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A B S T R A C T   

COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome 
coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the 
recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing sys-
tems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated 
with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies 
developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N 
protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review 
discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for 
recognizing the structural components. The various types of clinical specimens investigated for rapid and POC 
detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) 
approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of 
SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for 
developing new POC biosensors for clinical monitoring of COVID-19.   

1. Introduction 

Infection caused by viruses is one of the major causes of increased 
morbidity and mortality worldwide, significantly affecting global eco-
nomic conditions. The first case of a novel virus was reported in Late- 
December 2019. The disease was diagnosed as pneumonia with an un-
known origin (Harapan et al., 2020). In March 2020, the World Health 
Organization (WHO) announced Coronavirus disease 2019 (COVID-19) 
as a global pandemic. According to the data provided by the WHO, over 
753,479,439 confirmed cases, including 6,812,798 deaths were re-
ported in 220 countries as of 31 January 2023 (“WHO Coronavirus 
(COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard 
With Vaccination Data,” n.d.). Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is the virus responsible for the current 
outbreak of COVID-19. The virus is the seventh species under the 
Coronaviridae family which infects both animals and humans. The other 

forms of human transmissible coronaviruses are, severe acute respira-
tory syndrome coronavirus (SARS-CoV) and Middle East Respiratory 
Syndrome (MERS-CoV) that emerged in 2002 and 2012, respectively (N. 
Zhu et al., 2020). SARS-CoV-2 mainly attacks the respiratory system, 
goblet cells in the nose, intestinal tract, kidney, and liver (Hadisi et al., 
2021). Viruses in common are parasites that require a host cell to 
replicate. Multiple evolutions have improved the molecular mechanistic 
pathways of viruses entering cells and their modes of transmission. Viral 
infection also occurs by contacting the infected surfaces (Guo et al., 
2021). Thus, understanding the structure and function of the virus 
causing the disease is essential in designing diagnostic assays with good 
selectivity. The entire viral particle is known as the virion, which con-
sists of nucleic acids as genetic material and the outer shell layer of 
proteins. Most viruses have DNA or RNA as their genetic material, and 
the nucleic acid structure can be single-stranded or double-stranded 
(Perkins et al., 2017). Due to the rapid spread of this communicable 
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disease, there is an urgent need to develop reliable mass screening 
methodologies that can be used for rapid diagnosis and contact tracing 
(Cui and Zhou, 2020). Detection of viral particles in the early stages of 
infection can help slow down the spread rate and improve the efficacy of 
treatment protocols to control the viral load. 

The early stage of COVID-19 is diagnosed by clinical manifestations 
and a history of contact with potentially infected people. Since the 
clinical symptoms and indications of infection are not conclusive, 
further diagnostic and serological test is required for COVID-19 detec-
tion (Filipić et al., 2020). The importance of diagnostic tool is deter-
mined by the type of test, the time it takes to receive results, testing 
accuracy, and the resources necessary for testing. To put it another way, 
the most remarkable technique for enabling effective action and limiting 
transmission is to identify suspicious persons quickly. The most used 
strategy is to check body temperature (thermal scanner). This method is 

not a precise measure for COVID-19 infection as fever is correlated to 
different illnesses, and even those who cleared the temperature scanning 
were confirmed to be positive when tested using molecular or serolog-
ical methods (Parihar et al., 2020). Biochemical tests such as total blood 
count, C-reactive protein (CRP), and cytokines can be used to improve 
the outcomes, although they are not highly specialized (Wrapp et al., 
2020).Currently, COVID-19 detection in laboratory is enabled by 
enzyme-linked immunosorbent assay (ELISA), reverse 
transcriptase-polymerase chain reaction (RT-PCR), rapid lateral flow 
immunoassay (LFIA), chest computed tomography (CT), Reverse tran-
scription loop-mediated isothermal amplification (RT-LAMP) and 
western blotting-based analysis (Cui and Zhou, 2020). Among these 
techniques, RT-PCR is a gold standard technique for COVID-19 detection 
as it detects the presence of nucleic acid genome. Chest-CT is more 
sensitive than RT-PCR in detecting patients who require further testing, 

Fig. 1. Trends in detection of SARS-CoV-2. An overview of current and emerging detection platforms promising for point-of-care technology (POCT) toward early 
diagnosis of COVID-19. 
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isolation, and treatment; nevertheless, it is not specific for COVID-19 
and has been associated with symptoms like coronavirus (Diagnose 
et al., 2020). An overview of standard methods and emerging 
point-of-care technologies promising for the COVID-19 detection are 
schematically illustrated in Fig. 1. 

Although widely utilized for on-site detection, these conventional 
techniques are still having limitations. Despite their extensive usage, 
these approaches have certain drawbacks, including the necessity for 
expensive equipment, time-consuming protocols, trained personnel, and 
high purity samples. False-negative results are also acquired due to the 
fluctuation of the number of viruses in different samples in patients. 
Sample collection, storage and sample processing are the additional 
steps involved in the conventional technique (Carter et al., 2020; Feng 
et al., 2020). New platforms are being intensively researched in response 
to RT-PCR and chest CT constraints. Many immunoassay approaches 
have been developed for the diagnosis of serum antibodies and viral 
proteins of SARS-CoV-2 using enzyme-linked immunosorbent assay 
(ELISA) and rapid lateral flow immunoassay (LFIA). Immunodiagnostic 
techniques for detecting the presence of viral proteins are most feasible 
in 7–11 days after the onset of infection, or antibody-based diagnosis is 
generally possible in the recovery period (Abduljalil, 2020). To over-
come the time limits imposed by conventional detection approaches, 
there is need for a rapid, portable, and cost-efficient point-of-care (POC) 
tool can be deployed at any place and any time. Biosensors are widely 
used in POC analysis for on-site health monitoring. Glucometers and 
pregnancy strips are well-established examples of biosensor devices in 
the commercial market for self-monitoring. For any pathological con-
ditions, before identifying the complete information about the patho-
genicity, multiplexed detection of biomarker panels is followed as an 
initial phase investigation to study the biochemical changes occurring in 
the body. Many biosensing devices have been used in clinical evaluation, 
providing an on-site measurement of biomarkers (Koteswara Rao, 
2021). The Piccolo Express is a fully automated portable diagnostic 
device from Abbot which provides an on-site measurement of a panel of 
biomarkers. Similarly, the i-Stat system is a chip integrated POC diag-
nosis system from Abbot that allows blood profiling of biomarkers. This 
system uses specific chips for detecting different panels of biomarkers. In 
brief, biosensor devices can identify specific target molecules such as 
proteins, antibodies, nucleic acids through bioreceptor medicated target 
recognition coupled with a transducer for measuring the output signal. 
Biosensors can be classified based on the bioreceptors or transducers 
employed. Advancements around nanotechnology resulted in con-
structing new biosensors with unique performances (Holzinger et al., 
2014). For example, nanomaterials have been integrated with the bio-
sensors for improving detection limit, and sensitivity required for clin-
ical analysis (Singh et al., 2016). The nanoarchitecture also provides a 
suitable environment for the effective immobilization of bioreceptor 
molecules without affecting their bio-affinity. In some cases, the nano-
materials also act as signal generating probe, as most of the 
target-bioreceptor interactions do not produce detectable signals. 

The global epidemic situation currently leads to a massive number of 
publications and reviews reported for COVID-19 diagnosis. However, a 
clear understanding of binding sites on the SARS-CoV-2 virus in terms of 
detecting biomarkers at POC is still missing. The present review thor-
oughly summarized and discusses the SARS-CoV-2 biomarker binding 
sites available for efficient diagnosis. The achievements made in optical 
and electrochemical biosensing strategies, the two major transducing 
techniques used in POC devices, for detecting various molecular archi-
tectures of SARS-CoV-2 are highlighted in this review. Many review 
articles have been published on SARS-CoV-2 diagnostics approaches. 
However, these reviews need more information about the molecular 
architectures, targeted binding domains, and bioreceptors employed for 
specific detection of SARS-CoV-2. Moreover, this review is one of the 
first to combine the two different transduction principles (electro-
chemical and optical) in a single review. For example, Zhao et al. 
reviewed advancements and challenges associated with electrochemical 

biosensors for POC diagnosis of a respiratory family of viruses (Z. Zhao 
et al., 2021). Similarly, Mahshid et al. provided a brief overview of 
biomolecular recognition strategies in electrochemical signal trans-
ducers (Mahshid et al., 2021). Optical detection-based strategies for 
SARS-CoV-2 were also reported for POC measurement. A comprehensive 
update on different photonics-based techniques involved in detecting 
SARS-CoV family viruses (Lukose et al., 2021). These reviews, however, 
provide insufficient information about bioreceptors, biomarkers 
employed, and the binding domains targeted for specific detection. 
Nanomaterials play a multi-faceted role in POC devices. They can be 
tailored to function as immobilization matrix and signal generating 
probes to improve the sensor performance. Although reviews focus on 
nanotechnology-based approaches for COVID-19 diagnosis and thera-
peutics are also available (Iravani, 2020; Weiss et al., 2020), these re-
views do not provide in-depth knowledge on POC sensors attempted. To 
provide a better understanding of the role of point-of-care biosensing 
strategies for molecular architectures and antibodies of SARS-CoV-2, the 
present review is structured into various sub-sections. The first section 
presents a brief overview of the different biomarkers (structural com-
ponents) of SARS-CoV-2 and their binding domains. The first section 
also provides an understanding of SARS-CoV-2 structural features and 
the components of each biomarkers that need to be targeted for diag-
nosis. The second section lists various types of biorecognition elements 
(antibodies, aptamers, and molecularly imprinted polymers) used for 
SARS-CoV-2 biomarker detection. This section is also providing a 
rationale for choosing unique bioreceptors for targeted biomarkers. The 
third section lists various nanomaterial architectures used in sensor 
fabrication and their essential role in POC sensor fabrication. The fourth 
section encompasses different clinical specimens investigated for POC 
analysis of COVID-19 detection. Independent sections for comprehen-
sive analysis of electrochemical and optical detection strategies com-
bined with various bioreceptors and biomarkers of SARS-CoV-2 are also 
provided. The role of IoT and AI technologies in improving the perfor-
mance of the biosensors are highlighted in this review. 

2. Target regions of SARS-Cov-2 

SARS-CoV-2 belongs to the family of Coronaviridae, a family of RNA 
viruses. The virus’s genome is positive sense ssRNA ranging between 27 
and 32 kb in length. The nucleotide sequence known as the genome is 
packed inside a protein helical capsid structure and surrounded by 
different structural proteins (Fig. 2). Thus, one of the approaches for 
developing biosensor devices for identifying SARS-CoV-2 was built upon 
targeting a specific region of the spike (S), nucleocapsid (N), envelope 
(E), and membrane (M) proteins. Apart from these critical structural 
proteins, the virion also has non-structural proteins (nsp), including 
open reading frames (ORF) and RNA dependent RNA polymerase 
(RdRp). While the RdRp is involved in replicating viral genome from the 
negative-strand RNA template, the ORFs encodes 16 different types of 
nsp. The nsp plays a crucial role in the transcription and replication of 
viruses (Gao et al., 2020). The diagnosis strategies for SARS-CoV-2 thus 
involves probing different structural proteins, non-structural proteins, 
genome sequence and the whole viral particle. Antibodies generated 
against these proteins are also targeted to diagnose COVID-19 (Abdul-
jalil, 2020). 

2.1. Viral proteins 

The SARS-CoV-2 virus comprises four main structural proteins, viz. 
S, M, E, N proteins and 16 nsp (nsp1− nsp16). Among these proteins, S 
glycoprotein forms a protruding network on the surface of the virus 
envelope and provides the SARS-CoV-2 the crown-like structure. S 
protein is in-charge of mediating virus entry into a host cell. S protein is 
a 180 kDa glycoprotein that contains three different segments: (i) a large 
ectodomain, (ii) an intracellular tail and (iii) a small endodomain. The 
ectodomain further splits into S1 (receptor-binding) and S2 (membrane- 
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fusion) subunits. The subunit S1 (14–685 residues) contain an extra-
cellular N-terminal domain (14–305 residues), a short intracellular C- 
terminal domain and a receptor-binding domain (RBD, 319–541 resi-
dues). The RBD is a short fragment in the S1 subunit of the spike pro-
teins. The RBD interact with the host cell receptor to facilitate cell 
membrane for the virus fusion. The antibodies produced against the S 
protein targets the RBD domain of the subunit S1. The subunit S2 
(686–1273 residues) consists of a fusion peptide (FP), heptapeptide 
repeat (HR) sequences (HR1 and HR2), cytoplasmic domain (CT) and 
transmembrane domain (TM) (Pokhrel et al., 2020). The RBD attaches to 
the angiotensin-converting enzyme 2 (ACE 2) receptor for the viral 
attachment during the virus entry. Following this, the S2 subunit causes 
fusion in the host viral membrane for allowing the viral genome to get 
inside the host cell (Arndt et al., 2010). Due to its essential functions 
including ACE 2 receptor binding and host cell entry, the S protein is a 
crucial target for SARS-CoV-2 detection. 

The membrane protein (M) is the more prevalent protein on the viral 
surface and defines the shape of the viral envelope. The M protein has 
about 220–260 amino acids (Huang et al., 2020). It consists of a 
triple-membrane spanning domain, glycosylated amino-terminal 
domain, and a carboxyl-terminus. It is responsible for the trans-
membrane nutrients transport, envelope formation, detecting the virus 
assembly and budding formation by interaction with other structural 
proteins. These characteristics make M proteins “the central organiser 
for coronavirus assembly” (Ruch and Machamer, 2011). M protein plays 
several roles in virus assembly for releasing the virus from host cells 
during the viral replication and maturation process. It is localised 
mainly at the sites of intracellular trafficking, more specifically in the 
endoplasmic reticulum and Golgi apparatus (Tseng et al., 2013).The E 
protein has a molecular weight of 8–12 kDa, with a total number of 
amino acids ranging from 76 to 109. The E protein comprises N termi-
nus, C terminus and hydrophobic domains. 

Nucleocapsid protein (N) encloses the genetic material inside the 
capsid. N proteins are highly prevalent during the initial stage of 
infection in the host. The N protein forms a ribonucleoprotein complex 
with the viral RNA for host interaction with the virus. The N protein 
comprises a N terminus and a C terminus domain inter-linked with a rich 
serine linker (Huang et al., 2004). The N proteins are bound to the single 

virus strand of RNA, where the genetic information is held to allow them 
to replicate. The N protein inhibits various host cell defence mechanisms 
and assists the viral genome to replicate and to create new viral parti-
cles. Apart from these structural proteins, there are 16 nsp (vide supra), 
and nine accessory proteins (ORF3a, 3d, 6, 7a, 7b, 8, 9b, 14, and 10) 
produced from five different open reading frames (ORFs) encoding 
accessory genes (ORF3a, ORF6, ORF7a, ORF7b, and ORF8), present in 
the viral particle which can be used as biomarker for SARS-CoV-2 
detection. 

2.2. Virus genome sequence 

The genome of SARS-CoV-2 consists of a single stranded RNA 
(ssRNA) with ~29.9 Kb in size. The viral genome encodes a polyprotein 
comprised of 7096 residues. The genome sequence of SARS-CoV-2 was 
retrieved from the NCBI genome database (NC_045512.2)(Lu et al., 
2020). The viral genome has an untranslated region (UTR), replication 
complexes (ORF1a and ORF1b), spike gene, envelope gene, membrane 
gene, and nucleocapsid gene in 5′ and several unidentified 
non-structural ORFs, poly-A tail in 3′. The genetic makeup comprises 
38% of guanine-cytosine (GC) content, 11 coding protein genes, 12 
expressed proteins and 13–15 open reading frames containing ~30,000 
nucleotides (Rota, 2003). The current biosensing platforms available for 
diagnosing COVID-19 are targeting the RNA to improve the detection 
accuracy. These biosensors use hybridization DNA probes, aptamers, 
cDNA, and oligonucleotides for recognizing the genome. 

2.3. SARS-CoV-2 antibodies 

Antibodies, also known as immunoglobulins, are naturally occurring 
glycoproteins generated by the immune system after the onset of 
infection or vaccination. The human immune system produces anti-
bodies (IgM, IgG, and IgA) against structural proteins S and N. The 
human defence system also produces antibodies against the subunits of S 
proteins. The antibodies against the proteins and subunits can readily be 
measured within 7–21 days after the onset of infection (Qu et al., 2020). 
IgG remains detectable for more extended periods in the system, while 
the IgM is more useful in assessing the recent infections. Although the 
importance of IgA in COVID-19 is not clearly understood, these proteins 
can also be detected in human saliva. Monoclonal antibodies such as 
meplazumab, 4A8, 47D11, B38, BD-23, CA1, CB6, CR3022, H4 and 
P2B–2F6 are also reported for targeting the subunits and structural of 
SARS-CoV-2 (Wang et al., 2020). 

3. Bio-recognition elements for SARS-CoV-2 biomarkers 

A bioreceptor or biorecognition element is a biological molecule that 
can bind and interact specifically with the target biomarkers. The bio-
receptors used for the specific recognition of target molecule includes 
nucleic acids, antigens, viral proteins, antibodies, aptamers, DNA 
probes, peptides, and tissues (Han, 2020). Understanding the benefits 
and drawback of each biorecognition component and their influence on 
the overall biosensor performance is critical throughout the biosensor 
development process (Morales and Halpern, 2018). These bioreceptors 
are highly sensitive and could easily recognize the SARS-CoV-2 target 
biomarkers including whole viral particles, nucleic acids viral proteins 
(structural proteins and non-structural proteins), antibodies (IgM, IgG, 
and IgA) and enzyme encoding genes (Liang et al., 2020). As the typical 
affinity reaction in a biological system would not produce any detectable 
signal, bioreceptors are usually integrated with a nanomaterial-based 
transducer. The nanoarchitecture aids in converting the biological 
recognition event into detectable signals (electrochemical and optical) 
(Goode et al., 2015; Verma and Bhardwaj, 2015). A diagrammatic 
overview of a wide variety of bioreceptors available for recognizing 
SARS-CoV-2 molecular architectures and the nanomaterial signal 
transducing interfaces used for optical and electrochemical detection of 

Fig. 2. The schematic diagram of four major structural protein components 
presents in SARS-CoV- 2 (Gardner et al., 2021). 
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COVID-19 is represented in Fig. 3. 
Antibodies are the most commonly used biorecognition component 

to identify pathogens including viruses (Sharma et al., 2016). Antibodies 
have recognition sites that bind to antigens selectively via a portion of 
the antigen known as an epitope (Patris et al., 2016). Monoclonal an-
tibodies have mostly been used to identify antigens. Antibodies can be 
labelled with fluorescent probes, enzymes, and nanomaterials for 
generating signals. Immunosensors are biosensors that make use of 
antibody-based biorecognition components. For detecting SARS-CoV-2, 
N and S proteins are commonly employed as antigens or biomarkers, and 
their biorecognition molecules can be antibodies (Ahmed et al., 2020) … 
Aptamers are known as pseudo-natural receptors composed of 
single-stranded oligonucleotides of DNA or RNA with 10–100 nucleotide 
bases which could be customized using SELEX procedure (Bowser, 2005; 
Ellington and Szostak, 1990). The chemically synthesized aptamer has 
high specificity, stability, sensitivity, and binding affinity against the 
target comparable to that observed in the case of monoclonal antibodies, 
enabling recognition toward varieties of macromolecules (Darmostuk 
et al., 2015). Aptamers have been widely demonstrated in sensing, 
including HIV, Zika virus, influenza virus, dengue virus, Norovirus 
(NoV) and human papillomaviruses (Yu et al., 2021). In the current 
circumstance, aptamer-based biosensors can be an inexpensive and 
perfect tool for the SARS-CoV-2 diagnosis. Moreover, the usefulness of 
aptasensor in the detection of the SARS-CoV-2 virus and its structural 
proteins has already been demonstrated by many reports as listed in 
Table 1 (Lou et al., 2022; Mandal et al., 2021; Wandtke et al., 2022). The 
S and N proteins are the most widely used biomarker for the detection of 
SARS-CoV-2. Molecularly imprinted polymers (MIPs) are synthetic re-
ceptors created through a molecular imprinting process. As an alternate 
to biorecognition element, MIPs can solve problems associated with the 
stability of conventional biological receptors such as antibodies. MIPs 
are synthetic polymeric materials which can be used as a recognition 
unit for binding to a virus, bacteria, mammalian cells, or any other 

biomolecule (El-Schich et al., 2016; Jia et al., 2018). The approach of 
creating MIPs uses specific proteins, bacteria or viruses as template 
molecules complexed with synthetic polymers stabilized by covalent, 
non-covalent, ionic, semi-covalent, or metal centre coordination binding 
interactions (Whitcombe et al., 2014). The template molecules can then 
be removed from a polymerizable group, leaving behind an empty cavity 
capable of recognizing the target species (Manickam et al., 2016). The 
MIP-based approach as a cost-effective alternate tool for conventional 
antibody-based sensors for detecting structural proteins (N, S and E) 
(Raziq et al., 2021). The electrochemical polymerization process enables 
the controlled deposition of MIPs onto the electrode surface, allowing 
the creation of reproducible biosensors. MIP diagnostics Ltd. developed 
and commercialized the nanoMIP particles as synthetic alternatives to 
SARS-CoV-2 antibodies, which can be integrated with sensor surfaces 
(electrochemical and optical) for selectively recognizing SARS-CoV-2 
antigens. The nano-MIPs able to recognize RBD spike protein as low as 
5 fg/mL in a sensor surface (“COVID-19 Technical Brief — MIP Dis-
covery,” n.d.). 

4. Clinical specimens used for SARS-CoV-2 detection 

Rapid collection and testing of clinical specimens from suspicious 
patients are the important steps for managing and restricting the spread 
of SARS-CoV-2. During the initial stage of the pandemic, nasopharyn-
geal swabs were used as appropriate sampling for detection (Dawei 
Wang et al., 2020). Since the COVID-19 outbreak, various in-
vestigations, case reports, and meta-analyses have reported a wide range 
of clinical specimens in the search for an adequate specimen for early 
diagnosis of SARS-CoV-2. Researchers and clinical laboratories are 
continued to explore different types of clinical specimens for 
SARS-CoV-2 detection which includes upper respiratory tract samples 
(saliva, nasopharyngeal, oropharyngeal, and nasal swabs), lower respi-
ratory tract samples (tracheal aspirate, bronchoalveolar lavage, sputum, 
and fibro bronchoscope brush biopsy), and blood products (serum and 
plasma)(Pan et al., 2020; Wang et al., 2020). Selecting a suitable clinical 
specimen for diagnosis is decided based on various parameters such as 
non-invasiveness, lesser risk to the health professionals, and acceler-
ating the detection time. Combined throat and nasal swabs showed a 
highest positive rate (100%) of detection of SARS-CoV-2 followed by 
bronchoalveolar lavage (91.8%), rectal swabs (87.8%), sputum (68.1%), 
nasopharyngeal swab (45.5%), feces (32.8%), oropharyngeal swab 
(7.6%), and blood samples (1.0%) (Sharma et al., 2016). Serum, plasma, 
and urine samples have the lowest positive detection rate among the 
biological samples tested. Nasopharyngeal swab and oropharyngeal 
swab are the most preferred human clinical specimens for detecting the 
SARS-CoV-2 viral genome due to their non-invasiveness and easy 
accessibility of samples (Mohammadi et al., 2020). While bron-
choalveolar lavage, endotracheal aspirate, fibro bronchoscope brush 
biopsy collection has a greater detection rate and might be the specimen 
of preference in hospitalized pneumonia cases, it always carries the 
danger of developing aerosols that might infect healthcare personnel. 
Furthermore, bronchoalveolar lavage cannot be used as the primary 
specimen in managing the COVID-19 pandemic infection. On the other 
hand, sputum makes things difficult not only for collection from 
COVID-19 patients with a dry cough but also for the low detection rate 
(Tong et al., 2020). Implementing combined swabs on a worldwide scale 
will undoubtedly aid in managing and controlling the pandemic. 

5. POC sensing platforms for detecting SARS-CoV-2 

Biosensors used for analysing the SARS-CoV-2 biomarkers are mostly 
affinity-based assays involving binding of target analyte (antigen) with 
specific bioreceptor molecules immobilized on the nanostructured 
interface at the transducer surface. Among the great variety of trans-
ducer methods, optical and electrochemical approaches have been 
evolved as versatile tools for the clinical detection of biomarkers. Due to 

Fig. 3. Schematic representation of different SARS-CoV-2 target biomarkers, 
bioreceptor molecules, and transducing nanomaterials integrated platform used 
for Point-of-care COVID-19 diagnosis. 
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their potential application in POC diagnosis, these techniques have been 
the subject of interest in recent days. Complex mixtures can be analysed 
using these techniques quickly without worrying about the extensive 
sample preparation techniques. However, optical, and electrochemical 
sensors differ in the fundamental mode of transduction and have 
distinctive advantages. For instance, optical assays need optic compo-
nents such as the light source of a particular frequency, detector, optical 
waveguides or fibres, transduction moieties with biorecognition ele-
ments and integrated electronics to detect target analytes. Although 
more successful in the market for developing high throughput assays 
and multiplexed detection, the use of optical tags to make the measure 
the affinity binding reaction is an added step in performing optical 
measurement. On the other hand, electrochemical immunosensors 
measure the electrochemical changes during antigen-antibody binding 
at the electrode surface. Miniaturized modern microelectronics allows 
building microelectrodes that are useful for multiplexed biosensors and 
well suited for detecting tiny volumes of samples (microliters to nano-
liters). The low-cost and large-scale production of electronic devices is 
another reason which makes the electrochemical approach more 
appealing for high-throughput analysis (Song et al., 2021). 

6. Electrochemical biosensing platforms for SARS-CoV-2 
detection 

The electrochemical sensor platform utilizes the changes in the 
electrical properties of the bioreceptor-target molecule recognition for 
the quantification of target biomolecules. Enzymes and antibodies are 
the most utilized bioreceptor molecules in electrochemical biosensor 
design. Nanomaterials are utilized in electrochemical detection to 
improve the sensor’s catalytic activity and sensitivity (Table 2). Elec-
trochemical methods such as electrochemical impedance spectroscopy 
(EIS), square wave voltammetry (SWV), differential pulse voltammetry, 
amperometry, and potentiometry were utilized to determine SARS-CoV- 
2 (Grieshaber et al., 2008; Orooji et al., 2020). The amperometric 
method measures the current generated by the oxidation/reduction of 
electroactive analytes in real-time. Voltammetric methods provide in-
formation about the target analytes by measuring the resultant current 
by varying the potential. Potentiometric electrodes in an electro-
chemical cell detect the build-up of a charge potential at the working 

electrode relative to the reference electrode when no or zero current 
flows. The potential difference (voltage) between the working and 
reference electrodes is used to calculate the potentiometric signal. 
Impedimetric or conductometric-based sensors are useful electro-
chemical sensing techniques that assess changes in solution conductivity 
(Sheikhzadeh, 2021). The impedance approach is extremely beneficial 
for studying changes in electrical characteristics caused by 
bio-recognition events or nanomaterials at the electrode surface. 
Changes in conductance can be monitored at the electrode surface 
during various modifications or recognition components. The produced 
current is proportional to the concentration of the electroactive species. 
Conducting polymeric materials may be utilized as a transducer in the 
production of electrochemical sensors/biosensors, which is beneficial 
for attaching the biorecognition elements through the electrode (Gha-
zizadeh et al., 2020). 

6.1. Detection of spike protein 

S protein is important in viral entrance, fusion, and attachment, 
making it a good target for developing vaccinations, antibodies, and 
entry inhibitors. The S protein is employed as a diagnostic antigen due to 
the virus’s main transmembrane protein, which is highly immunogenic. 
Among coronaviruses, the S protein contains amino acid sequence 
variation, enabling for SARS -CoV-2 detection. A low-cost gold printed 
circuit board (PCB)-based S protein sensing platform imitating the 
glucose test strip manufacturing process was developed using ACE2 as a 
bioreceptor molecule. The sensing platform utilizes Faradaic EIS mea-
surement involving an external redox mediator ([Fe(CN)6] − 3/− 4) (Khan 
and Song, 2020). The ACE2 receptor was attached to the gold printed 
electrodes using a self-assembled monolayer of perfluorodecanethiol 
(PFDT). The level of S proteins present in saliva samples of the human 
subjects were measured using the biosensor in a bio-secure conditions. 
The sensor able detect the S protein levels as low as 1.68 ng/mL. Screen 
printed carbon electrode (SPCE) based portable sensing platform was 
also developed for S protein detection using EIS approach. Cu2O nano-
cubes were integrated with the sensor substrate to provide a large sur-
face area for antibody immobilization (Fig. 4A). Staphylococcal protein 
A (ProtA) is used to orient the immobilized antibodies towards efficient 
recognition of S proteins on the electrode surface. Bovine serum albumin 

Table 1 
Various aptamers reported against different target of SARS-CoV-2.  

Target Name Aptamer sequence (5′–3′) Affinity/Kd 
(nM) 

Reference 

N Protein Np-A48 GCTGGATGTCGCTTACGACAATATTCCTTAGGGGCACCGCTACATTGACACATCCAGC 0.49 (L. Zhang et al., 2020) 
S1 Protein – CGCAGCACCCAAGAACAAGGACTGCTTAGGATTGCGATAGGTTCGGTTTTT 43 ± 4 Curti et al. (2022) 
N Protein – GCAATGGTACGGTACTTCCGGATGCGGAAACTGGCTAATTGGTGAGGCTGGGGCGGT – Ramanathan et al. 

(2022) 
RBD CoV2-RBD- 

1C 
CAGCACCGACCTTGTGCTTTGGGAGTGCTGGTCCAAGGGCGTTAATGGACA 5.8 Song et al. (2020) 

RBD CoV2-RBD- 
4C 

ATCCAGAGTGACGCAGCATTTCATCGGGTCCAAAAGGGGCTGCTCGGGATTGCGGATATG 19.9 Song et al. (2020) 
GACACGT 

S Protein SP5 GGGAGAGGAGGGAGATAGATATCAACCATGGTAGGTATTGCTTGGTAGGGATAGTGGGCT 14.7 ± 0.8 Schmitz et al. (2021) 
TGATGTTTCGTGGATGCCACAGGAC 

S Protein SP6 GGGAGAGGAGGGAGATAGATATCAACCCATGGTAGGTATTGCTTGGTAGGGATAGTGGGC 13.9 ± 0.6 Schmitz et al. (2021) 
TTGATGTTTCGTGGATGCCACAGGAC 

N-terminal domain 
(S) 

SNAP1 TCGCTCTTTCCGCTTCTTCGCGGTCATTGTGCATCCTGACTGACCCTAAGGTGCGAACATCG 39.32 ± 0.12 Kacherovsky et al. 
(2021) CCCGCGTAAGTCCGTGTGTGCGAA 

N-terminal domain 
(S) 

SNAP3 TCGCTCTTTCCGCTTCTTCGCGGTTAGGTACATCGTCTTCATTTCTCAAAGTCATTGTCTACA 76.59 ± 0.12 Kacherovsky et al. 
(2021) CCGCGTAAGTCCGTGTGTGCGAA 

RBD nCoV-S1- 
Apt1 

CCGCAGGCAGCTGCCATTAGTCTCTATCCGTGACGGTATG 0.33 ± 0.02 (G. Yang et al., 2021) 

S Protein S14 TGGGAGCCTGGGACATAGTGGGGAAAGAGGGGAAGAGTGGGTCT 21.8 Gupta et al. (2021) 
S1 Protein MSA1 TTACGTCAAGGTGTCACTCCCACTTTCCGGTTAATTTATGCTCTACCCGTCCACCTACCGGA 0.023 (J. Li et al., 2021) 

AGCATCTCTTTGGCGTG 
S1 Protein MSA5 TTACGTCAAGGTGTCACTCCACGGGTTTGGCGTCGGGCCTGGCGGGGGGATAGTGCGGTGG 0.012 (J. Li et al., 2021) 

AAGCATCTCTTTGGCGTG 
S Protein DSA1N5 TTCCGGTTAATTTATGCTCTACCCGTCCACCTACCGGAATTTTTTTTTTTTTTTTTTTTTTTTT 0.48 ± 0.06 (Z. Zhang et al., 2021) 

TTTTTACGGGT TTGGCGTCGGGCCTGGCGGGGGGATAGTGCGGT  
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Table 2 
A comprehensive table comparing the type of bioreceptor used, the biomarkers targeted, clinical sample investigated, and the transduction principle used in elec-
trochemical POC assay for SARS-CoV-2 biomarker detection.  

Target molecule Target region Bioreceptor Sample type Electrochemical 
technique 

Type of electrode LOD Reference 

Spike protein 
(S) 

RBD IgG antibody Saliva and artificial 
nasal samples 

EIS SPCE - Cu2O NCs 0.04 fg/mL Rahmati et al. (2021) 

S1 subunit Spike-protein 
capture antibody 

Artificial samples EIS Graphene 3 ng/mL Mojsoska et al. (2021) 

RBD Angiotensin- 
converting enzyme 
2 (ACE2) 

Artificial samples EIS Palladium Nano- 
thin film 

0.1 μg/mL Kiew et al. (2021) 

RBD Angiotensin- 
converting enzyme 
2 (ACE2) 

Saliva samples EIS PFDT-PCB gold 
electrode 

1.68 ng/mL Vezza et al. (2021) 

RBD SpyTag peptide and 
nanobody- 
SpyCatcher protein 

Nasopharyngeal 
swab 

EIS Gold electrode 23 fM Guo et al. (2021) 

RBD pCAGGS vector Nasopharyngeal 
swabs and saliva 
samples 

Amperometry Co-functionalized 
TiO2 nanotubes 

0.7 nM Vadlamani et al. (2020) 

RBD DNA linker- 
ferrocene- CR3022 
antibody 

Nasopharyngeal 
swab 

Chronoamperometry Gold electrode – Yousefi et al. (2021) 

S1 subunit S1 subunit Serum samples Chrono-potentiometry gold screen- 
printed electrodes 

1 fg/mL Mavrikou et al. (2020) 

Spike protein Spike monoclonal 
antibody and 
polyclonal antibody 

Saliva samples pulse method Gold plated carbon 
electrode 

100 pg/mL Xian et al. (2020) 

RBD Aptamer Saliva samples DPV SPCE/AuNP 2.63 ng/mL Sari et al. (2022) 
Spike protein Aptamer Oropharyngeal and 

nasal swab 
EIS Gold electrode – Lasserre et al. (2022) 

S glycoprotein MIP – Chronoamperometry Pt/Pyrrole – Ratautaite et al. (2022) 
Spike protein antibody Nasopharyngeal 

swab 
DPV GCE/Pd–Au 

nanosheets/MNP 
0.0072 ng/ 
mL 

Zhao et al. (2022) 

RBD ACE2 Saliva DPV MBs/AuNPs 0.35 ag/mL Nascimento et al. 
(2022) 

Spike protein Antibody Saliva EIS SPCE/AuNP 3.16 pmol 
L− 1 

Brazaca et al. (2022) 

RBD Aptamer Saliva EIS SPCE/AuNP/CNF 7.0 pM (Amouzadeh Tabrizi 
and Acedo, 2022) 

S1 subunit Antibody – EIS Gold electrode – Ashur et al. (2022) 
Spike protein Peptide Nasopharyngeal 

swab 
EIS GSPE 18.2 ng/mL Soto and Orozco (2022) 

S1 subunit Aptamer Nasopharyngeal 
swab 

DPV SWCNT-SPCEs 7 nM Curti et al. (2022) 

Nucleocapsid 
protein (N) 

N Protein N protein antigen Nasopharyngeal 
swabs 

SWV CNF- SPCE 0.8 pg/mL Eissa and Zourob 
(2021) 

N Protein- MIP N Protein Nasopharyngeal 
swab 

DPV Au-TFE 15 fM Raziq et al. (2021) 

N Protein Antibody – EIS rGO-Au 13 fm and 
2.5 p.m. 

Ali et al. (2022) 

N Protein Antibody – EIS SPCE/ZnO/rGO 21 fg/mL Haghayegh et al. 
(2022) 

N Protein Antibody Nasopharyngeal 
Samples 

Chronoamperometry SPCE/graphite 45 PFU/mL Samper et al. (2022) 

Antibodies IgG monoclonal 
antibodies 

S1 glycoprotein Blood plasma 
samples 

DPV Graphene- Au 
nanostars SPCE 

0.18 ×
10− 19 %V/ 
V 

Alireza Hashemi et al. 
(2021) 

S protein 
monoclonal 
antibodies 

CR3022/SARS-CoV- 
2 spike RBD protein 

Serum samples EIS Gold electrode – Rashed et al. (2021) 

spike S1 protein 
and RDB 
antibodies 

spike S1 & RBD 
antigens 

Artificial samples EIS Glass substrate 
with patterned 
gold film 

1 pM and 
0.001 pM 

Ali et al. (2021) 

CR3022 
antibody 

SARS-CoV-2 S- 
protein RBD 

Serum samples EIS zinc oxide 
nanowires (ZnO 
NWs) 

0.4 pg/ml (X. Li et al., 2021) 

IgG and IgM spike protein RBD Serum samples SWV graphene oxide 
-EDC/NHS 

0.96 and 
0.14 ng/mL 

Yakoh et al. (2021) 

IgG and IgM Biotin-SARS CoV-2 
RBD 

Serum samples Chronoamperometry SPCE 10.1 ng/mL 
and 1.64 
ng/mL 

(R. Peng et al., 2022) 

Antibodies N protein Serum samples EIS PEDOT/AuNPs – Lorenzen et al. (2022) 
IgG RBD Serum samples EEVD (OCP) G-PNR-AuNP 1.0 pg/mL Mattioli et al. (2022) 
Antibodies Spike protein Serum samples CV and EIS Au/SAMmix Liustrovaite et al. 

(2022) 

(continued on next page) 
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(BSA) was used as a blocking agent to avoid non-specific binding caused 
by the non-analyte proteins in the blood samples. The portable EIS based 
electrochemical device allows the measurement of S protein in 20 min 
(Rahmati et al., 2021). Amperometric methods measure the current 
response produced by an electroactive redox reaction at the working 
electrode. This method is mainly used for biocatalytic and affinity-based 
biosensors for their low detection limit and high selectivity towards the 
target. An amperometric electrochemical approach for detecting RBD of 
spike protein accumulated on the surface of the SARS-CoV-2 virus is 
developed. The electrode was fabricated by cobalt functionalized TiO2 
nanotubes (Vadlamani et al., 2020). Recently, Mahari et al. reported a 
two electrode-based electrochemical approach for detecting S protein. 
Two types of biosensors were fabricated for the study. The first involves 
the immobilization of S-protein specific monoclonal antibodies on gold 
nanoparticles and fluorine-doped tin oxide and the second one involves 
the immobilization of SARS-CoV-2 antibodies on the screen-printed 
electrode. These biosensors are efficient in detecting at fM concentra-
tion in saliva and buffer solution within 10–30 s (Mahari et al., 2020). 

The field-effect transistor (FET) type immunosensing platforms are 

potentially considered in POC testing for their ability to measure a small 
number of analytes and are highly sensitive. FET-based sensing platform 
for detecting SARS-CoV-2 using spike specific antibody as a bioreceptor 
was reported by Seo et al. In this method, FET surface was modified with 
graphene sheets and followed by immobilization of anti-spike protein 
antibodies using N-hydroxysuccinimide ester-based coupling agent 
(Fig. 5B). The FET biosensor detects SARS-CoV-2 antigen present in 
transport medium containing nasopharyngeal swab samples. The sensor 
detected the antigen as low as 1 fg/mL (Seo et al., 2020). Aptamers have 
sparked widespread interest in the development of electrochemical 
biosensors capable of detecting a variety of target biomolecules. Idili 
et al. developed a label-based electrochemical aptasensor for S protein 
detection based on an Au electrode modified with methylene blue de-
rivative (MB2) tagged aptamer. The binding event of S protein with the 
aptamer causes aptamer conformation to change, which in turn changes 
the location of the redox label MB2. The change in conformation pro-
duced a quantifiable electrochemical signal associated to the fluctuation 
of S protein concertation. With great sensitivity, the aptasensor detected 
the picomolar level of S Protein (Idili et al., 2021). Curti et al. developed 

Table 2 (continued ) 

Target molecule Target region Bioreceptor Sample type Electrochemical 
technique 

Type of electrode LOD Reference 

2.53 nM 
and 1.99 
nM 

IgG and IgM Spike protein Serum samples DPV laser-induced 
graphene 

– Oliveira et al. (2022) 

Antibodies Spike protein saliva and 
oropharyngeal swab 

SWV GCE/Au 9.3 ag/mL Liv and Kayabay 
(2022) 

IgG Spike protein Serum samples EIS SPCE/SWCNT 0.7 pg/mL Cardoso et al. (2022) 
Virus genome 

sequence 
N and S genes DNA conjugated Si- 

Avidin 
Nasopharyngeal 
swab 

DPV SPCE 1 copy/μL Chaibun et al. (2021) 

ORF1ab SARS-CoV-2 ssDNA Sputum, throat, 
blood, saliva samples 

DPV SPCE 3 aM (H. Zhao et al., 2021) 

RdRP SARS-CoV-2 probe 
sequence 

Sputum samples DPV Carbon paste 
electrode 

0.3 pM Farzin et al. (2021) 

N-gene Biotin- peptides- 
labelled probes 

Serum samples DPV GCE- PANI 
nanowires 

3.5 fM Song et al. (2021) 

RdRP Probe DNA Artificial samples EIS platinum/titanium 
electrodes 

– Hwang et al. (2021) 

cDNA SARS-CoV-2 
Primers 

Artificial samples SWV Gold electrode 
(TriSilix) 

0.02 pg Nunez-Bajo et al. 
(2020) 

viral RNA or 
cDNA 

Thiolated 
nucleotide probes 

Artificial samples Amperometry Au onto Ti 
substrate 

– Tripathy and Singh 
(2020) 

viral RNA (N 
gene) 

graphene-ssDNA- 
AuNPs 

Nasal swab and 
saliva samples 

signal conditioner 
circuit 

Gold electrode 6.9 copies/ 
μL 

Moitra et al. (2020) 

RNA CHA and TdT DNA 
strants 

serum and saliva 
samples 

EIS and DPV Gold electrode 26 fM (Y. Peng et al., 2021) 

N-gene Aptamer and 
antibody 

Blood and throat 
swab 

EIS TAPP-DPDD-POP/ 
AE 

0.59 fg/mL 
and 0.17 fg/ 
mL 

Cui et al. (2022) 

RNA ssDNA – DPV Graphene/ 
polylactic acid 

15 M Crevillen et al. (2022) 

RdRP ssDNA – CV and EIS Graphene Oxide 
Nanocolloids 

– Ang et al. (2022) 

ORF and S genes RNA Artificial saliva DPV AuNF/NC/SPCE 4.4 × 10− 2 

and 8.1 ×
10− 2 fg/mL 

Heo et al. (2022) 

RNA ssDNA Nasopharyngeal 
swab 

DPV SPCE/AuNTs 22.2 fM del Caño et al. (2022) 

SARS-CoV-2 
virus 

Spike Antigen nCovid-19 
monoclonal Ab 

Saliva samples DPV FTO electrode- 
AuNPs/SPCE 

0.01 pM Mahari et al. (2020) 

Spike Antigen S spike 
glycoproteins 

Blood, saliva, and 
oropharyngeal swab 

DPV GO-8H- 
EDC–NHS–Au NS 

1.68 ×
10− 22 μg 
mL− 1 

Alireza Hashemi et al. 
(2021) 

N protein 
antigen 

N protein Nasopharyngeal 
swabs 

SWV CNF- SPCE 0.8 pg/mL Eissa and Zourob 
(2021) 

N and S protein 
antigen 

N and S Proteins Saliva samples DPV screen-printed 
graphite electrodes 

19 ng/mL, 
8 ng/mL 

Fabiani et al. (2021) 

Antigen N protein, S1 (IgG 
and IgM) and CRP 

Blood and Saliva 
samples 

DPV and OCP-EIS laser-engraved 
graphene (LEG) 

– Torrente-Rodríguez 
et al. (2020) 

Spike Antigen Spike antibody Nasopharyngeal 
swabs 

2634B semiconductor 
analyzer 

graphene sheets 
FET 

1 fg/mL Seo et al. (2020)  
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a label-based aptasensor based on single-walled carbon nanotube 
screen-printed electrodes (SWCNT-SPEs) functionalized with a 
redox-tagged DNA aptamer (Fig. 4C). The aptasensor allows the detec-
tion of S proteins as low as 7 nM with good selectivity and specificity 
(Curti et al., 2022). 

Using MIPs, Ayankojo et al. created an electrochemical biosensor for 
detecting S protein detection based on a disposable Au-based thin-film 
electrodes. The selectivity of MIP sensor for SP protein was obtained by 
using a covalent imprinting method between the S protein and 1,2-diol 
moieties and 3-aminophenyl boronic acid groups. The sensor’s oper-
ating concept is based on the modulation of charge transfer between the 
Au-thin film electrodes and redox probe via imprinted pathways estab-
lished within the sensor (Ayankojo et al., 2022). 

6.2. Detection of nucleocapsid protein 

Using stencil-printed carbon electrodes (SPCEs), Samper et al. 
established a highly sensitive and label-based electrochemical immu-
noassay for quantitative detection of N protein. The numerous carboxyl 
groups (-COOH) on the SPCEs allowed anti-SARS-CoV-2 N protein to be 

immobilized through EDC/NHS coupling. Following that, the target N 
protein was connected to the sensor’s surface using an antibody-antigen 
key-lock system, which allowed the anchoring of HRP labelled anti- 
SARS-CoV-2 N protein (Samper et al., 2022). Cotton swabs were 
widely as a swabbing tool for collecting pathogenic samples. To improve 
the sample collection efficiency of the electrochemical sensor, the SPCE 
were modified with functionalized cotton-based carbon nanofibers 
(CNF). The SPCE coated with adsorbing cotton pads are immobilized 
with N protein specific antibodies for the detection of SARS-CoV-2 in 
Nasopharyngeal swabs. Apart from improving the sample collection 
efficiency, the functionalized cotton-based CNF allowed the immobili-
zation of the antibodies through diazonium chemistry. The immuno-
sensor was calibrated using spiked nasal fluids and validated using 
clinical Nasopharyngeal swabs collected from patients (Fig. 5A). SWV 
voltammetry technique is used the POC electrochemical measurement to 
interrogate the immunosensor. The sensor was able to detect the N 
proteins as low as 0.8 pg/mL (Eissa and Zourob, 2021). 

Aptamer and MIP based sensor also involved in the detection of N 
protein. Qi et al. presented a low-cost microelectrode array (MEA) chip- 
based aptasensor for N protein detection. With a sensitivity of pM, this 

Fig. 4. (A) Schematic representation of SPCE based device for monitoring S protein (reproduced with permission from Springer (Rahmati et al., 2021)), (B) 
Schematic of the electrochemical sensor for the detection of SARS-CoV-2 using spike protein specific aptamer (reproduced with permission from John Wiley and Sons 
(Z. Zhang et al., 2021)), and (C) The operating concept of the aptasensor is illustrated schematically by the conformational change in a redox-tagged SARS-CoV-2 
aptamer following engagement with the target S1 protein (reproduced with permission from American Chemical Society (Curti et al., 2022)). 
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aptamer-modified MEA caused a change in capacitance at the solid- 
liquid interface following the N protein binding. When combined with 
an efficient microfluidic enrichment, the sensor detected N protein in 15 
s with a wide linear range and low LOD (Qi et al., 2022). Raziq et al. used 
the DPV technique to develop MIPs integrated electrochemical sensors 
to detect N protein. The capability of the biosensor for detecting N 
protein in nasopharyngeal swab samples of COVID-19 positive patients 
is also demonstrated (Raziq et al., 2021). 

6.3. Detection of antibodies (immunoglobulins) 

Human immune system produces antibodies such as IgG, IgM, and 
IgA in COVID-19 patients’ bodily fluids and utilized to identify SARS- 
CoV-2. According to a recent immuno-chromatographic study, both 
IgG and IgM antibodies have 11.1%, 92.9%, and 96.8% sensitivity for 
SARS-CoV-2 detection at the early stage (several days to weeks after the 
COVID-19 infection), intermediate stage (1–2 weeks after the onset), 
and late stage (more than 2 weeks) of infection. Yakoh et al. recently 
developed an electrochemical paper-based analytical device (ePAD) to 
detect SARS-CoV-2 immunoglobulins (IgG and IgM). (Yakoh et al., 
2021). Similarly, Li et al. studied a microfluidic PAD (μ-PAD) for highly 
selective and label-free detection of SARS-CoV-2 utilizing an EIS 
biosensor. In this system, zinc oxide nanowires (ZnO NWs) were grown 
atop a working electrode to improve its function with Faradaic processes 

that use iron-based electron mediators. The μ-PAD biosensors were 
calibrated using various morphologies of ZnO NWs that achieved a low 
LOD of 0.4 pg/mL. The EIS biosensor has the capacity to discriminate the 
amounts of IgG antibody CR3022 specific to SARS-CoV-2 in human 
serum samples; the findings obtained demonstrated the usefulness of the 
EIS-biosensor for detecting COVID-19 (X. Li et al., 2021). 

6.4. Detection of viral nucleic acid 

The clinical usefulness of antibody-based biosensors for detecting 
SARS-CoV-2 is limited due to the risk of false-negative findings during 
the early stage of illness. Since the antibody production in human bodily 
fluids might take many days after the onset of infection, individuals 
begin to exhibit various symptoms. Rapid antigen assays for SARS-CoV-2 
are often less sensitive than nucleic acid-based testing. As a result, 
nucleic acid testing is the most reliable way for determining COVID-19 
infection. Considering these difficulties and limits of the RT-PCR 
approach, as well as advancements in molecular biology and nano-
technology, electrochemical biosensors for SARS-CoV-2 detection have 
shown interesting potential. 

Electrochemical approaches also find applications in detecting RdRP 
sequence as a target for probing SARS-CoV-2. The complementary probe 
sequence against the RdRP was used as a recognition element. A 
macrocyclic crown ether ligand complexed with Ag+ ion is used as a 

Fig. 5. (A) Graphics of cotton-tipped electrochemical immunosensor for COVID-19 detection using SWV Technique (reproduced with permission from American 
Chemical Society (Eissa and Zourob, 2021)) and (B) Schematic representation spike antibody immobilized FET-Graphene based electrochemical detection of 
SARS-CoV-2 (reproduced with permission from American Chemical Society (Seo et al., 2020)). 
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redox reporter. The redox reporter is further modified with silicon 
quantum dots coated with chitosan-poly (amidoamine) (PAMAM) den-
drimer to immobilize the target sequence on the electrode surface 
through amine cross-linking reaction. Calibration and measurement in 
simulated sputum samples were performed using differential pulse 

voltammetry The nanosensor allowed the detection of RdRP sequence as 
low as 0.3 pM in spiked sputum samples (Farzin et al., 2021). Recently, 
Chaibun et al. reported an isothermal rolling circle amplification (RCA) 
based electrochemical approach for detection of S and N genes of RNA. 
The assay was prepared by hybridization of RCA amplicons with 

Table 3 
A comprehensive table comparing the type of bioreceptor used, the biomarkers targeted, clinical sample investigated, and the transduction principle used in optical 
POC assay for SARS-CoV-2 biomarker detection.  

Target molecule 
detected 

Target region Bio receptor Sample Type Optical Technique Substrate LOD Reference 

Spike protein 
(S) 

RBD ACE2 or SARS- 
CoV-2 mAbs 

Nasopharyngeal swab 
and saliva 

LSPR AuNPs 370 vp/mL Huang et al. 
(2021) 

S glycoprotein ACE2 Artificial samples SPR Rutile prism/BK7/ 
ITO film/tellurene/ 
MoS2–COOH 

– Peng et al. 
(2020) 

RBD ACE2 Throat swabs, saliva, 
and sputum samples 

Fluorescence detection Carbon nanotubes 12.59 nM Pinals et al. 
(2021) 

RBD Biotin-aptamer Artificial samples SPR Gold nanofilm- POF 37 nM Cennamo et al. 
(2021) 

RBD ACE2 Artificial samples SERS silver-nanorod – (D. Zhang et al., 
2020) 

RBD Aptamers (Biotin- 
RBD-1C) 

Artificial samples SERS AgNPs – Zavyalova et al. 
(2021) 

RBD DNA aptamers Artificial samples SRS and SERS AgNPs 250 nM Stanborough 
et al. (2021) 

S1 Subunit S1 antibody Artificial samples Plasmonic metasensor AuNPs 4.2 fM Ahmadivand 
et al. (2021) 

RBD DNA aptamers Nasopharyngeal 
smear 

SERS Au nanopopcorn ~10 PFU/mL Chen et al. 
(2021) 

Nucleocapsid 
protein (N) 

– N protein antibody Saliva sample SPR AuNPs Attomolar 
(10− 18M) 

Murugan et al. 
(2020) 

Antibodies S Protein 
Antibody 

Spike protein Plasma samples LSPR Gold nanospikes 0.08 ng/mL Funari et al. 
(2020) 

S, E, and M 
antibodies 

S, E, and M proteins Nasal and throat swab 
Samples 

Colorimetric detection AuNPs – Ventura et al. 
(2020) 

IgM and IgG 
antibodies 

Recombinant 
antigen 

Blood samples Colorimetric detection AuNPs – Li et al. (2020) 

IgG antibody N protein Serum samples Fluorescence detection Lanthanide-doped 
polystyrene 
nanoparticles  

Chen et al. 
(2020) 

IgM and IgG S protein Serum samples Fluorescence detection SiO2–Au-QD 1:106 dilution Wang et al. 
(2020) 

N Protein 
antibody 

Nucleoprotein (N) Artificial samples SPR Au chip 1.02 pM Bong et al. 
(2020) 

Anti-SARS-CoV- 
2 IgM/IgG 

Spike protein (S) Serum samples SERS Ag shell on SiO2 1.28 × 107 

dilution 
Liu et al. (2021) 

IgA antibody N Protein antigen Saliva and serum 
samples 

Colorimetric and 
chemiluminescence 

AuNPs – Roda et al. 
(2021) 

Virus genome 
sequence 

RdRp, ORF1ab 
and E genes 

SARS-CoV 2 cDNA Artificial samples LSPR Gold nanoisland 0.220 pM Qiu et al. 
(2020) 

N gene RNA sequence Oropharyngeal swab Colorimetric detection Thiol-modified ASO- 
capped AuNPs 

0.18 ng/μL Moitra et al. 
(2020) 

RdRp gene Oligo probe Nasopharangeal 
samples 

Colorimetric detection AuNPs 0.5 ng Kumar et al. 
(2022) 

N gene RNA sequence nasopharyngeal 
swabs 

SERS AgNPs 1 fM Liang et al. 
(2021) 

N1, N2 and 
RPP30 genes 

RNA Pharyngeal and 
sputum samples 

Fluorescence detection Au seed-coated 
magnetic core 

– Cheong et al. 
(2020) 

ORF1ab and N 
gene 

ssDNA primers Artificial samples SPR AuNPs – (W. S. Zhang 
et al., 2021) 

RdRp, ORF1ab, 
E and N genes 

DNA probes Artificial samples colorimetric/SERS/ 
fluorescence 

AuNPs 0.58 pM, 2.17 
pM, 1.11 pM. 

Diao et al. 
(2021) 

SARS-CoV-2 
virus 

– RNA Artificial samples Colorimetric detection AuNPs 50 RNA copies/ 
reaction 

Jiang et al. 
(2021) 

S, E, M Protein 
antigens 

Antibody Nasal and Throat 
Swabs 

Colorimetric detection AuNPs – Ventura et al. 
(2020) 

– S Antibody and 
DNA probes 

Throat swabs and 
sputum samples 

Fluorescence detection Europium-chelate- 
FNPs 

1000 TU ml− 1 Wang et al. 
(2020) 

– Antibody nasopharyngeal 
aspirates 

SERS AuNPs 2.56 fg/mL Cha et al. 
(2022) 

ORF1ab, E and 
N antigen 

Monoclonal 
antibody and Probe 
DNA 

Nasopharyngeal swab Fluorescence detection europium-chelate 
FNPs 

– Diao et al. 
(2021) 

– Antibody Nasopharyngeal 
swabs 

SPR Sialic acid-Au NPs – Alfassam et al. 
(2021)  
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acridine orange (AO), M) and integrated silica nanoparticles (Chaibun 
et al., 2021). Peng et al. developed an electrochemical sensor to monitor 
SARS-CoV-2 RNA, in which the presence of a target sequence triggers 
the catalytic hairpin assembly circuit and subsequently begins terminal 
deoxynucleotidyl transferase-mediated DNA polymerization. As a result, 
several lengthy single-stranded DNA products can be generated. Due to 
electrostatic adsorption, these negatively charged DNA products can 
hybridize with many positively charged electroactive molecules. The 
inclusion of Ru(NH3)6

3+ resulted in a considerable improvement in 
electrochemical signals for sensitive detection of SARS-CoV-2 RNA. The 
biosensor’s capacity to discriminate was tested using complicated 
matrices as well as clinical samples from patients (Y. Peng et al., 2021). 

7. Optical biosensing platforms for SARS-CoV-2 detection 

Optical biosensor is a powerful tool in viral infection detection 
because of its sensitivity, reliability, and selectivity, which eliminates 
the necessity of nucleic acid amplification. Previously, optical methods 
were employed to detect HIV, Ebola, norovirus, and influenza viruses. 
The optical biosensor comprises a transducer and bioreceptor to probe 
the interaction between the bioreceptor and target. The optical trans-
ducer converts the biological event into an optical signal by absorption, 
transmission, reflection, refraction, amplitude, frequency, or light in 
response to the physical/chemical change created by the biorecognition 
element. Most of the optical-based approaches for SARS-CoV-2 identi-
fication methods uses antibody-antigen interaction and probe sequence 
hybridization. Only a few optical biosensors for viral detection are now 
on the market to the best of our knowledge. More work is required to get 
these innovations from the lab to the market. This review looks at 
various optical methods and their uses in SARS-CoV-2 detection 
(Table 3). Among the biosensing approaches plasmonic-based approach 
is promising for the POC measurement of SARS-CoV-2 (Mejía-Salazar 
and Oliveira, 2018). It allows label-free, fast, and real-time detection of 
biological analytes. The rapid development in the field of nano-
biotechnology has created an infinite number of possibilities for the 
development of new diagnosis technologies, particularly the emergence 
of nanofluorescent materials, which offers a wide range of opportunities 
for the application of novel fluorescence detection techniques. Optical 
biosensing strategies based on fluorescence colorimetric, SERS and 
SPR-based measurements provide quick and high-sensitivity biological 
detection capabilities, which are critical for detecting SARS-CoV-2 in a 
timely manner (Xu et al., 2022). 

7.1. Colorimetric sensors 

Colorimetric sensors are among the most sophisticated and 
outstanding devices for POC measurement of SARS-CoV-2 (Maddali 
et al., 2021). Colorimetric approach can detect the presence of certain 
compounds through a ligand-target complex, and it creates a colour shift 
that may be seen with the naked eye or by a simple portable optical 
detector (Choi et al., 2018). The colour changes in optical detection 
strategy are caused by noble metal NPs, metal oxide NPs, carbon 
nanotubes, and conducting polymers (CPs)(Song et al., 2011). Metal 
oxide NPs and carbon nanotubes can change the colour by stimulating a 
peroxidase substrate response or by having inherent peroxidase activity. 
A colour shift caused by conformational transitions or aggregation may 
be seen in various CPs. On the other hand, AuNPs are the perfect par-
ticles for colorimetric detection of SARS-CoV-2 because of their colour 
may be modified by their aggregated or non-aggregated orientation (Liu 
et al., 2018). In this regard, Ventura et al. demonstrated a colorimetric 
based biosensor for detecting S, E and M proteins using colloidal AuNPs 
modified with specific antibodies targeting multiple SARS-CoV-2 pro-
teins (S, E, and M proteins). The method can be adapted to detect viral 
load in throat and nasal swab samples (Ventura et al., 2020). Recently, 
naked-eye-based colorimetric detection of the whole virus particle 
(SARS-CoV-2) was developed by immobilizing AuNPs with N-gene 

specific thiol-modified antisense oligonucleotides (Fig. 6A). The assay 
did not produce any significant drift in the presence of MERS-CoV RNA 
and showed a LOD of 0.18 ng/μL (Moitra et al., 2020),Similarly, Kumar 
et al. utilized AuNPs to detect the RNA-dependent RNA polymerase 
(RdRp) gene of SARS-CoV-2 by forming an oligo probe-target hybrid. It 
leads to a change in colour from pink to blue in assay containing naso-
pharyngeal RNA sample. The assay colour did not change from pink 
when the test included COVID-19 negative subjects or human papillo-
mavirus (Kumar et al., 2022). All these assays involve using AuNPs as 
signal generating probes for visible detection. 

7.2. Fluorescence based sensor 

Wang et al. developed an amplification-free nucleic acid lateral flow 
strip to detect SARS-CoV-2 RNA in less than 1 h. The assay utilizes DNA 
probes specific to ORF1ab, E protein and N protein regions, and the 
europium chelate-based fluorescent nanoparticle labelled monoclonal 
antibody complex. The assay achieved sensitivities of 100% and speci-
ficities of 99% for throat swab and sputum samples (Daming Wang et al., 
2020). Nanoparticles also act as fluorescent signal generating probes. 
Single-walled carbon nanotubes (SWCNT) based optical detection 
principle was demonstrated by Pinals et al. for S protein detection. The 
sensor was constructed by non-covalently functionalizing SWCNTs with 
ACE2 for tuning the binding affinity with spike protein. The sensor ex-
hibits turn-on response (up to 73%) in the presence of S protein particles 
within 5 s of exposure (Pinals et al., 2021). Recently, Chen et al. reported 
a sensitive and fast approach in the form of lateral flow immunoassay 
(LFIA), which could anti-SARS-CoV-2 (IgG) in human serum (Chen et al., 
2020). Lanthanide-doped polystyrene nanoparticles integrated with re-
combinant nucleocapsid dispensed nitrocellulose membrane was used to 
bind and measure specific IgG. Quantum dots (QDs) are the one among 
candidate nanomaterial with a good dispersion, stable quantum activity 
and outstanding photoluminescence performance. For example, Barda-
jee et al. developed a CdTe–ZnS QDs were used in conjunction with DNA 
to precisely detect the COVID-19 virus’s DNA or RNA using the FRET 
technique. The QDs-DNA functions as a donor molecule, while the 
BHQ2-DNA was synthesized to operate as an acceptor molecule in the 
FRET process. When coupled with target RNA, BHQ2-DNA can 
completely quench the fluorescence of QDs-DNA in 25 min at an exci-
tation of 325 nm. (Bardajee et al., 2022). In the recent study Alexaki 
et al. have reported on the development of an upconversion 
nanoparticles/graphene-based biosensor for the quick detection of viral 
oligonucleotide (Fig. 6B). An oligonucleotide is used to functionalize the 
upconversion material. When graphene is present, the oligonucleotide 
aromatic bases will interact with the graphene oxide (GO), causing 
fluorescence to be quenched. When the target virus is present, the 
functional upconversion nanoparticles preferentially attach to the target 
RNA, minimizing fluorescence quenching. The entire detection pro-
cedure takes 30 min, and the system’s minimal detection limit is 5 fM 
(Alexaki et al., 2022). 

7.3. Surface plasmons based sensor 

Plasmonic sensing approaches detect molecular interactions by 
exploiting nanostructures distinctive optical characteristics for signal 
generation and quantification (Kussrow et al., 2011). Surface plasmon 
resonance (SPR) and localized surface plasmon resonance (LSPR) are the 
two essential methods involved in the Surface plasmons based sensing 
approaches. SPR detection can be regulated based on changes in in-
tensity, refractive index, wavelength, and resonance angle (Maddali 
et al., 2021). The LSPR detection approach is based on the target-ligand 
binding event causing local refractive index changes around metal 
nanostructures (Mayer and Hafner, 2011). Djaileb et al. developed a SPR 
sensors coated with polypeptide and SARS-CoV-2 recombinant S protein 
produced by several cell lines to detect SARS-CoV-2 IgG antibodies in 
clinical samples (Fig. 7A). The N protein has minimal influence on 
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antibody detection in different cell lines, but the S protein in the CHO 
cell line performs better. The biological investigation used a portable 
SPR device that can detect four samples in 30 min. SARS-CoV-2 detec-
tion also makes extensive use of optical fiber SPR biosensors (Djaileb 
et al., 2021).Peng et al. reported the detection of S protein by immobi-
lizing ACE2 receptor in ITO film using SPR based plasmonic biosensor 
(Fig. 7B). The biosensor showed excellent detection sensitivity in saliva, 

urine, and other bodily fluid (Peng et al., 2020). Utilizing a similar 
principle, Cennamo et al. reported the detection of SARS-CoV-2 S pro-
tein by immobilizing RBD specific aptamer sequence using poly-
ethyleneglycol (PEG) interface on gold nano-film deposited on a 
D-shaped plastic optical fibre (POFs) probe. The binding interaction 
between the RBD specific aptamer and the S protein was monitored by 
measuring the SPR signal changes. The optical sensor showed good LOD 

Fig. 6. (A) Visible detection of SARS-CoV-2 virus mediated by AuNPs functionalized oligonucleotides (reproduced with permission from American Chemical Society 
(Moitra et al., 2020)), and (B) Detection of the RdRp/Hel gene sequence of SARS-CoV-2 via an upconversion nanoparticles/graphene associated oligonucleotide 
based biosensor (reproduced with permission from Royal Society of Chemistry (Alexaki et al., 2022)). 

Fig. 7. (A) Schematic representation for the detection of human antibodies from diverse blood products (serum, plasma, or dried blood spots) obtained from COVID 
positive or negative persons, different SPR sensors customized with a variety of SARS-CoV-2 antigens (reproduced with permission from Royal Society of Chemistry 
(Djaileb et al., 2021)), and (B) Schematic diagram of rutile prism/BK7/ITO film/tellurene/MoS2–COOH biosensor (reproduced with permission from IOPSCIENCE 
(Peng et al., 2020)). 
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(37 nM), and preliminary tests in diluted human serum were also 
attempted (Cennamo et al., 2021). 

By combining the plasmonic photothermal (PPT) effect with the 
LSPR sensing transduction, Qiu et al. provided an alternative and 
promising strategy for the clinical diagnosis of COVID-19. Gold nano-
islands (AuNIs) surface modification with complementary DNA re-
ceptors may identify specific sequences from the SARS-CoV-2 via nucleic 
acid hybridization. The thermoplasmonic heat is created by its plas-
monic resonance frequency on the same AuNI chip to boost sensing 
capability. The localized PPT heat permits in situ hybridization of two 
identical gene sequences, improving precision and discriminating. Our 
dual-function LSPR biosensor has higher sensitivity for selected SARS- 
CoV-2 sequences, allowing the specified target to be identified 
correctly in a multigene mixture with a lower LOD up to 0.22 pM(Qiu 
et al., 2020). Funari et al. designed an Opto-microfluidic sensing plat-
form for rapid detection of antibodies against the SARS-CoV-2 spike 
protein. The sensing platform involves a microfluidic device coupled 
with an optical probe that targets the LSRP generated by gold nano-
spikes. The platform takes up to 30 min to detect antibodies in human 
plasma and buffer solution with a LOD of 0.08 ng/mL (Funari et al., 
2020). 

7.4. Surface-enhancing Raman scattering based sensor 

Surface-enhancing Raman scattering (SERS) is based on amplifying 
an analyte’s Raman response when it interacts with the surface plasmon 
of nano metals (Vo-Dinh et al., 2010). SERS has been used to identify 
influenza, Adeno, West Nile, and rift valley fever virus, among other 
things, and has more significant responses and chemical specificities 
than other optical detection methods (Luo et al., 2014). In this regard, 
Zavyalova and co-workers developed SERS based nucleic acid sensor for 
S protein using colloidal silver nanoparticles (Fig. 8A). The aptamer 

RBD-1C showed a high affinity to RBD of spike protein and was tagged 
with silver nanoparticles. A sandwich immune complex formation of 
silver nanoparticle tagged aptamer with SARS-CoV-2 antibodies leads to 
the formation of aggregates. This method presented simple, fast (7 min), 
and has a LOD of 5.5 × 104 TCID50/mL (Zavyalova et al., 2021). 
Similarly, Chen et al. developed a SERS-based aptasensor technology for 
sensing SARS-CoV-2 lysate spike protein. A DNA aptamer was employed 
as a receptor in this sensor, modified on an Au nanopopcorn surface for a 
SERS detecting substrate. Within 15 min, this approach can identify 
SARS-CoV-2 with a limit of detection (LoD) of fewer than 10 PFU/mL 
(Chen et al., 2021). The new sensor uses an ACE2-functionalized gold 
nano “forest” structure to selectively collect SARS-CoV-2, with detection 
sensitivity approaching that of a single virus (Fig. 8B). Because of the 
unusual nano “forest” structure and the strong affinity of ACE2 for the S 
protein of SARS-CoV-2, the sensor has a 106-fold improved capacity to 
enrich viruses in water. Furthermore, machine learning technologies are 
used to build viral diagnostic signal criteria and procedures. It’s ideal 
LOD for SARS-CoV-2 detection is 80 copies/mL, and the detection time is 
under 5 min, which is critical for SARS-CoV-2 clinical testing (Y. Yang 
et al., 2021). 

8. Impact of nanotechnology in electrochemical and optical 
biosensing of SARS-CoV-2 

In recent years, the outstanding developments in nanotechnology 
have created a paradigm in therapeutic methods, diagnosis, and prog-
nosis of viral infections (Saylan et al., 2019). Nanomaterials have unique 
properties, such as size, surface characteristics, multi-functionality, and 
enhanced solubility, which are being exploited in developing effective 
vaccine, drug delivery system, tissue therapies, personalised medicines, 
and rapid diagnostic tools (Maduraiveeran et al., 2018). The promise of 
nanotechnology is undeniable in the present COVID-19 pandemic 

Fig. 8. (A) Schematic representation colloidal SERS based aptasensor for spike protein measurement (reproduced with permission from MDPI(Zavyalova et al., 
2021)), and (B) Schematic representation of SERS based biosensor for the detection of SARS-CoV-2 by virus traps nanoforests and ACE2 protein composite 
(reproduced with permission from Springer (Y. Yang et al., 2021)). 
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predicament. Nanotechnology also finds applications in creating effi-
cient disinfectants, surface coatings, self-sterilising personal protective 
equipment (PPE) for healthcare staff to prevent the transmission of the 
virus (Chintagunta et al., 2021). As the COVID-19 is a highly 
human-human transmittable infection, an accurate and sensitive POC 
device that can rapidly detect the infection is essential for on-site 
monitoring. Nanotechnology offers numerous solutions for addressing 
the challenges associated with the biosensing devices. During biosensor 
device construction, their reactive capacity in proportion to their bulk 
shape is crucial. Nanomaterial’s size and shape can be readily custom-
ised for surface modification/immobilization with various receptors via 
covalent or non-covalent bonding. This can improve biosensing char-
acteristics such as low detection limit, high sensitivity, selectivity, and 
rapid response against target (Tang et al., 2021). The size of metals and 
metal oxide nanoparticles are significantly suitable for biosensors due to 
their unique optical and electric properties (Sahoo et al., 2007). 

Nanomaterial-based diagnostic devices amplify detection signals 
suitable for sensitive, rapid, and cost-efficient POC methods for identi-
fying SARS-CoV-2 target molecules and identifying COVID-19 (Moral-
es-Narváez and Dincer, 2020). Tunable optical, electrical, mechanical 
and magnetic properties of nanomaterials offer unique function in 
biosensor design and application (Mokhtarzadeh et al., 2017). Trans-
ducer surface modification is an essential aspect of the biosensor fabri-
cation process. This enhances the affinity and interaction between 
biorecognition elements and target analytes. Nanomaterials also help 
build biosensors with large biocompatible areas for immobilizing bio-
receptors like antibodies, enzymes, DNA, cells, and proteins (Ozer et al., 
2019). In some cases, the nanomaterial interfaces act as signal gener-
ating probes, where the biorecognition process (receptor-target binding) 
does not produce any detectable signals. In this case, the variations in 
the in-situ signal produced by the nanomaterial interface are probed for 
quantifying the biorecognition process. In recent years, several nano-
materials have been investigated to measure SARS-CoV-2. Among the 
wide varieties of nanomaterials, carbon nanotubes (CNTs), 
graphene-based nanomaterials, metals (Au, Ag, Pt, Pd, Co, Fe and Cu), 
metal oxides (ZnO, TiO2, SnO2 and MnO2), in different nano-
architectures such as nanowire, nanorods, nanofibers, nanocubes, 
MXenes and quantum dots (QDs) have been explored (Fig. 9). The 

following sections of this review will discuss the use of nano-sized ma-
terials for COVID-19 infection prevention, early detection, and treat-
ment options. This evaluation may assist in highlighting the benefits of 
nanotechnology to exploit their potential in resolving the pandemic 
crisis. Among the various nanoarchitectures, gold-based nano architec-
tures have been widely employed to develop viral detection methods 
due to their unique photonic, catalytic, and electric capabilities and the 
molecular interaction selectivity of several biomolecules such as anti-
bodies, RNA aptamers, and single-stranded DNA (Draz and Shafiee, 
2018). They also have exceptional multiplexing capabilities, making 
them ideal for optical and electrochemical signal transducers to create a 
biosensor. Mahari et al. described an electrochemical biosensor based on 
Au nanoparticles for detecting spike S1 protein antigen within ~1 min 
(Mahari et al., 2020). Due to their high electrical conductivity, Au-NPs 
were employed as signal amplifiers in this biosensor. 

Similarly, Xiang et al. reported the biosensing efficacy of colloidal 
gold immunochromatographic (GICA) and enzyme-linked immunoassay 
(ELISA) kits for detecting SARS-CoV-2 infection (Xiang et al., 2020). The 
colorimetric testing can be a simple and accurate method using AuNPs 
for detecting viral infections. Thiol-modified AuNPs were hybridized 
with aptamers for preventing salt aggregation. As a result, colour 
changes occur within 10 min in the platform, visually detectable by 
naked eye (Kumar et al., 2022; Moitra et al., 2020). Lateral flow 
immunoassay (LFIA) system based on AuNPs can detect SARS-CoV-2 
antibodies (IgM and IgG) in blood samples within 15 min. Further-
more, the LIFA showed high clinical detection sensitivity (88.66%) and 
specificity (90.63%), suggesting that it might be helpful in the early 
identification of COVID-19 infections (Li et al., 2020). Throughout the 
pandemic, we have seen significant progress in developing COVID-19 
diagnostic tests. However, the hunt for novel solutions continues, and 
nanosensor have made significant contributions to transform in vitro 
systems into in vivo systems. The action of the corona protein, which 
occurs when a specific set of biomolecules quickly covers the surface of 
NPs in the presence of biological fluids, has been widely researched for 
nanosensor fabrication. NPs can work by precisely attracting viral bio-
markers when functionalized with the right receptors (Santiago, 2020). 
As a result, success in nanosensor research requires an ultra-sensitive 
detection system that can combine low-cost, high-speed, and simple 
equipment. In this context, the future for these nanotechnology-based 
systems is to investigate the integration of multiple features (optical, 
magnetic, electrochemical, and biological) to encourage a more precise 
and rapid diagnosis response (Z. Zhu et al., 2020). Fusion technology 
integrating the nanomaterial science and instrumentation engineering 
has been intensively researched in creating novel detection systems, as 
evidenced throughout this article. 

9. Conclusion and future prospect 

Socio-economic turbulence due to COVID pandemics has triggered 
global government to create policies to rationalise regulatory guidelines, 
prompt the research communities to design novel therapeutic ap-
proaches, cost-effective diagnostics to combat the impacts of pandemics. 
Priorities were devoted to developing PPEs/kits, disinfectants, anti-viral 
drug repurposing, and vaccine development to support the healthcare 
needs. Researchers were continuously working to create novel tech so-
lutions such as robotics enabled accelerated supply, online surveillance, 
e-learning and mobile app for improving the lifestyle and behavioural 
health. At the initial stage of the pandemic, clinical investigations like 
chest CT, ultrasound sonography and X-ray provided insights on COVID- 
19 disease state. In the meantime, multiplexed analysis of inflammation- 
associated biomarkers such as procalcitonin, C-reactive protein, 
interleukin-6, and ferritin enables clinicians to rationalise theragnostic 
to manage COVID-19. The key biomarkers like lactate dehydrogenase, 
aspartate aminotransferase and alanine aminotransferase were played 
crucial role in assessing the pathophysiological status of COVID-19 
victims. The primary concern in healthcare is the structural and 

Fig. 9. Various type of nanoarchitectures involved in SARS-CoV-2 diagnosis by 
electrochemical and optical methods. 
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genomic mutations in SARS-CoV-2, which leads to the generation of new 
variants such as delta, gamma, omicron and XE. The variants facilitate 
infection with high transmissibility, virulence, mortality, and a decrease 
in the effectiveness of public health and social measures (Chaudhary 
et al., 2022a). WHO is collaborating with various health agencies 
worldwide to monitor and assess the evolution of SARS-CoV-2 to un-
derstand the impact of the virus mutation on human health. Researchers 
have developed a massive library for monitoring how mutation to the 
virus can affect the specificity of the biorecognition elements used in the 
biosensors. Their library has ~8000 amino acid substitutions for 
possible virus mutation, which enable the design of novel synthetic 
biorecognition elements. These libraries may help to detect future mu-
tations and guide for optimal prevention methods (Frank et al., 2022). 

Though RT-PCR-based confirmatory assays of S, E, and N-gene are 
regarded for SARS-CoV-2 testing, there is still a need for advancement in 
signal amplification based on multiplex tandem PCR(Attwood et al., 
2020). RT-nanopore target sequencing provides complementary detec-
tion feasibility for COVID-19 and other respiratory viral variant detec-
tion (Wang et al., 2020). These techniques provide detailed information 
of the infection state. The gold standard RT-PCR testing comprises the 
massive part of observation testing, worn out the working environment, 
and takes 4–6 h to get results. The accuracy of RT-PCR results principally 
depends on the type of clinical sample involved in the diagnosis process 
between oropharyngeal swabs (32–48%), nasopharyngeal swabs (63%), 
bronchoalveolar lavage fluid (79–93%), sputum (72–76%) and stool 
(29%)(Kevadiya et al., 2021). 

In response to the limitations posed by RT–PCR testing for POC 
measurement and for screening asymptomatic COVID-19 cases, devel-
oping rapid and inexpensive techniques for selective and early detection 
of the viral infection is imperative. Early detection of viral infection can 
help slow down the spreading rate and improve the efficacy of treatment 
protocols to control the viral load. Targeting appropriate regions of 
SARS-CoV-2 is essential in devising protocols for early detection and 
timely treatment. The viral genomic sequence (UTR) and replication 
complexes (ORF1a and ORF1b) are the most critical targets for selective 
detection of the virus in the early stages (first week) because, during the 
initial stage of viral infection, the nucleic acid present in the biofluids. 
The levels of viral particles will decrease in the upper respiratory tract 
after 7–10 days of the onset of the infection, which leads to negative 
swab results among the SARS-CoV-2 infected people. Many portable 
LFIA methods have been developed for detecting nucleic acid, S, N, and 
E proteins and SARS-CoV-2 antibodies. These portable paper-based de-
vices allow the measurement of antibodies or protein biomarkers in less 
than 30 min. However, the LFIA face sensitivity issues when the con-
centrations of SARS-CoV-2 are less in the clinical specimen. In such 
cases, the nucleic acid amplification strategy is coupled with the LFIA, 
where the LFIA is used to interpret the nucleic acid amplification results 
visually. In some patients, the antibodies were detectable as early as one 
day after the onset of infection. Detection of antibodies in serological 
samples is recommended only after two weeks of the infection (Lino 
et al., 2022). The antibodies (IgG and IgM) levels are relatively lower 
during the first two weeks of infection and gradually increase till the 
next four to five weeks. After that, the concentration of antibodies de-
creases and reaches the initial level. The levels of IgG increase rapidly in 
the initial state compared to the IgM levels. Another challenge for 
serological antibody testing is the low immunity response from people 
with mild infections. 

The selection of suitable POC measurement for early diagnosis also 
depends on the concentration of the target biomarker as well as the 
sampling protocol involved. There is room to develop smart sensors for 
rapid and selective detection of SARS-CoV-2 structural proteins at the 
picomolar levels for enabling POC for early diagnosis. Nanomaterials- 
based electrochemical and optical biosensors showed to be potential 
in detecting SARS-CoV-2 biomarkers in various clinical specimens, 
including nasopharyngeal swabs, saliva blood and sputum samples. Ef-
forts have been made to simplify the sample collection protocol required 

for screening and diagnostics. The clinical specimens should be collected 
in a non-invasive manner and must be used with no further purification 
to enable the point-of-site measurement. The current practice of col-
lecting naso/oro-pharyngeal swab specimens often require further pu-
rification. This can be avoided by the utilization of alternative sample 
collection protocols, such as saline gargles from frontline workers 
(Goldfarb et al., 2021). Peptide-based electrochemical biosensor 
devising customized human ACE-2 oligopeptides as probe to target re-
ceptor binding domains of spike proteins of SARS-CoV-2 directly from 
naso/oro-pharyngeal swab specimens (Kumar et al., 2023). Amplifica-
tion free electrochemical based detection of DNA or RNA specific region 
sequences from RdRp and spike protein (Spike) region genes of 
SARS-CoV-2 using gold nanotriangles functionalized with oligonucleo-
tides (del Caño et al., 2022). These methods can detect SARS-CoV-2 
within 10 min–100 min and enables early and rapid diagnosis of 
COVID-19 cases. Sensor to sensor variation is another issue in going 
forward with the clinical manifestation of electrochemical sensors. For 
instance, POC detection performed using screen-printed electrodes 
produces variation corresponding to electrode batch, contamination, 
and surface roughness, affecting the overall quantification result. 
Although visual-based diagnostic tools provide POC solutions, the 
plasmonic-based optical detection techniques require specialized in-
struments for the detection process that create issues related to porta-
bility. The intervention of nanomaterial scientists’ and biomedical 
researchers offered valuable contributions in POC diagnosis. Stability of 
the bioreceptors and cost per assay hamper the utilization of POC 
detection of SARS-CoV-2. Accessibility and affordability of any clinical 
investigation, whether provided by the government agencies as a part of 
a welfare scheme or at paid services, genuinely depend on the 
cost-effectiveness of the assay method. Therefore, the efficient design of 
materials (nanomaterials, bioreceptors and transducers) involved in 
device construction is critical for widespread applications. Nucleotide 
based detection strategies and emerging CRISPR system-based approach 
aid in producing efficient, stable, and cost-effective bioassays. 

To oversee the COVID-19 widespread, intelligent new technologies 
are required to perform diagnostics, therapeutics, and optimisation of 
expectation. Machine learning (ML), artificial intelligence (AI), and IoT 
approaches would help in analysing the large set of sensor data through 
novel strategies to create meaningful results (Kaushik et al., 2020). The 
advancement in the nanotechnology makes a modern era of biosensor 
and face mask respirators for the airborne disease driven by 
Internet-of-nano-things (IoNT) (Chaudhary et al., 2022b, 2022c). The 
MXene hybrid biosensors are demonstrated as an intelligent and smart 
sensing techniques for the infectious disease detection. In addition, these 
techniques integrated with 5G communication, 
internet-of-medical-things (IoMT), artificial intelligence (AI), and data 
clouding to make new era toward hospital-on-chip (HOC) solutions 
(Chaudhary et al., 2023). The post COVID monitoring is another 
important problem the world facing, after diagnosed with SARS-CoV-2, 
patients experiencing certain difficulties in their life like short of 
breathing, irregularity in bowel movement, loss of appetite, diabetes, 
sleep disorder, fatigue, muscle, and joint pain, etc. These make a global 
concern over the government to monitor the people but monitoring huge 
amount of people in the hospitals is not a possible one. As a result, there 
is an urgent need for a quick monitoring system that is broadly acces-
sible to the public and allows for repeated high-precision assessments. 
Wearable sensor technology may be a viable technique for identifying 
post-COVID-19 disorders and developing COVID-19 infection in large 
population. COVID-19 management system in which wearable sensors 
monitor users’ body temperature, heart rate, oxygen level, and respi-
ratory rate, which may then be processed in real time for risk assessment 
and eventual diagnosis (Cherusseri et al., 2022; Khondakar and Kaushik, 
2023). Nevertheless, nanotechnology and materials engineering science 
can provide promising opportunities for better POC diagnosis in both in 
vitro and in vivo conditions. Lessons learned from the COVID-19 
pandemic gave us future research perspectives in managing any 
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remerging pathogenic disease. This includes but is not limited to the 
need for collaborative research integrating bioinformatics, material 
science, and electronics experts to reach a global-standard diagnostic 
device. As a result, efforts should be undertaken to enhance this tech-
nique to reap the rich payoff in the fight against the COVID-19 
pandemic. Furthermore, a low detection limit, high stability, and 
quick reaction time may be achieved using the POC devices, thanks to 
surface modification of sensing electrodes and recombinant technology. 
However, this may not be the case in clinical analysis. Factors such as 
LOD, stability, and response time may not be as promising when the 
sensing device is challenged for clinical specimen analysis. The sensi-
tivity and selectivity of the POC biosensing platform are highly reliant 
on multiple variables, including antigen, antibody, protein, nano-
materials, and other biomolecules (Srivastava et al., 2021). These pa-
rameters play an active role and, as a result, can considerably impact the 
overall performance of nanomaterials-based biosensing devices. As a 
result, developing new nanomaterials enabled biosensing devices for 
SARS-CoV-2 detection necessitates a strong theoretical and experi-
mental understanding of these aspects, which must be thoroughly 
investigated. We are still in the early stages of nanomaterials-enabled 
biosensing technology for COVID-19 diagnosis and in-depth research 
on nanotechnology enabled theragnostic is still required. Finally, it 
would be technically advantageous to build universal 
nanomaterials-based biosensors coupled with synthetic bioreceptors as 
an alternate tool for detecting SARS-CoV-2 infection in clinical samples, 
such as urine, blood, saliva, and nasopharyngeal swabs. These findings, 
connected to sampling, sample collection duration, and active infection 
against post-infection seroconversion, helps in mitigating the issues 
associated with the current generation of POC sensing devices. 
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