations, which by definition reside 
in aneuploid regions of the genome, are integrally linked with tumor 
aneuploidy and, next, we assessed the relationship between persis-
tent mutations and fraction of the genome with allelic imbalance. 
In the ICB cohorts, a moderate degree of correlation was observed 
between tumor aneuploidy and pTMB (Spearman ρ range: 0.39–
0.60; Extended Data Fig. 5). In parallel, we evaluated tumors for 
whole-genome doubling (WGD) events, which would enable the acquisi-
tion of additional mutant copies of the mutations present before the 
doubling event, and may therefore be a critical contributor to pTMB. 
Indeed, in all ICB cohorts analyzed, tumors with WGD also harbored 
a higher number of multi-copy mutations (HNSCC, Mann–Whitney 
P = 1.6 × 10−5; melanoma, P = 3.14 × 10−14; mesothelioma, P = 8.24 × 10−6; 
NSCLC-Anagnostou, P = 6.82 × 10−9; NSCLC-Shim, P = 9.3 × 10−17; Sup-
plementary Fig. 2). Notably, tumors that have undergone WGD are 
by definition expected to have a very small fraction of the genome at 
total copy number of 1, and, consistent with this notion, we observed a 
much lower prevalence of only-copy mutations in genomes with WGD.

We investigated potential bias related to different timing of acqui-
sition of persistent mutations, background mutation rates and accu-
racy of mutation calls in these loci and evaluated the distribution of 
sequence properties such as GC content and replication timing as well 
as mutation call quality in persistent versus loss-prone mutations in 
9,242 tumors from TCGA (Extended Data Fig. 6). We found a similar GC 

would continuously render them visible to the immune system, result-
ing in sustained immunologic tumor control. Deletions of single-copy 
alleles through chromosomal loss are typically not tolerated unless 
they are relatively small homozygous deletions5, as larger chromosomal 
deletions could contain essential genes in linkage with the mutation 
and thus be lethal. Similarly, mutation loss by chromosomal deletions3 
is evolutionarily unlikely when mutations are contained in multiple 
copies. Therefore, these ‘persistent’ mutations (which we hereafter 
refer to as pTMB) may function as an intrinsic driver of tumor rejection 
in the tumor microenvironment (TME) (Extended Data Fig. 1).

Results
To investigate these hypotheses in a pan-cancer manner, we first evalu-
ated the rate of loss in regions of the genome with a single copy per 
cell (haploid) versus euploid regions (two copies per cell) using copy 
number profiles of 5,244 tumors across 31 tumor types from The Can-
cer Genome Atlas (TCGA) (Supplementary Table 1). These analyses 
revealed that the rate of loss in haploid regions was consistently lower 
than that in euploid regions (Fig. 1a), supporting the notion that muta-
tions contained in these regions would be difficult to eliminate. We 
then examined the frequency of haploid and polyploid regions across 
the genome and quantified the fraction of the genome in single-copy 
versus multi-copy states (N = 9,991; Fig. 1b and Supplementary Table 2).  
Some tumor types, including endometrial carcinosarcomas, bladder 
cancers, adrenocortical carcinomas, lung squamous carcinomas, lung 
adenocarcinomas, ovarian cancers and cutaneous melanomas, were 
enriched for genomic regions in the multi-copy state, while cholan-
giocarcinomas, pancreatic adenocarcinomas, mesotheliomas and 
kidney chromophobe tumors showed a higher genome fraction in 
the single-copy state (Fig. 1b). Integration of sequence alterations in 
only-copy and multi-copy states revealed a cancer lineage-dependent 
distribution of persistent mutations (Fig. 1c,d and Supplementary 
Table 2). Next, we characterized the distribution of persistent mutation 
load in the background of the overall TMB within each tumor type, and 
found that TMB does not fully explain the abundance of multi-copy 
and only-copy mutations, as tumor types with similar TMB exhibited 
differences in multi-copy and only-copy mutation content (N = 9,242; 
Fig. 1d and Supplementary Table 2). Notably, a wide range of prevalence 
of mutations in only-copy or multi-copy states was observed across the 
range of overall TMB, suggesting that persistent mutations provide a 
measure of alterations that is distinct from TMB (Extended Data Fig. 2).  
We further evaluated the degree of correlation between TMB and 
pTMB and found a substantial degree of variation in their association 
across the 31 tumor types analyzed (Spearman ρ: median 0.49, range: 
0.02–0.89; Fig. 2a and Supplementary Table 3). Similar patterns were 
observed when multi-copy (Spearman ρ median: 0.42, range: 0.02–
0.76) and single-copy mutations (Spearman ρ median: 0.21, range: 
−0.12 to 0.48) were considered separately. To understand the potential 
reclassification of tumors based on pTMB, we employed a series of 
quantile values ranging from 5% to 95% to define high/low groups for 
TMB and pTMB (Methods). These analyses revealed reclassification 
rates as high as 53% (range: 15–53%), with a median reclassification 
rate of 33% across all tumor types (Fig. 2b and Extended Data Fig. 3).

Next, we explored the relationship between persistent mutation 
content and TMB in seven published ICB cohorts across three tumor 
types (n = 485; melanoma6–9, non-small-cell lung cancer (NSCLC)2,10 and 
mesothelioma11) and a new cohort of patients with HPV-negative head 
and neck cancer (head and neck squamous cell carcinoma (HNSCC)) 
who received ICB (n = 39; Supplementary Tables 4–8). Similar to the 
TCGA analyses, we did not detect a significant enrichment for a higher 
persistent mutation fraction in tumors harboring a higher TMB in 
the HNSCC (Spearman ρ = −0.083, P = 0.61), melanoma (Spearman 
ρ = 0.066, P = 0.35) and mesothelioma cohorts (Spearman ρ = 0.065, 
P = 0.69), while a weak correlation between TMB and persistent muta-
tion fraction was observed in the NSCLC cohorts (NSCLC-Anagnostou: 
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Fig. 1 | Pan-cancer distribution of persistent mutation load. a, The background 
rate of genomic loss was quantified in 31 tumor types from TCGA (N = 5,244). In 
all tumor types, the rate of loss was significantly higher in diploid (allele-specific 
copy numbers 1–1) versus haploid (single-copy; allele-specific copy numbers 
1–0) regions of the genome (two-sided Mann–Whitney U-test, P < 0.05 for all 
tumor types except for UCS for which Mann–Whitney P = 0.067), supporting the 
notion that mutations that reside in haploid regions of the genome would less 
likely be lost. Box plots depict the median value and hinges correspond to the 
first and third quartiles. The whiskers extend from the corresponding hinge to 
the furthest value within 1.5 × interquartile range from the hinge. b, An analysis 
of somatic copy number aberrations in 9,991 tumors across 31 tumor types from 
TCGA identified the fraction of the genome with a single copy present (total copy 
number of 1) and with multiple copies of a parental haplotype. A differential 
enrichment pattern was noted, whereby cancers including UCS, BLCA, ACC, 
LUSC, LUAD, OV and SKCM had a higher fraction of the genome with multiple 

copies compared with CHOL, PAAD, MESO and KICH which showed a higher 
genome fraction in the only-copy state. Violin plots depict the distribution of 
genome fractions in each state, and the horizontal black segments indicate 
median values. Tumor types with predominance of single-copy genome fraction 
are marked in blue font. c, The prevalence of somatic mutations present in 
multiple copies per cell (multi-copy), and those present in haploid regions of 
the genome (only-copy), is depicted for 9,242 tumors, highlighting similar 
differential distributions per cancer type. d, The number of multi-copy and 
only-copy somatic mutations is shown against a background of the median TMB 
of the corresponding tumor type. Notably, the median TMB within a tumor type 
does not fully predict the abundance of multi-copy and only-copy mutations, 
and tumor types with very similar TMB may exhibit differences in multi-copy 
and only-copy mutation load (for instance, UCS versus GBM and SARC). Dip., 
diploid; Hap., haploid; HPV+, human papillomavirus positive; HPV−, human 
papillomavirus negative.
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composition surrounding loci with persistent and loss-prone mutations 
(Cohen’s d = 0.08, persistent mean = 0.54, loss-prone mean = 0.52). We 
then performed a cancer lineage-specific evaluation of replication 
timing in the melanoma and NSCLC subsets and found a similar dis-
tribution in persistent and loss-prone mutations (melanoma Cohen’s 
d = −0.035, NSCLC Cohen’s d = −0.032). Furthermore, we quantified 
the fraction of mutations in each category that could theoretically be 
affected by limitations of next-generation sequencing (NGS) analysis12,13 
and found similar distributions in persistent and loss-prone mutations 
(Extended Data Fig. 6). These findings suggest that persistent mutation 
calling is not confounded by background mutation rates, replication 
timing or technical artifacts.

We then evaluated whether a higher pTMB was linked with 
clinical outcome in patients with previously untreated tumors from 
TCGA (Methods). Our analyses showed that the association between 
pTMB and clinical outcome was context-dependent, whereby a sig-
nificant association with prolonged overall survival was noted for 
lung squamous cell carcinoma (pTMB: 56.27 versus 43.86 months, 
log-rank P = 0.085; clonal pTMB: 60.48 versus 35.32 months, log-rank 
P = 0.028), melanoma (pTMB: 65.83 versus 23.69 months, log-rank 
P = 0.036; clonal pTMB: 65.83 versus 23.69 months, log-rank P = 0.013) 
and uterine carcinosarcoma (pTMB: 27.53 versus 17.15 months, 
log-rank P = 0.021; clonal pTMB: 50.13 versus 14.68 months, log-rank 
P = 2.66 × 10−3), but not for any other cancer type studied (Extended 
Data Fig. 7 and Supplementary Table 10). TMB was more weakly 

associated with overall survival in the lung squamous cell carcinoma 
(log-rank P = 0.50), melanoma (log-rank P = 0.98) and uterine carci-
nosarcoma (log-rank P = 0.17) sets.

Importantly, we hypothesized that tumors with a high persistent 
mutation content would be the most ‘visible’ to the immune system 
and would therefore regress in the context of immunotherapy, a phe-
nomenon that would be reflected in sustained clinical responses to 
therapy. To this end, we evaluated the potential of pTMB, multi-copy 
and only-copy mutations in predicting ICB response in 524 patients 
with melanoma, NSCLC, mesothelioma and HNSCC (Methods and 
Supplementary Table 9). We discovered that tumors with a high pTMB 
attained higher rates of therapeutic response with ICB, while TMB alone 
or the number of loss-prone mutations less optimally distinguished 
responding from nonresponding tumors (Fig. 3 and Supplementary 
Table 11). As a representative example that illustrates the difference 
between pTMB and TMB, patient 44 with metastatic melanoma harbor-
ing a pTMB in the 81% quantile but in the 59% quantile by TMB attained 
a prolonged progression-free survival on ICB (Fig. 3a). High pTMB more 
accurately differentiated responding from nonresponding tumors in 
the melanoma cohort (n = 202, Mann–Whitney U-test P = 2.3 × 10−6, 
P = 6.0 × 10−7, P = 1.92 × 10−3 and P = 2.6 × 10−5 for pTMB, clonal pTMB, 
loss-prone mutation load and TMB, respectively; Fig. 3b). Similarly, in 
the HNSCC ICB cohort, pTMB was associated with therapeutic response 
(n = 39, Mann–Whitney U-test P = 0.05, P = 0.06, P = 0.16 and P = 0.09 
for pTMB, clonal pTMB, loss-prone mutations and TMB, respectively; 
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Fig. 2 | Evaluation of the association between persistent mutation content 
and TMB. a, Analysis of 9,242 tumors across 31 tumor types revealed a large 
variation in the correlations between TMB and pTMB (blue bars), which is not 
entirely explained by TMB alone (median TMB values within each tumor type 
are shown in solid trace). b, The tumor reclassification rate was calculated 
by applying a given quantile of TMB and pTMB and is shown for 31 tumor 
types within the TCGA cohort (semi-transparent traces), with the median 
reclassification rate depicted in a solid line. In tumors such as UVM and UCEC, 
up to 40% of the samples could be differentially classified as pTMB-high versus 
pTMB-low using persistent mutations rather than the overall TMB value.  

c, The fraction of persistent mutations exhibited a variable degree of correlation 
with TMB in five ICB-treated cohorts (n = 524) across four tumor types. In 
HNSCC (n = 39), melanoma (n = 202) and mesothelioma (n = 40), no significant 
correlation was observed (HNSCC: Spearman ρ = -0.083 and P = 0.61; melanoma: 
ρ = 0.066 and P = 0.35; mesothelioma: ρ = 0.065 and P = 0.69; two-sided P values 
were calculated assuming asymptotic t approximation), while a weak/moderate 
correlation was observed in NSCLC (NSCLC-Anagnostou, n = 74, Spearman 
ρ = 0.26, P = 0.028; and NSCLC-Shim, n = 169, Spearman ρ = 0.41, P = 2.3 × 10−8). 
Spearman’s rank correlation coefficients and corresponding P values are shown 
in inserts in panel c.
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Fig. 3c). In the mesothelioma cohort, pTMB outperformed TMB in 
predicting response to durvalumab plus platinum-pemetrexed chemo-
therapy (n = 40, Mann–Whitney U-test P = 0.03, P = 0.05, P = 0.09 and 
P = 0.12 for pTMB, clonal pTMB, loss-prone mutations and TMB, respec-
tively; Fig. 3d). A higher pTMB differentiated responding from nonre-
sponding NSCLC (NSCLC-Anagnostou, n = 74, Mann–Whitney U-test 
P = 1.3 × 10−4, P = 1.0 × 10−4, P = 0.01 and P = 4.3 × 10−4 for pTMB, clonal 
pTMB, loss-prone mutations and TMB, respectively; NSCLC-Shim, 
n = 169, P = 1.9 × 10−3, P = 1.6 × 10−3, P = 0.03 and P = 8.0 × 10−3 for pTMB, 
clonal pTMB, loss-prone mutations and TMB, respectively; Fig. 3e,f).

Next, we evaluated the effect size of persistent mutations, 
loss-prone mutations and TMB on clinical outcome (Supplementary 
Table 11). In the melanoma, HNSCC and mesothelioma cohorts, the 
effect size for pTMB was larger than TMB or loss-prone mutations 
(HNSCC: pTMB Cohen’s d = −0.96, TMB d = −0.64, loss-prone d = −0.61; 
melanoma: pTMB d = −0.57, TMB d = −0.44, loss-prone d = −0.35; meso-
thelioma: pTMB d = −0.74, TMB d = −0.51, loss-prone d = −0.58). In the 
NSCLC cohorts, the effect size for pTMB, while very close to that of TMB, 
exceeded the effect size of loss-prone mutations (NSCLC-Anagnostou: 
pTMB d = −0.89, TMB d = −0.93, loss-prone d = −0.58; NSCLC-Shim: 
pTMB d = −0.53, TMB d = −0.54, loss-prone d = −0.44). These findings 
suggest that the power of TMB to distinguish between responding and 
nonresponding tumors in the context of ICB is largely driven by their 
persistent mutation content. Notably, in the NSCLC cohort, clonal 
pTMB more optimally distinguished responding from nonrespond-
ing tumors (Mann–Whitney U-test P = 1.03 × 10−4 and P = 1.60 × 10−3 for 
NSCLC-Anagnostou and NSCLC-Shim, respectively). In the melanoma 
cohort, the number of multi-copy mutations was tightly correlated with 
therapeutic response (Mann–Whitney U-test P = 5.42 × 10−7), while in 
the mesothelioma cohort, the number of only-copy mutations better 
distinguished responding and nonresponding tumors (Mann–Whit-
ney U-test P = 3.15 × 10−2; Fig. 3g). Importantly, pTMB outperformed 
loss-prone mutation content in all ICB cohorts, despite the latter rep-
resenting a larger fraction of the overall TMB (Mann–Whitney U-test 
P = 1.92 × 10−3 versus 2.25 × 10−6, P = 0.16 versus 0.05, P = 0.09 versus 
0.03, 1.03 × 10−2 versus 1.26 × 10−4, P = 3.20 × 10−2 versus 1.87 × 10−3 
for loss-prone versus pTMB in melanoma, HNSCC, mesothelioma, 
NSCLC-Anagnostou and NSCLC-Shim, respectively; Fig. 3g). We next 
asked the question of whether the tumors differentially classified by 
pTMB compared with TMB have different responses to ICB. To this 
end, we evaluated the number of cases with differential pTMB/TMB 
classification and compared the therapeutic response rates between 
pTMB-low/TMB-high and pTMB-high/TMB-low tumors. In the mela-
noma cohort, 23 tumors fell in the TMB-high/pTMB-low category 
and 23 tumors fell in the TMB-low/pTMB-high category. We found a 
higher frequency of responding tumors in the pTMB-high/TMB-low 

category compared with the pTMB-low/TMB-high group (Fisher’s exact 
P = 0.04, pTMB-high/TMB-low group: 16 responders, 7 nonresponders; 
pTMB-low/TMB-high group: 8 responders, 15 nonresponders). These 
findings tie into the reclassification analyses from the TCGA cohorts, 
and together support a differential classification of tumors based on 
their persistent mutation content, which is reflective of improved 
outcomes in the ICB setting.

To further explore the immediate clinical utility of pTMB, we evalu-
ated the feasibility of estimating pTMB from gene panel-targeted NGS, 
which is widely used in clinical cancer care. Using the genomic intervals 
from a widely adopted targeted NGS gene panel (309 genes; Methods), 
we performed in silico simulations utilizing whole exome sequence 
data from the melanoma and NSCLC ICB cohorts and computed TMB 
and pTMB in each tumor as captured by the region of interest of the 
targeted NGS panel. pTMB more accurately distinguished responding 
from nonresponding tumors (melanoma, n = 202, P = 1.37 × 10−7 for 
pTMB and P = 1.22 × 10−5 for TMB; NSCLC-Shim, n = 169, P = 6.7 × 10−4 
for pTMB and P = 0.014 for TMB; NSCLC-Anagnostou, n = 74, P = 0.02 
for pTMB and P = 2.0 × 10−3 for TMB; Mann–Whitney U-test; Extended 
Data Fig. 8).

As tumor aneuploidy has been associated with inferior outcomes 
to ICB14, we investigated whether pTMB has an incremental value 
over tumor aneuploidy and WGD events in predicting therapeutic 
response. Tumor aneuploidy (Mann–Whitney U-test P = 0.35, P = 0.73, 
P = 0.35, P = 0.07, P = 0.50 for the NSCLC-Anagnostou, NSCLC-Shim, 
melanoma, mesothelioma and HNSCC cohorts, respectively) or WGD 
alone (Fisher’s exact P = 0.43, P = 0.73, P = 0.11, P = 0.23, P = 0.48 for 
the NSCLC-Anagnostou, NSCLC-Shim, melanoma, mesothelioma and 
HNSCC cohorts, respectively) failed to predict ICB response in all 
cohorts (Fig. 3g).

To establish the biological plausibility of persistent mutations in 
the context of tumor evolution, we performed whole exome sequenc-
ing analyses of serial tumor samples before and after ICB. We hypoth-
esized that clonal persistent mutations would not be eliminated 
under the selective pressure of immunotherapy, as they are unlikely 
to undergo subclonal elimination in the context of therapy and also 
are unlikely to be lost by chromosomal deletions (potentially lethal 
in the case of mutations residing in single-copy regions and biologi-
cally implausible in the multiple-copy regions). Consistent with our 
hypothesis, in analyzing pre-treatment and post-acquired resistance 
NSCLCs from eight ICB-treated patients (Methods and Supplementary 
Tables 8, 12 and 13), we discovered a marked difference in the frequency 
of loss between clonal persistent and loss-prone mutations. A total of 
363 out of 2,836 clonal mutations that were detected in the baseline 
tumors were lost in the descendent tumors. Of these, the vast majority 
were clonal loss-prone mutations (358 out of 363, 98.6%). In six out of 

Fig. 3 | pTMB is linked with therapeutic response with ICB. a, A representative 
example of a responding tumor harboring an intermediate TMB (59% quantile) 
but high pTMB (81% quantile). The outer and middle ring depict segmental 
copy number and LOH, respectively. The genomic coordinates of mutations 
and their mutant allele fraction are shown in the inner ring, colored by their 
estimated multiplicity. b, In melanoma (n = 202; NR = 115, R = 87), pTMB 
distinguished responding from nonresponding tumors (MW P = 2.3 × 10−6 for 
pTMB, P = 6.0 × 10−7 for clonal pTMB) more optimally compared with TMB (MW 
P = 2.6 × 10−5). Box plots depict the median value and hinges correspond to the 
first and third quartiles. The whiskers extend from the corresponding hinge to 
the furthest value within 1.5 × interquartile range from the hinge. c, In HPV-
negative HNSCC, we found a greater difference in pTMB of responding versus 
nonresponding tumors compared with TMB (n = 39; NR = 29, R = 10;  
MW P = 0.046 for pTMB, P = 0.064 for clonal pTMB, P = 0.091 for TMB).  
d, For mesotheliomas, pTMB outperformed TMB in prediction of response 
to chemo-immunotherapy (n = 40; NR = 16, R = 24; MW P = 0.032 for pTMB, 
P = 0.045 for clonal pTMB, non-significant for TMB). e,f, In NSCLC, a higher pTMB 
differentiated responding from nonresponding tumors (NSCLC-Anagnostou: 
n = 74; NR = 41, R = 33; MW P = 1.3 × 10−4 for pTMB, P = 1.0 × 10−4 for clonal pTMB, 

P = 4.3 × 10−4 for TMB; NSCLC-Shim: n = 169; NR = 49, R = 120; MW P = 1.9 × 10−3 for 
pTMB, P = 1.6 × 10−3 for clonal pTMB, P = 8.0 × 10−3 for TMB). g, The significance 
of association of eight mutation-based and two copy number-based features 
with therapeutic response was compared with that of TMB (log10 of feature 
to TMB P value ratios visualized). For each cohort, the feature with the most 
significant association with therapeutic response is marked with an ‘x’ mark. For 
all ICB cohorts, pTMB outperformed TMB in predicting ICB response. Notably, 
the best-performing feature in NSCLC was clonal pTMB (MW P = 1.03 × 10−4, 
P = 1.60 × 10−3 for NSCLC-Anagnostou and NSCLC-Shim, respectively), while in 
melanoma the number of multi-copy persistent mutations (MW P = 5.42 × 10−7) 
and in mesothelioma the number of only-copy persistent mutations (MW 
P = 3.15 × 10−2) better distinguished between responding and nonresponding 
tumors. pTMB outperformed loss-prone mutation load in distinguishing 
responding from nonresponding tumors (HNSCC: MW P = 0.16 versus P = 0.05; 
melanoma: P = 1.92 × 103 versus P = 2.25 × 10−6; mesothelioma: P = 0.09 versus 
P = 0.03; NSCLC-Anagnostou: P = 1.03 × 10−2 versus P = 1.26 × 10−4; NSCLC-Shim: 
P = 3.20 × 10−2 versus P = 1.87 × 10−3). Tumor aneuploidy or WGD alone failed to 
predict ICB response. P values are two-sided. CN, copy number; MW, Mann–
Whitney; NR, nonresponding; R, responding.
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eight patients analyzed, no clonal persistent mutation was lost in the 
descendent tumor, and of the two remaining patients, each had two 
clonal multi-copy mutations that were not detected in the descend-
ent tumor, suggesting an extremely low rate of loss (clonal multi-copy 
mutations: 4 out of 1,031 lost (0.4%), clonal only-copy mutations: 1 out 
of 117 lost (0.9%); Fig. 4), and an odds ratio for the loss frequency of 
clonal loss-prone versus persistent mutations of 61.43 (P < 2.2 × 10−16; 
Supplementary Table 14). These analyses supported the robustness 
and biological basis of persistent mutations that are retained in the 
course of tumor evolution.

Shifting our focus from the tumor to the TME, we explored 
transcriptomic profiles in the TME of ICB-treated tumors and pos-
tulated that a high pTMB would generate an un-interrupted feed of 

neoantigens which would in turn trigger interferon-γ signaling and 
adaptive immunity cascades that may be further enhanced with ICB. 
Serial RNA sequencing (RNA-seq) analyses of ICB-treated melano-
mas9 revealed a marked enrichment in interferon-γ and inflammatory 
response-related gene sets before therapy (Fig. 5a–c) which was sig-
nificantly enhanced during ICB for high-pTMB tumors (Extended Data  
Fig. 9 and Supplementary Table 15). Notably, the differential enrich-
ment in pro-inflammatory gene sets was lessened in tumors stratified 
by their TMB content (Fig. 5a, Extended Data Fig. 9 and Supplementary 
Table 15). Similar trends were observed in transcriptomic analyses 
comparing the TME of melanomas in the TCGA set that were strati-
fied by pTMB (Supplementary Fig. 3 and Supplementary Table 16). 
We also found positive correlations between pTMB and CD8 and CD4 
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T cell abundances (Supplementary Fig. 4 and Supplementary Table 17)  
and the ratio of M1 to M2 macrophages in both baseline (Spearman’s 
ρ = 0.36) and on-ICB tumors (Spearman’s ρ = 0.28). Next, we inves-
tigated the relationship of pTMB, tumor aneuploidy and cytolytic 
activity (Methods). We found a higher expression of cytolytic markers 
in pTMB-high compared with TMB-high or aneuploidy-low tumors 
in both the TCGA (TMB, P > 0.05 for all genes; pTMB, P = 0.02 for 
GZMK, IFNG and PRF1; P = 0.04 for NKG7; aneuploidy, P > 0.05 for all 
genes; Supplementary Fig. 5) and ICB melanoma cohorts (GZMB: TMB 
P = 0.02, pTMB P = 6.1 × 10−3, aneuploidy P = 0.80; IFNG: TMB P = 0.01, 
pTMB P = 5.6 × 10−3, aneuploidy P = 0.88; PRF1: TMB P = 0.03, pTMB 
P = 5.1 × 10−3, aneuploidy P = 0.69; Fig. 5). In modeling the expression 
of key cytolytic genes based on pTMB and aneuploidy, we found that a 
high pTMB counteracts the negative (but not statistically significant) 
impact of aneuploidy on cytolytic activity and ICB response (Fig. 5 and 
Supplementary Fig. 6).

Taken together, our analyses suggested that a high pTMB, which 
comprises a biologically relevant measure of tumor foreignness within 
the overall TMB, may represent an ‘uneditable’ target set for adaptive 
immune responses (Extended Data Fig. 1). This hypothesis relies on 
the basis that pMANAs are less likely to be eliminated by chromo-
somal loss due to the intrinsic fitness cost to the tumor and therefore 
may mediate sustained neoantigen-driven immune responses and 
long-term clinical benefit. Similar to pTMB, pMANA load and, impor-
tantly, expressed pMANA load distinguished responding from non-
responding tumors (melanoma, n = 42, pTMB P = 2.51 × 10−4, pMANA 
P = 3.37 × 10−4, expressed pMANA P = 2.91 × 10−4; NSCLC, n = 74, pTMB 
P = 1.26 × 10−4, pMANA P = 1.10 × 10−4, expressed pMANA P = 1.15 × 10−4; 
Mann–Whitney U-test; Supplementary Table 18). We did not observe 
a further improvement of pMANA performance by restricting our 

analyses to the subset of MANAs with computationally inferred high 
MHC class I binding affinity15, which is highlighting the limitations 
with MANA-predicting algorithms in identifying biologically relevant 
neoepitopes. To this end, we sought to generate additional functional 
proof that pMANAs are indeed recognized and elicit epitope-specific 
T cell expansions and pulsed autologous T cells from a patient with 
NSCLC with peptides derived from persistent and loss-prone muta-
tions. All but one of the peptides that elicited T cell receptor (TCR) clo-
notypic expansions were encoded by persistent mutations (Extended 
Data Fig. 10 and Supplementary Tables 19 and 20), suggesting that 
pMANAs are recognized by CD8+ T cells and further supporting the 
biological importance of persistent mutations.

Discussion
Since the first reports recognizing TMB as a predictor of ICB response 
for patients with melanoma and NSCLC16,17, it has become clear that 
TMB as a numeric value or binarized feature can only partially predict 
therapeutic response. Our findings suggest that a high pTMB, a biologi-
cally relevant measure of tumor foreignness within the overall TMB, 
represents an ‘uneditable’ target set for adaptive immune responses 
and may function as an intrinsic driver of sustained immunologic tumor 
control that cannot be readily bypassed by neoantigen loss via chro-
mosomal deletions during cancer evolution.

Similar to TMB, which is linked with response to immunotherapy 
in a dose-dependent and cancer lineage-specific manner18, pTMB has to 
be considered in the context of the background aneuploidy rate within 
a specific tumor type. What we have learned from the increasing num-
ber of studies evaluating the overall TMB in predicting ICB response 
is that using a fixed pan-cancer threshold for a biomarker with differ-
ent distributions and dynamic ranges depending on cancer lineage19 
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Fig. 4 | Persistent mutations are retained during cancer evolution under 
selective pressure of ICB. a, The presence of loss-prone, multi-copy and only-
copy mutations identified in pre-ICB treatment NSCLC tumors was evaluated 
post-ICB therapy in tumors from eight patients with NSCLC and durable clinical 
benefit from ICB. Serial tumor samples were acquired with a minimum time 
difference of 6 months between biopsies and were analyzed by means of whole 
exome sequencing. A marked difference in the frequency of loss between clonal 
loss-prone and persistent mutation sets was observed, with an odds ratio of 61.46 
(P < 2.2 × 10−16). Across 16 serially biopsied tumors from 8 patients, a total of 363 
out of 2,836 clonal mutations that were detected in the baseline tumors were lost 
in the descendent tumors; of these 358 (98.6%) were clonal loss-prone mutations. 

In six patients analyzed, we did not identify any clonal persistent mutation 
that was lost in the descendent tumor. In two patients, we detected four clonal 
multi-copy mutations that were not detected in the descendent tumors, resulting 
in an extremely low rate of loss in this mutation category (clonal multi-copy 
mutations: 4 out of 1,031 lost, 0.4% loss frequency; clonal only-copy mutations: 
1 out of 117 lost, 0.9% loss frequency). b, While the loss frequency was higher 
for subclonal loss-prone compared to persistent mutations, this did not reach 
statistical significance (odds ratio = 1.24, P = 0.44). Notably, the loss frequency 
for subclonal multi-copy mutations was 9.3% compared with 14.8% for subclonal 
loss-prone mutations, potentially indicating differential selection pressures for 
these alterations.
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Fig. 5 | pTMB is associated with an inflamed TME in ICB-treated melanomas. 
a, Gene set enrichment analysis revealed a marked enrichment in interferon-γ 
(IFN-γ) response and adaptive immunity gene sets in ICB-treated melanomas with 
high versus low pTMB, assessed before immunotherapy initiation. In contrast, 
a considerably lower enrichment in inflammatory gene sets was observed in 
the TME of tumors stratified by their overall TMB. Nominal two-sided P values 
are calculated using permutation testing, and FDR-adjusted P values shown for 
gene set differential expression are provided for comparison of pTMB/TMB-high 
versus -low groups. b,c, A prominent upregulation of IFN-γ (b) and inflammatory 
response (c)-related gene expression programs was noted in the TME of pTMB-
high melanomas. Quantile–quantile plots were generated to visually compare 
the ranks of genes in the pathway with ranks that were sampled from a discrete 
uniform distribution. d, pTMB counteracts the negative impact of aneuploidy on 
cytolytic activity and response to ICB (GZMB, IFNG, PRF1: βpTMB = 0.5, P < 3 × 10−3; 
βaneuploidy in [−0.09, −0.03], P > 0.05; ICB response, βpTMB = 1.8, P = 4.0 × 10−3; 
βaneuploidy = −0.56, P = 0.21; β: logistic regression model coefficient, two-sided  

P values are calculated assuming normally distributed test statistic). e, A greater 
difference in cytolytic activity was observed between tumors of high (n = 13) 
versus low (n = 13) pTMB, compared with TMB and aneuploidy, as evaluated by 
expression of GZMB (TMB P = 0.02, pTMB P = 6.1 × 10−3, aneuploidy P = 0.80). 
f, g, Similarly, IFNG (f) and PRF1 (g) expression was significantly higher in 
pTMB-high tumors compared to TMB and was not different in tumors based on 
their aneuploidy content (IFNG: TMB P = 0.01, pTMB P = 5.6 × 10−3, aneuploidy 
P = 0.88; PRF1: TMB P = 0.03, pTMB P = 5.1 × 10−3, aneuploidy P = 0.69; MW U-test; 
two-sided). h, No significant difference in relative abundance of CD8 T cells was 
observed for TMB, pTMB or aneuploidy. Box plots indicate the median value and 
hinges correspond to the first and third quartiles. The whiskers extend from the 
corresponding hinge to the furthest value within 1.5 × interquartile range from 
the hinge. HM, hallmark; KG, KEGG; RT, reactome; Cyt, Cytokine; Rec, receptor; 
EMT, epithelial–mesenchymal transition; Med, mediated; FC, fold-change; NS, 
non-significant; L, low; H, high; rel., relative.
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can be challenging and may misevaluate up to 25% of ICB-responsive 
tumors20. In our current work and to avoid these challenges, we evalu-
ated both persistent mutations and TMB as continuous variables in 
the context of ICB response; thus, our findings are less susceptible to 
artefactual associations resulting from application of a threshold. To 
expand our analyses in supporting a biologically distinct role for pTMB 
which is reflected in therapeutic response difference compared with 
overall TMB-based classifications, we evaluated the number of tumors 
with differential pTMB/TMB classification within the melanoma ICB 
cohort and found a higher response rate among tumors reclassified 
by their pTMB content. Notably, the relative contribution of multi- and 
only-copy mutation components to the overall pTMB varies across 
cancer lineages. This pattern appears to be driven by the dominant 
copy number state of the tumor, suggesting that the dominant copy 
number state has to be considered together with the sequence altera-
tion load affecting these genomic regions.

The premise of pTMB relies on the potential of pMANAs to medi-
ate sustained neoantigen-driven immune responses. Overall MANA 
burden has failed to demonstrate an incremental value over TMB in 
predicting clinical outcomes with ICB, as it is the neoantigen quality 
and not the quantity which may be most informative in predicting 
therapeutic response21–23. Another feature that may determine the role 
of MANAs in anti-tumor immune responses is expression, as expressed 
single-base substitution-derived neopeptides have been shown to more 
accurately predict response to ICB compared with TMB9. In line with 
this notion, the significance of mutant protein abundance in driving 
T cell responses may further support the importance of multi-copy 
persistent mutations, as their presence at higher numbers of copies per 
cell likely correlates with higher expression of mutant messenger RNAs 
and proteins. We indeed found a marginal improvement in outcome 
prognostication of pMANA burden compared with pTMB in ICB-treated 
NSCLC. Importantly, by testing pMANA-specific TCR clonotypic expan-
sions in vitro, we provide proof that pMANAs can elicit memory T cell 
responses that are likely to drive tumor elimination.

Placing pTMB in the context of other genomic features that 
have been associated with response to ICB1, we assessed the clonal 
architecture of persistent mutations and considered the potential 
confounding effect of tumor clonal heterogeneity. Overall, in the 
TCGA and ICB cohorts, the cellular fractions of persistent mutations 
did not differ from loss-prone mutations; notably, persistent muta-
tions in the multi-copy category tended to be more clonal in a cancer 
lineage-dependent manner, suggesting that these may have been 
acquired earlier in tumor evolution before the copy number gain event. 
Persistent mutations more optimally distinguished responding from 
nonresponding tumors compared with clonal TMB in all ICB cohorts 
analyzed. Importantly, clonal persistent mutations were more sig-
nificantly associated with response in the ICB-treated NSCLC cohorts. 
These findings suggest that considering pTMB and clonal heteroge-
neity together may be most informative in predicting response to 
immunotherapy.

While pTMB is related to tumor aneuploidy and a higher degree 
of large-scale chromosomal changes has been reported in ICB nonre-
sponsive tumors14, in our analyses tumor aneuploidy alone failed to dif-
ferentiate responding from nonresponding tumors. While our analyses 
did not show a strong association between tumor aneuploidy or WGD 
and response to ICB as individual predictive biomarkers, the number 
of persistent mutations was correlated with tumor aneuploidy, and we 
found an enrichment for multi-copy persistent mutations in tumors 
with WGD. Our findings highlight the importance of measuring muta-
tional burden in regions of the genome with structural changes rather 
than considering overall TMB or tumor aneuploidy independently.

Importantly, we studied the evolution of persistent mutations in 
the evolutionary trajectories shaped by selective pressure of ICB. We 
hypothesized that multi-copy mutations would inherently be more 
difficult to lose, as the process of loss would require multiple distinct 

genomic events and, similarly, single-copy mutations are unlikely to 
be lost by chromosomal deletions as these may be detrimental to the 
cancer cell, rendering persistent mutation loss biologically improb-
able. Consistent with this notion, we discovered that persistent muta-
tions were retained in the context of tumor evolution while losses 
predominantly affected loss-prone mutations. While approximately 
99% of mutations lost in serial analyses of NSCLC during ICB were 
loss-prone mutations, four clonal multi-copy persistent mutations 
were not detected in comparative analyses of baseline/ICB-resistant 
tumors, which may be explained by the presence of multiple copies of a 
mutation in tandem or in close proximity on a common chromosomal 
segment; in these cases, loss of multiple copies could be achieved by 
a single genomic event.

Taken together, our findings suggest that mutations located in 
single-copy regions or those present in multiple copies in the cancer 
genome are unlikely to be lost under the selective pressure of immu-
notherapy due to the intrinsic fitness cost to the tumor, and therefore 
may serve as a key driver of sustained immunologic tumor control.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-022-02163-w.
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Methods
Cohorts
We evaluated 10,742 tumor samples from TCGA and 485 NSCLC, mela-
noma and mesothelioma tumor samples from published cohorts of 
patients that received ICB2,4,6–8,10,24 (Supplementary Table 8). Tumors 
across 31 tumor types were analyzed from TCGA (ACC: Adrenocorti-
cal carcinoma, BLCA: Bladder Urothelial Carcinoma, BRCA: Breast 
invasive carcinoma, CESC: Cervical squamous cell carcinoma and 
endocervical adenocarcinoma, CHOL: Cholangiocarcinoma, COAD: 
Colon adenocarcinoma, ESCA: Esophageal carcinoma, GBM: Glioblas-
toma multiforme, HNSC: Head and Neck squamous cell carcinoma, 
KICH: Kidney Chromophobe, KIRC: Kidney renal clear cell carcinoma, 
KIRP: Kidney renal papillary cell carcinoma, LGG: Brain Lower Grade 
Glioma, LIHC: Liver hepatocellular carcinoma, LUAD: Lung adenocar-
cinoma, LUSC: Lung squamous cell carcinoma, MESO: Mesothelioma, 
OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic adeno-
carcinoma, PCPG: Pheochromocytoma and Paraganglioma, PRAD: 
Prostate adenocarcinoma, READ: Rectum adenocarcinoma, SARC: 
Sarcoma, SKCM: Skin Cutaneous Melanoma, STAD: Stomach adenocar-
cinoma, TGCT: Testicular Germ Cell Tumors, THCA: Thyroid carcinoma, 
THYM: Thymoma, UCEC: Uterine Corpus Endometrial Carcinoma, 
UCS: Uterine Carcinosarcoma, UVM: Uveal Melanoma). Patients with 
melanoma across four source studies6–8,22 were combined to generate 
an aggregated melanoma cohort (n = 202). Clinical outcomes were 
retrieved from the original publications (Supplementary Table 8). We 
further performed whole exome sequencing analyses for a cohort of 
39 patients with HPV-negative HNSCC who received ICB at the Univer-
sity of Chicago (HNSCC cohort). We assessed serially sampled NSCLC 
tumors from four patients from a published study3 as well as from 
four patients with NSCLC who received ICB at the Nederlands Kanker 
Instituut (NKI set). The studies were conducted in accordance with the 
Declaration of Helsinki and were approved by the Nederlands Kanker 
Instituut Institutional Review Board (IRB) and the University of Chicago 
Comprehensive Cancer Center IRB (8980). All patients provided writ-
ten, informed consent for sample acquisition for research purposes; 
their participation in the protocol was not compensated. Clinical and 
pathologic characteristics for all patients, as well as self-reported sex 
and self-reported race, are summarized in Supplementary Table 4.

Whole exome sequencing and sequence data processing
DNA extraction and genomic library preparation were performed 
following manufacturers’ protocols2. The coding sequences were 
captured in solution using the SureSelect XT Human All Exon V6 kit 
in the HNSCC cohort, and using the SureSelect Human All Exon V4 
kit in the NKI cohort. Whole exome sequencing-derived multi-center 
mutation calls from the TCGA pan-cancer atlas25 were retrieved from 
the NCI Genomic Data Commons (https://gdc.cancer.gov/about-data/
publications/mc3-2017) and filtered to keep nonsynonymous altera-
tions. For the ovarian cancer (OV) tumor type, indels were excluded 
from all downstream analyses to minimize technical artifacts26. Somatic 
copy number profiles including estimates of tumor purity and ploidy, 
as well as allele-specific copy number states27, were acquired via the 
pan-cancer atlas (https://gdc.cancer.gov/about-data/publications/
pancanatlas). Clinical annotations of tumors were accessed using the 
TCGA clinical data resource28. For the HNSCC subset in TCGA, HPV sta-
tus was retrieved from cBioPortal (https://www.cbioportal.org/study/
summary?id=hnsc_tcga_pan_can_atlas_2018). Analyses of copy number 
profiles to establish the background rate of genomic loss were per-
formed on 10,742 tumor samples where the segmental allele-specific 
copy numbers were available. For a subset of 9,242 tumor samples from 
the above, both somatic mutation calls and copy number profiles were 
available, enabling assessment of persistent mutations. For a subset of 
8,925 tumors where clinical data annotations including overall survival 
and tumor stage assessment were available, survival analyses evaluat-
ing the contribution of persistent mutations were performed.

For the publicly available published ICB cohorts, we retrieved 
allele-specific copy number profile, tumor purity and ploidy esti-
mates, as well as somatic mutation calls, raw gene expression counts 
and clinical annotations of response to treatment from the original 
publications. Furthermore, for the Riaz et al. melanoma cohort6, 
allele-specific somatic copy number profile and tumor purity and 
ploidy estimates were generated by application of FACETS (v.0.6.0) 
to tumor and matched normal sequence data29. For the Liu et al. mela-
noma cohort7, the short-read archive files were accessioned from 
the Sequence Read Archive (SRA) and this sample set was filtered to 
keep only tumors with no previous anti-CTLA4 treatment. Adapter 
sequences were detected and trimmed using FASTP (v.0.20.0)30. 
Sequenced reads were aligned to the reference genome assembly hg19 
using bowtie2 (v.2.3.5)31, and duplicate reads marked by sambamba 
(v.0.8)32. Tumor purity and ploidy estimates, as well as somatic copy 
number profiles, were derived by application of FACETS29 to tumor and 
matched normal pairs. For the Hugo et al. melanoma cohort8, fastq files 
were obtained from the SRA. Sequencing read processing and align-
ment were performed as described for the Liu et al. cohort, and copy 
number profiles were similarly obtained by application of FACETS. 
For the Shim et al. NSCLC cohort10, somatic mutations were narrowed 
down to those with mutant allele fraction greater than or equal to 10% 
to minimize sequencing artifacts. Tumor purity and ploidy estimates, 
and somatic copy number profiles, were generated by application of 
FACETS29 to tumor and matched normal pairs. For the HNSCC cohort, 
somatic mutations were identified using the Strelka mutation calling 
pipeline (v.2.9.10)33. Mutations in common single nucleotide polymor-
phism (SNP) locations (dbSNP v.138) and with greater than one BLAT34 
hit were filtered out. The final set of mutations were obtained after 
filtering for tumor mutant allele fraction ≥ 10%, normal mutant allele 
fraction ≤ 3% and matched normal coverage ≥ 11×. For samples from 
the NKI set, sequence read processing and alignment were performed 
similarly to the samples from the Liu cohort. Tumor purity and ploidy 
estimates and somatic copy number profiles were derived by appli-
cation of FACETS. While we did not have uniform documentation of 
microsatellite instability (MSI) status in the ICB cohorts analyzed, the 
very low background prevalence of MSI-high tumors in NSCLC (<1%), 
melanoma (<1%), mesothelioma (~2%) and HNSCC (<1%)35 renders MSI 
an unlikely confounder in this study.

Evaluation of mutation multiplicity and cancer cell fraction
Mutation cellular fractions were estimated as follows3,36: considering 
the tumor sample purity α, tumor copy number nT and normal copy 
number nN, the expected variant allele fraction Vexp for a mutation at 
cellular fraction C with multiplicity m (that is, m mutant copies per 
cancer cell) can be calculated as:

Vexp =
m C α

α nT + (1 − α)nN

The purity and segmental tumor and normal copy numbers were 
determined via genome-wide analysis of sequencing coverage distri-
bution and b-allele frequency of heterozygous SNPs in each cohort. 
Assuming a binomial distribution for the number of reads harboring 
the mutant allele, a 95% confidence interval (CI) is constructed for 
Vexp using the distinct total coverage and mutant read counts for each 
mutation (that is, coverage and read counts after exclusion of reads 
marked as duplicates). Since estimates for α, nT and nN are available, 
this yields a 95% CI for the product of mutation at cellular fraction C 
and multiplicity m. By application of the following rules, one can derive 
estimates for C and m: (1) If the CI for mC contains an integer, the muta-
tion is deemed clonal and that value is assigned to the multiplicity. (2) If 
the entire CI is below 1, multiplicity is assumed to be 1 and the mutation 
is subclonal, except cases where it is within a tolerance threshold of 1 
(C > 0.75). (3) For a CI that is entirely above 1 and does not include any 

http://www.nature.com/naturemedicine
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://www.cbioportal.org/study/summary?id=hnsc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=hnsc_tcga_pan_can_atlas_2018


Nature Medicine

Article https://doi.org/10.1038/s41591-022-02163-w

integer, m is greater than 1 and is assigned such that the CI falls within 
the expected range [0,1]. Mutation clonality can now be calculated 
using the rule in (2).

Assessment of single-copy, multi-copy and persistent TMB
The nonsynonymous somatic mutations in each tumor were inter-
sected with the segmental integer copy number profile to assign minor 
and major copy number states to the mutated loci. Mutation multi-
plicity (number of mutated copies per cell) and cancer cell fraction 
(proportion of cancer cells harboring the mutation) were estimated 
based on the mutant read count, total coverage, tumor purity, and the 
major and minor allele-specific copy numbers in the tumor and normal 
compartments for each mutation. Mutations present in more than one 
copy per cancer cell constituted the multi-copy category. Those present 
in regions of the genome with a single copy (total copy number = 1) 
were included in the single-copy category. The pTMB was defined as 
the number of mutations in either the multi-copy or single-copy cat-
egory. For mesotheliomas, given the predominance of copy number 
losses4,37, the persistent mutation burden was limited to mutations 
within single-copy regions of the genome. Furthermore, to assess the 
differential potential of persistent mutation in predicting outcome 
compared with TMB, we defined the number of loss-prone mutations 
in each tumor sample as the difference between the total number of 
mutations assessed (excluding mutations on sex chromosomes or 
those at loci without copy number assignment) and the number of 
persistent mutations. Finally, to achieve harmonized comparisons, 
mutations on sex chromosomes or on loci lacking allele-specific copy 
number assignment were excluded from analyses.

Characterization of tumor aneuploidy
Aneuploidy metrics were calculated for tumor samples from TCGA and 
ICB cohorts, and their relationship with persistent mutation burden 
was characterized. Furthermore, in ICB-treated cohorts, aneuploidy 
metrics were also considered as independent predictors of outcome. 
The fraction of genome with allelic imbalance was calculated as a broad 
metric summarizing the aneuploidy level across the autosomes. We 
also considered the fraction of genome with single copies (total copy 
number of 1) and the fraction of genome with multiple copies (that is, 
major allele-specific copy number greater than 1), given their direct 
link to persistent mutation burden. Tumor samples with more that 
50% of the autosomal length at major allele-specific copy number of 2 
or above were marked as having undergone WGD38.

Evaluation of the background rate of genomic loss
To evaluate the background rate of genomic loss, we analyzed the 
somatic copy number profiles of 10,742 samples from TCGA. In each 
tumor sample, the chromosome arms in diploid state were defined as 
those where 75% of the length of segments covering the arm was copy 
neutral (total copy number of 2) and did not harbor LOH. The chromo-
some arms in haploid state had 75% of their length covered by segments 
with a total copy number of 1. The rate of loss in diploid regions of the 
genome was defined as RD:

RD =
2 × lHDD + lHMD

2 × lD

Where lD indicates the total length of segments in arms of diploid state, 
lHDD  is the total length of the segments with homozygous deletion in 
diploid arms and lHMD  is the total length of the segments with single-copy 
loss in diploid arms. Similarly, the rate of loss in haploid regions of the 
genome was defined as RH:

RH =
lHDH
lH

Where lH is the total length of segments in haploid arms 

and lHDH  is the total length of segments with homozygous deletion in 

those arms. Comparison of the background rates of genomic loss was 

performed on subsets of the TCGA tumor samples where at least one 
chromosome arm was found in each of diploid and haploid states 
(n = 5,244).

Evaluation of pTMB quantification by gene panel-targeted NGS
To determine the feasibility of using clinical targeted NGS to estimate 
pTMB, we performed in silico simulations as follows. Given the inher-
ent limitation of targeted NGS in identification of mutations in tumor 
types with low TMB, we performed a focused analysis in melanoma and 
NSCLC cohorts. We assumed that allele-specific copy number estimates 
could be derived by targeted NGS as previously shown29,39. Therefore, 
we focused our analysis on the subset of mutations that would be 
captured by the genomic intervals contained in FoundationOne CDx, 
which is a widely used clinical targeted NGS panel. The list of 309 genes 
with their full coding sequence included in the FoundationOne CDx 
panel was retrieved from the Food and Drug Administration website at 
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S006C.pdf. 
The RefSeq Select transcript set was used to determine the genomic 
coordinates of the coding exons for each gene. Mutations in each 
tumor sample were intersected with panel coordinates to determine 
simulated estimates of TMB and pTMB as captured by the panel.

Differential expression and gene set enrichment analysis
Expression counts from RNA-seq of pre-treatment melanoma tumors 
from the CM038 melanoma cohort were retrieved from the original 
publication24. Differential expression testing was performed using 
DESeq2 (ref. 40) and the resulting P values were corrected for multiple 
testing using the Benjamini–Hochberg procedure. For the TCGA tumor 
type SKCM, the TCGAbiolinks (v.2.25.0) R package41 was used to down-
load harmonized raw RNA-seq counts data from the NCI Genomic Data 
Commons within the target cancer type. This sample set was then nar-
rowed down to the set of samples with persistent mutation estimates 
and available overall survival data, and comparisons were performed 
between samples within the top tertile of pTMB/TMB-informed risk 
(high risk) versus the remaining set (low risk). For gene set enrichment 
analysis, each gene that passed the count threshold was ranked by 
‘-log(p) * sign(fc)’, where p is P value and fc is fold-change, resulting in 
ranking where the genes on each flank represent the mostly statistically 
significantly up- or down-regulated genes and the genes in the middle 
are the least significant. Gene set enrichment analysis (gsea) was then 
performed using the fgsea (v.1.20.0) R package42 with a curated list of 
gene sets from the Molecular Signatures Database related to immune 
responses and cancer hallmarks. Tumors were classified into high or 
low groups for TMB and pTMB using the second tertile value. The com-
plete list of gene sets can be found in Supplementary Table 15, which 
contains the gsea results for comparisons based on pTMB and TMB 
in baseline and on-treatment samples. The P values for gsea were cor-
rected for multiple testing with the Benjamini–Hochberg procedure. 
Quantile–quantile plots were made to provide a visual comparison 
of the ranks of pathway genes with a set of ranks sampled from the 
background distribution.

Modeling of cytolytic activity
Gene level expression values (in counts per million) were used from 
the CM038 IO melanoma cohort24 and the TCGA melanoma cohort. 
In each cohort, expression levels for a selected set of gene markers 
of cytolytic activity were compared between tumors in the top and 
bottom tertiles of a number of key variables of interest using Mann–
Whitney U-test. Furthermore, a multivariable linear regression model 
defined the combined contribution of a mutation-based marker (that 
is, pTMB, TMB and so on) and aneuploidy (as measured by the frac-
tion of genome with allelic imbalance) to cytolytic activity. Briefly, 
both mutation-based marker values and gene expression levels were 
pseudo log-transformed to control the right skew in the distribution. 
Next, each variable was scaled to have zero mean and unit variance over 
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the analyzed cohort. In each regression model, predictor coefficients 
and the associated P values were recorded. In the IO melanoma cohort, 
multivariable logistic regression was used to model the contribution 
of mutation-based markers and aneuploidy. In addition, estimates for 
the relative abundances of 22 immune cell subpopulations derived by 
CIBERSORT v.1.06 were retrieved from the earlier publication. For the 
TCGA melanoma tumors, the relative abundances of CD8 T cells were 
retrieved from the genomic data commons43.

Longitudinal tracking of persistent mutations
For the eight patients with NSCLC with serially biopsied tumor samples, 
tumor samples were acquired before ICB and at the time of acquired 
resistance; for all cases, a minimum of 6 months lapsed between ICB 
initiation and re-biopsy in the setting of acquired resistance. For each 
patient, the set of mutations identified in the baseline sample was 
annotated with distinct total coverage, distinct mutant read count, 
and minor and major allele-specific copy numbers. These annota-
tions were combined with the estimated purity of the tumor sample to 
yield estimates of mutation cancer cell fraction and multiplicity. The 
combination of copy number assignment and multiplicity estimate 
for each mutation in the baseline sample enabled identification of 
only-copy, multi-copy and persistent mutations, as well as those prone 
to loss (loss-prone). Mutations identified in the baseline sample with 
mutant allele fraction of zero at the time of progression were deemed 
lost (Supplementary Tables 12 and 13).

Analysis of mutation-associated neoantigens
An integrated analysis of persistent mutation-associated neoantigens 
was performed in the ICB NSCLC2 and melanoma24 cohorts. Briefly, 
MANA predictions by ImmunoSelect-R pipeline (Personal Genome Diag-
nostics) were retrieved from the original studies. The set of predicted 
peptides was restricted to those with predicted MHC class I binding affin-
ity (half-maximum inhibitory concentration (IC50)) less than 500 nM, 
and mutations with at least one associated peptide were marked as 
MANA-encoding. Mutations in genes with nonzero median expression 
in the respective TCGA tumor type were marked as expressed.

Assessment of replication timing for persistent mutations
We compared persistent and loss-prone mutations with regard to the 
replication timing of the mutated loci in melanoma (TCGA-SKCM) and 
NSCLC (TCGA-LUAD, TCGA-LUSC) tumors from TCGA. We retrieved 
replication timing scores for NHEK (skin) and IMR90 (lung) cell lines, 
which were measured by Repli-Seq methodology as part of the ENCODE 
project, using the UCSC Table Browser. In each cell line, we used scores 
from the ‘wavlet-smoothed signal’ track, which is the result of application 
of a wavelet smoothing transformation to the weighted average of the 
percentage-normalized signals in 1-kilobase intervals across the genome, 
where higher values indicate earlier replication timing. Genomic inter-
vals were marked based on their quintile membership, and the frequen-
cies of persistent and loss-prone mutations across the quintiles were 
visualized. Replication timings of persistent and loss-prone mutations 
were compared by evaluating Cohen’s d effect size.

Analysis of NGS technical limitations
To assess the possibility of technical artifacts preferentially impact-
ing the somatic mutation calls in our pan-cancer analysis of 31 tumor 
types, we determined the prevalence of persistent and loss-prone 
mutations identified in regions of the genome susceptible to limita-
tions of NGS analysis. The UCSC Table Browser was used to retrieve the 
‘Problematic Regions’ track, including regions marked by ENCODE12, 
Genome-In-A-Bottle13 and NCBI GeT-RM44.

Functional T cell assays
The MANAFEST (Mutation-Associated NeoAntigen Functional 
Expansion of Specific T Cells) assay3 was employed to determine 

MANA-specific T cell clonotypic expansions in the peripheral blood 
of a patient with NSCLC who attained long progression-free and over-
all survival with ICB (CGLU310). Briefly, candidate neopeptides ( JPT 
Peptide Technologies; Supplementary Table 19) were synthesized and 
each used to stimulate and co-culture T cells in vitro. On day 10, cells 
were collected and the CD8+ fraction was isolated using a CD8+ negative 
enrichment kit (EasySep, STEMCELL Technologies), followed by DNA 
extraction from each CD8-enriched culture condition. TCR Vβ CDR3 
sequencing was performed by the Sidney Kimmel Comprehensive 
Cancer Center (SKCCC) FEST and TCR Immunogenomics Core (FTIC) 
on genomic DNA from each T cell condition using the Oncomine TCR 
Beta short-read assay (Illumina)11. Following data pre-processing, 
alignment and trimming, productive frequencies of TCR clonotypes 
were calculated. To be considered antigen-specific, a T cell clonotype 
must have met the following criteria: (1) significant expansion (Fisher’s 
exact test with Benjamini–Hochberg correction for false discovery rate 
(FDR), P < 0.05) compared with T cells cultured without peptide; (2) 
significant expansion compared with every other peptide-stimulated 
culture (FDR < 0.05); (3) an odds ratio greater than 5 compared with all 
other conditions; (4) at least 30 reads in the ‘positive’ well; and (5) at 
least 2× higher frequency than background clonotypic expansions as 
detected in the HIV-negative control condition.

Evaluation of differentially classified tumors by TMB and pTMB
Reclassification rates based on pTMB versus TMB were computed as 
follows: in each tumor type and for each variable (TMB and pTMB), 
a series of quantile values ranging from 5% to 95% in 5% increments 
were applied to define samples with high and low values for that vari-
able. Next, at each quantile value, we calculated the rate at which sam-
ple classification differed by the two metrics (that is, the combined 
prevalence of samples that were pTMB-low, TMB-high and samples 
that were pTMB-high, TMB-low within that tumor type for that quan-
tile threshold) to derive the reclassification rate. In the ICB cohorts, 
we determined the cases with differential pTMB/TMB classification 
and compared the therapeutic response rates between pTMB-low/
TMB-high and pTMB-high/TMB-low tumors. For each predictor 
variable (pTMB or pTMB), the second tertile was used to determine 
tumor samples with high and low values. Given the current cohort 
sizes, sufficient sample size for this comparison was only available in 
the combined melanoma cohort where 23 samples where labeled as 
TMB-high/pTMB-low and another 23 samples were marked as TMB-low/
pTMB-high.

Survival analysis of TCGA tumors
The relationship of pTMB and TMB with overall survival was assessed in 
8,925 patients from 31 cohorts in TCGA. Tumor types with more than 50 
informative samples were analyzed and overall survival was selected as 
an endpoint. Briefly, for each tumor type and stage combination, Cox 
proportional-hazards (CoxPH) models were constructed for each one 
of the following features as independent continuous predictors: TMB, 
pTMB, clonal pTMB, multi-copy mutations, clonal multi-copy muta-
tions, only-copy mutations, clonal only-copy mutations (continuous 
CoxPH model). In cases where an increase in the predictor variable 
was associated with better outcome (longer survival), a second CoxPH 
model was used to assess the difference in overall survival between 
tumors in the top one-third and bottom two-thirds of predicted risk 
(categorical CoxPH model).

Statistical analyses
For the TCGA cohort, in each tumor type, a CoxPH model was used to 
evaluate the contributions of TMB and pTMB to overall survival. The 
predicted risk values from these models were then used to stratify the 
tumors into low- and high-risk groups using the second tertile of the 
predicted risk as the threshold. For the immunotherapy cohorts, clini-
cal response assessments were retrieved from the original publications. 
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The Mann–Whitney U-test was used to evaluate the differences of 
continuous variables between groups, including the differences of 
predictive variables between responding and nonresponding tumors, 
and the differences of background rate of loss between haploid and dip-
loid regions of the genome. Cohen’s d statistic was used to quantify the 
effect size of each predictor variable in the ICB cohorts. Fisher’s exact 
test was used to assess the association of dichotomous variables (such 
as WGD) with therapeutic response. The associations of the fraction 
of mutations in single- and multi-copy regions with TMB ranks were 
evaluated by the Pearson correlation coefficient, while nonparametric 
correlations were evaluated by the Spearman correlation coefficient. 
The Kaplan–Meier method was used to estimate the survival func-
tion and the survival curves were compared using the nonparametric 
log-rank test. All P values were based on two-sided testing and differ-
ences were considered significant at P < 0.05. The P values reported 
were not adjusted for multiple hypothesis testing unless explicitly 
stated. Statistical analyses were done using R v.3.6 and higher (http://
www.R-project.org/).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data for the TCGA tumor samples were retrieved from http://
cancergenome.nih.gov. WES-derived somatic mutation calls from 
the TCGA PanCancer Atlas MC3 project were retrieved from the NCI 
Genomic Data Commons (https://gdc.cancer.gov/about-data/publica-
tions/mc3-2017). Somatic copy number profiles (https://gdc.cancer.
gov/about-data/publications/pancanatlas) and clinical data (https://
gdc.cancer.gov/about-data/publications/PanCan-Clinical-2018) 
were accessed from Genomic Data Commons. Previously published 
genomic data, re-analyzed here, were obtained from the material 
of the original publications and from dbGaP under accession code 
phs000452.v3.p1 (ref. 7), and from the Sequence Read Archive (SRA) 
under accession codes SRP095809 (ref. 6), SRP067938 (ref. 8) and 
SRP090294 (ref. 8). WES sequence data for the HNSCC and NKI cohorts 
from patients who consented to data deposition can be retrieved from 
the European Genome-phenome Archive (EGA accession number 
EGAS00001006660) in controlled access mode, subject to approval by 
the Data Access Committee, for use in not-for-profit organizations, with 
approval of local IRB/ERB, for approved projects, by approved users, 
and not-for-profit use. The de-identified clinical and genomic data 
used for the analyses in this study are available in the supplementary 
tables and all publicly available data elements have been referenced. 
Source data are provided with this paper.

Code availability
The study did not involve development of new software packages.
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Extended Data Fig. 1 | The persistent mutation hypothesis. We hypothesized 
that tumors with a higher frequency of sequence alterations in either haploid 
regions or in multiple copies would be intrinsically incapable of escaping 
immune recognition in the setting of immunotherapy, as these alterations 

would continuously render them visible to the immune system, resulting in 
sustained tumor rejection. These two distinct genomic mechanisms produce a 
common feature that we term “persistent mutations”, a key driver of continued 
immunologic tumor control.
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Extended Data Fig. 2 | Interaction of TMB and fraction of mutations in single- 
and multi-copy regions across 31 cancer types. A combined analysis of TMB 
ranks in relation to the fraction of mutations in multi-copy (a) and only-copy 
(b) regions of the genome revealed a complex landscape, where a wide range 
of multi-copy or single-copy mutation fraction was observed at any given TMB 
value in 9,256 tumors across 31 cancer types from TCGA. These findings highlight 
tumors with a low or intermediate TMB that at the same time harbor a large 
fraction of mutations in multi-copy or single-copy states, therefore suggesting 
the independent nature of these features. A weak correlation was noted between 

TMB rank and fraction of mutations in multi-copy regions of the genome for 
BLCA (Pearson’s R = 0.26), KICH (Pearson’s R = 0.45), LUAD (Pearson’s R = 0.34), 
LUSC (Pearson’s R = 0.21), SARC (Pearson’s R = 0.24) while these features 
were weakly anti-correlated in COAD and UCEC (Pearson’s R = -0.23 and -0.35 
respectively). TMB was weakly anti-correlated with the fraction of mutations in 
haploid regions for COAD, STAD and UCEC (Pearson’s R = -0.22, −0.25 and −0.25 
respectively). The heatmaps indicate the distribution of tumors within a tumor 
type, and each black dot represents an analyzed tumor sample.
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Extended Data Fig. 3 | Tumor re-classification by pTMB vs TMB. A series of 
quantile values going from 5% to 95% in 5% increments were used to extract 
samples with high and low values for each predictor variable in each tumor type. 
For each quantile value, the re-classification rate per samples within a cancer 
type group. By definition, sample re-classification rate starts close to 0 at the 

lower end of quantile thresholds (where almost all samples are labeled as high 
regardless of the metric used), and returns to 0 at the higher end of quantile 
thresholds (where the great majority of samples are labeled as low irrespective of 
the metric used). In the intermediate range, re-classification rates as high as 50% 
were observed.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Clonal architecture of persistent mutations. (a) We 
computed the fraction of clonal mutations within loss-prone, multi-copy, 
only-copy, and persistent mutations sets. In the HNSCC (n = 39) and melanoma 
cohorts (n = 208), multi-copy mutations were more clonal compared to 
loss-prone mutations (HNSCC; p = 0.01, melanoma; p = 3.8e-14), but no such 
difference was present in the mesothelioma (n = 40, p = 0.66) and NSCLC cohorts 
(NSCLC-Anagnostou; n = 75 and p = 0.59, NSCLC-Shim; n = 169 and p = 0.40). 
Only-copy mutations had similar clonal fractions as loss-prone mutations 
(p > 0.11) in all five cohorts. When multi-copy and only-copy mutations were 
considered together, we did not identify a significant difference in clonal 
fractions between persistent and loss-prone mutations in the HNSCC (p = 0.59), 
mesothelioma (p = 0.65), and NSCLC cohorts (NSCLC-Anagnostou; p = 0.51, 

NSCLC-Shim; p = 0.20). Persistent mutations tended to be more clonal in the 
melanoma cohort (p = 8.80e-03). Box plots depict the median value and hinges 
correspond to the first and third quartiles. The whiskers extend from the 
corresponding hinge to the furthest value within 1.5 * the interquartile range 
from the hinge. Two-sided Mann-Whitney U-test was used to compare values 
in across mutation classes. (b) A weak to moderate degree of correlation was 
observed between the fraction of clonal mutations and the number of persistent 
mutations (Spearman ρ range: -0.11 - 0.59) or multi-copy mutations (Spearman ρ 
range: 0.01 - 0.60) across the 31 TCGA tumor types analyzed. Notably, the number 
of only-copy mutations was anti-correlated with the fraction of clonal mutations 
in the TCGA dataset (Spearman ρ range: -0.57, 0.07). Spearman’s rank correlation 
coefficients are depicted in the heatmap.
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Extended Data Fig. 5 | Correlations between persistent mutations and tumor 
aneuploidy. (a) A moderate degree of correlation was observed between pTMB 
and the fraction of genome with allelic imbalance in the five ICB cohorts analyzed 
(HNSCC Spearman ρ = 0.41, p = 9e-3; Melanoma ρ = 0.39, p = 1e-8; Mesothelioma 
ρ = 0.56, p = 1.8e-4; NSCLC-Anagnostou ρ = 0.56, p = 2.7e-7; NSCLC-Shim ρ = 0.60, 
p = 2.2e-16) indicating that tumors with higher levels of aneuploidy tend to have 
higher pTMB. (b) Similar levels of correlation were observed between pTMB and 
the fraction of genome with multiple (>2) copies (HNSCC Spearman ρ = 0.36, 

p = 0.03; Melanoma ρ = 0.37, p = 8e-8; Mesothelioma ρ = 0.63, p = 1.6e-5; NSCLC-
Anagnostou ρ = 0.54, p = 5.3e-7; NSCLC-Shim ρ = 0.51, p = 9.2e-13). (c) pTMB was 
weakly anti-correlated with the fraction of genome at single copy number (total 
CN = 1) in the melanoma (ρ = -0.14, p = 0.04), mesothelioma (ρ = -0.41, p = 8e-3), 
and NSCLC ICB cohorts (NSCLC-Anagnostou ρ = -0.26, p = 0.02; NSCLC-Shim ρ = 
-0.18, p = 0.02). Spearman’s rank correlation coefficients are shown, each tumor 
sample represents a point and points are color coded based on tumor response 
on ICB. Two-sided p-values are calculated using asymptotic t approximation.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Assessment of genomic characteristics of loci 
harboring persistent vs loss-prone mutations in TCGA tumors. (a) Genomic 
regions that are susceptible to limitations of NGS analysis, such as uncertain 
alignments or variant calls, were infrequent in the somatic mutation call set 
analyzed (MC3), and had similar representation in the persistent and loss-prone 
mutation categories (n = 9,242). (b) Similarly, the difference in GC composition of 
the immediate bases (9-mers) surrounding persistent and loss-prone mutations 
was negligible (n = 9,242; Cohen’s d = 0.08, persistent mean = 0.54, loss-prone 

mean = 0.52). Persistent and loss-prone mutations were found to have similar 
replication timing in (c) melanoma (TCGA-SKCM, n = 109, Cohen’s d = -0.035) 
and (d) NSCLC (combined set of TCGA-LUAD and TCGA-LUSC, n = 982, Cohen’s 
d = -0.032). Stacked bar plots depict the frequency of mutations in the five 
quantiles of replication timing. H, MH, M, ML, and L indicate mutations in 
the highest to lowest quintiles of replication timing in order; as an example 
mutations in earliest replicating regions are marked as H.
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Extended Data Fig. 7 | Context dependence of the association between pTMB 
and overall survival. (a) The association between persistent mutations and 
TMB with overall survival was assessed for 8,925 individuals across 31 cohorts in 
TCGA. For each tumor type and stage combination, a Cox proportional-hazards 
(CoxPH) model predicting the overall survival is built for each of seven features 
(TMB, persistent mutations-pTMB, clonal pTMB, multi-copy mutations, clonal 
multi-copy mutations, only-copy mutations, clonal only-copy mutations; 
Continuous CoxPH model). In 21 tumor types shown, an increase in at least one of 
the seven features listed was associated with longer overall survival and a second 
CoxPH model was used to assess the difference in overall survival between 
tumors in the top third and bottom two thirds of predicted risk (Categorical 
CoxPH model). Heatmap cells depict the Z-score of the model coefficient from 
categorical CoxPH model. Grey indicates cases where an increase in feature 
value is associated with shorter survival. A significant association of pTMB 

with prolonged overall survival was noted for lung squamous cell carcinoma, 
melanoma and UCS. (b) Patients with early stage (I, II, and III) squamous lung 
cancer (n = 464) harboring a high pTMB (low risk) had a significantly longer 
overall survival compared to patients in the low pTMB (high risk) group 
especially when clonal pTMB was considered (pTMB: 56.27 vs 43.86 months, log-
rank p = 0.085; clonal pTMB: 60.48 vs 35.32 months, log-rank p = 0.028), while no 
difference was found between high vs. low TMB risk groups (TMB: 55.16 vs 54.37 
months, log-rank p = 0.50). (c) Similarly, for patients with early stage melanoma 
(n = 99), tumors with higher pTMB (low risk) had a significantly longer overall 
survival compared to those with low pTMB especially when clonal pTMB was 
considered (pTMB: 65.83 vs 23.69 months, log-rank p = 0.036; clonal pTMB: 65.83 
vs 23.69 months, log-rank p = 0.013); while no such difference was observed for 
TMB-high vs low tumors (35.15 vs 26.97 months, log-rank p = 0.98).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Evaluation of the association between pTMB computed 
by gene panel NGS and response to immune checkpoint blockade. TMB and 
pTMB estimates were derived by restricting analysis to the targeted intervals of 
a commonly used commercial 309 gene panel (FoundationOne-CDx) through 
an in silico simulation and compared between response groups. pTMB better 
distinguished between responding and non-responding tumors in melanoma 
(a; pTMB MW p = 1.3e-07 vs TMB MW p = 1.2e-05, NR n = 115, R n = 87; two-sided 
test) and the NSCLC-Shim cohort (c; pTMB MW p = 6.7e-04 vs TMB MW p = 0.014, 

NR n = 120, R n = 49; two-sided test). Comparison of TMB and pTMB between 
response groups using original estimates from whole exome sequence (WES) 
are included in each row for reference. pTMB and TMB had similar performance 
in the NSCLC-Anagnostou cohort (b), which was likely driven by the smaller 
size of this cohort (NR n = 41, R n = 33). Box plots depict the median value and 
hinges correspond to the first and third quartiles. The whiskers extend from the 
corresponding hinge to the furthest value within 1.5 * the interquartile range 
from the hinge.
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Extended Data Fig. 9 | Transcriptomic profiling of on-immunotherapy 
melanomas reveals an upregulation of inflammatory pathways in tumors 
harboring a high pTMB. Gene set enrichment analyses of on-treatment pTMB-
high (n = 9) vs. pTMB-low (n = 22) melanomas revealed a marked enrichment 
of interferon-γ and inflammatory responses in the tumor microenvironment 
of pTMB-high vs pTMB-low tumors after ICB. In contrast, this profile was not 
observed in the tumor microenvironment of TMB-high (n = 8) compared to TMB-
low (n = 23) melanomas. Pathways with a minimum adjusted p-value of 1e-05 in 
pTMB high vs low comparison are shown. The T Cell Inflamed GEP gene set was 

derived from Cristescu et al., Science, 2018 and the Inflammatory Response gene 
set was derived by Ayers et al., J Clin Invest, 2017, while the remainder of gene 
sets were included in the Molecular Signatures Database (Methods). Nominal 
two-sided p-values are calculated using permutation testing and FDR adjusted 
p-values shown for gene set differential expression are provided for comparison 
of pTMB/TMB-high vs low groups. Abbreviations; BC: Biocarta, HM: Hallmark, 
KG: KEGG, RT: Reactome, EMT: Epithelial–mesenchymal transition, Cyt: 
Cytokine, Rec: Receptor, Med: Mediated.
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Extended Data Fig. 10 | Neoantigen-specific T-cell expansion of persistent 
mutations. The MANAFEST assay was used to test pMANA-specific T-cell 
recognition. A collection of 58 neopeptides arising from 41 somatic persistent 
and loss-prone mutations, selected blindly with respect to pMANA status, were 
synthesized and tested in autologous T cell cultures from peripheral blood for 
patient CGLU310. A higher frequency of antigen-specific T-cell expansion was 

identified in neopeptides associated with persistent (green bars, 15 out of 48) 
vs loss-prone (red bar, 1 out of 10) mutations. T-cell clonotypes (as nucleotide 
sequence) and neopeptides are listed alongside the plane while the height of the 
bars indicates the abundance of TCR clones. A floor value of frequency of 0.08 
informed by the values observed in the negative control condition was applied to 
TCR clonotypic abundances.
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