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Reconstruction of the tumor spatial
microenvironment along the malignant-
boundary-nonmalignant axis

Zhenzhen Xun1,2, Xinyu Ding1,2, Yao Zhang3, Benyan Zhang4, Shujing Lai2,
Duowu Zou3, Junke Zheng5, Guoqiang Chen 6, Bing Su 1,2, Leng Han 7 &
Youqiong Ye 1,2

Although advances in spatial transcriptomics (ST) enlarge to unveil spatial
landscape of tissues, it remains challenging to delineate pathology-relevant
and cellular localizations, and interactions exclusive to a spatial niche (e.g.,
tumor boundary). Here, we develop Cottrazm, integrating ST with hematox-
ylin and eosin histological image, and single-cell transcriptomics to delineate
the tumor boundary connecting malignant and non-malignant cell spots in
tumor tissues, deconvolute cell-type composition at spatial location, and
reconstruct cell type-specific gene expression profiles at sub-spot level. We
validate the performance of Cottrazm along the malignant-boundary-
nonmalignant spatial axis. We identify specific macrophage and fibroblast
subtypes localized around tumor boundary that interacted with tumor cells to
generate a structural boundary, which limits T cell infiltration and promotes
immune exclusion in tumor microenvironment. In this work, Cottrazm pro-
vides an integrated tool framework to dissect the tumor spatial micro-
environment and facilitates the discovery of functional biological insights,
thereby identifying therapeutic targets in oncologic ST datasets.

The tumormicroenvironment (TME) consists of a variety of resident or
infiltrating host cells (e.g., malignant cells, immune cells, and stromal
cells) andnon-cellular components (e.g., secreted factors, extracellular
matrix proteins), all of which have important effects on tumorigenesis,
progression, and metastasis1–4 and are associated with response to
immune checkpoint blockade (ICB) therapy3,5–8. However, the TME
varies greatly by location and tissue, including cellular composition

and cell-cell interactions. The tumor boundary is a niche composed of
malignant cells in the outermost circle of solid tumor and non-
malignant cells that are closely adjacent in spatial architecture, brid-
ging these distinct spatial regions. Examples of these distinct bound-
aries include tumor-specific keratinocytes (TSKs) residing within a
fibrovascular niche at leading edges9, multiple tumor statuses in
prostate cancer10 and infiltration of immune cells in the tumor
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boundary in liver cancer11. Although cellular composition, cell inter-
actions and molecular network regulation of the tumor boundary all
have profound effects on TME remodeling, the tumor boundary has
been subjectively described by scientists or pathologists based on
immunohistochemistry (IHC) staining data without clear criteria or
consistent methods9. Currently, lack of experimental or bioinformatic
tools to effectively delineate the tumor boundary. Tumor hetero-
geneity is characterized by genetic variation and copy number varia-
tions (CNVs)12–16; the CNV score calculated from spatial transcriptomic
(ST) data for distinct spots can reflect theproportionofmalignant cells
and help determine core tumor regions. Exploitation of these char-
acteristics provides an opportunity to determine the tumor boundary
that contains malignant and non-malignant cells.

The advantages of ST combined with single-cell RNA sequencing
(scRNA-seq) enable gene expression profiling coupled with two-
dimensional spatial information directly within tissues17,18. Compared
with clustering methods in scRNA-seq analysis, ST needs more com-
prehensive and integrative considerations to evaluate gene expression,
spatial location, and histological information17,19–21. Many in situ cap-
turing technologies, such as 10X Genomics Visium, utilized 5,000 bar-
coded spots with a diameter of 55–100 µm to record mRNA positions
within a 6.5 × 6.5mm capture area. This approach is liable to include
multiple homogeneous or heterogeneous cells (1–10 cells per spot)
within a spot, making it challenging to distinguish cell identities in the
mixed spots. Conventional bioinformatics tools for ST analysis typically
consider image analysis, cell-type identification, deconvolution, spatial
distribution, cell-cell communication, spatial expression patterns, the
interplay of regulators in spatial location, and subcellular resolution22.
Most tools for cell type identification in ST data are based on either cell-
typemapping or cell-type deconvolution23. Cell-typemappingmethods
generally infer the most likely cell type based on gene expression or in
combination with imaging data or neighboring spots23–27 which loses
the actual cell composition. Cell-type deconvolutionmethods generally
depend on scRNA-seq data as a reference to infer the cellular compo-
sition in each spot or location18, but do not consider the location of
spots and the morphological characteristics, which may neglect the
impactof spatial structureoncellular composition18,23. In addition, there
is currently no effectivemethod to reconstruct the expressionmatrix of
different cell types in the same spot with high resolution, which limits
research on the interaction among different cell types in the same spot
and the identification of potential targets for specific cell type markers
in spatial architecture. Here, we show Cottrazm, an integrated tool
framework able to construct the microenvironment around the tumor
boundary based on spatial transcriptomics by 10× Genomics Visium
platrform. Cottrazm determines the tumor boundary connecting the
malignant and non-malignant cell spots (Cottrazm-BoundaryDefine). ST
data are adjusted based on the morphological characteristics of the
samples. Then the spots of the tumor core are determined according to
clustering of the morphologically adjusted expression matrix and the
high CNV characteristics of the tumor. Next, a hexagonal system is used
to continuously extrapolate the neighbors of tumor core spots and
calculate theUMAPdistance fromadjacent spots to the tumor centroid.
Thismethod is able to determinewhether the neighbor spot is tumor or
boundary (Bdy). By integrating scRNA-seq, spatial transcriptomics, and
the location of spots to generate signature score, enrichment score, and
topics, Cottrazm is subsequently able to deconvolute the cellular
composition of the spots (Cottrazm-SpatialDecon). Finally, Cottrazm
reconstructed cell type-specific gene expressionprofiles at the sub-spot
level based on spatial transcriptomics and scRNA-seq reference
(Cottrazm-SpatialRecon). By using simulated spatial transcriptomics
data, we exhibited the performance of Cottrazm by predicting the cell-
type proportions of spots and sub-spot cell type-specific gene expres-
sion profiles to a high accuracy and sensitivity. Importantly, we applied
13 ST datasets in frozen tissues across six cancer types and three ST
datasets in formalin-fixed, paraffin-embedded (FFPE) tissues across two

cancer types to define the tumor boundary, deconvolute the cellular
composition of the tumor spatial microenvironment (TSME) and
reconstruct high-resolution cell type-specific transcriptomics. Further,
we combined these data with cell-cell interaction and functional
enrichment analysis which revealed that Macro-SPP1 and Fib-APSN are
enriched in the tumor boundary across cancers and finally identified
potential therapeutic targets in the tumor boundary.

Results
Cottrazm: Construct tumor boundary microenvironment based
on spatial transcriptomics
Cottrazm aims to construct themicroenvironment of tumor boundary
based on spatial transcriptomics, single-cell transcriptomics and
hematoxylin and eosin (HE)-stained histological images (Fig. 1; see
Methods). It consists of three core functions: determining the tumor
boundary (Cottrazm-BoundaryDefine), deconvoluting spatial tran-
scriptomics (Cottrazm-SpatialDecon), and reconstructing a spatial
gene expression matrix for sub-spots (Cottrazm-SpatialRecon). For
Cottrazm-BoundaryDefine, we performed the spatial morphological
gene expression (SME) normalization algorithm24, using neighbor
information (spatial location) and morphological distance to normal-
ize gene expression of ST data, and obtained a morphologically
adjusted expression matrix of spatial transcriptomics. Then, we clus-
tered spots using the K-nearest neighbor (KNN) algorithm based on
the morphologically adjusted expression matrix and calculated the
normal score based on immune features (see Methods) to obtain
values for the cluster within normal tissue (Supplementary Fig. 1a, b).
The malignant core was assumed to have the highest CNV scores and
composed of the highest proportion of malignant cells. CNV scores
were used to separate malignant cells from non-malignant cells in
single cell RNA-seq13–16, Cottrazm then identified clusters with greatest
copy number variation by InferCNV15 as the core spots of malignant
spots (Supplementary Fig. 1c, d). Cottrazm arranged spatial spots on
hexagonal lattices and calculated the Manhattan distance between
spots, and thereby identified the neighboring spots of the tumor core
where the Manhattan distance was less than a liner model fitted radius
(see Methods). Furthermore, according to the uniform manifold
approximation and projection (UMAP) distance to tumor centroid,
Cottrazm infers layer by layer from core spots of malignant cells using
the hexagonal system to determine the identity of a spot as malignant
(Mal) spots or tumor boundary (Bdy) spots. When all neighbors of
malignant spots are not malignant, the extrapolation process is
exhausted and the remaining spots are labeled as non-malignant
regions (nMal), which are neither Mal spots nor Bdy spots.

For Cottrazm-SpatialDecon, Cottrazm generated 1) a signature
score matrix: specific expressed genes from each cell type in scRNA-
seq were utilized as signatures and then signature scores for each spot
were calculated; 2) enrichment score matrix: the enrichment score of
cell types from scRNA-seq in each spot by parametric analysis of gene
set enrichment (PAGE) analysis28, due to it more sensitive to detect a
larger number of significantly altered gene sets and suitable for various
sequencing platforms25,28; and 3) topic: integration of the KNN clus-
tering result and location information of malignant regions, tumor
boundary, and nonmalignant regions. Then, cell types for each topic
were determined based on the signature score and enrichment score
matrices. Finally, the cell type composition of spots was deconvoluted
by dampened weighted least squares (DWLS)29, which can accurately
estimate rare cell types and properly adjust the contribution of each
gene29 and have great performance on cell type deconvolution23.

For Cottrazm-SpatialRecon, we reconstructed cell-type specific
gene expression profiles (GEPs) at sub-spot level. We calculated the
featureweight of each cell type according to the feature’s contribution
to each cell type in the scRNA-seq reference, then calculated the fea-
ture expression of sub-spots containing a certain cell type according to
the cell proportion from deconvolution results and feature weight. In
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addition, Cottrazm also provides downstream analysis functions,
including visualization of the above three components, differentially
expressed genes, functional enrichment of tumor boundary, and the
identification of therapeutic targets in the tumor boundary.

Cottrazmdetermined three distinct spatial regions fromSTdata
We performed Cottrazm-BoundaryDefine to delineate the malignant
(Mal) region, tumorboundary (Bdy) andnon-malignant (nMal) regionof
ST data. We used 12 samples across six cancer types from frozen tissue
sections and three samples across two cancer types from FFPE tissue
sections according to the hexagonal system (Fig. 2a, Supplementary
Fig. 1e, f, and Supplementary Table 1), including colorectal cancer3

(CRC, n = 3), breast cancers (BRCA, n = 2), clear cell renal cell
carcinoma30 (ccRCC, n = 1), hepatocellular carcinoma11 (HCC, n =4),

intrahepatic cholangiocarcinoma11 (ICC, n = 1), ovarian cancer (OV,
n = 1), and squamous cell carcinoma (SCC, n = 1)9. All samples had clear
tumor boundaries to distinguish the malignant region and normal tis-
sue regions after extrapolating less than five layers (Supplementary
Fig. 1e). Since 10x Visum in FFPE samples is based on probe sets
designed to target specific sequences of RNA, unlike 10× Visum in fro-
zen samples which capture mRNA without bias, we also performed
Cottrazm-BoundaryDefine in FFPE samples. We observed a clear tumor
boundary in three samples with FFPE tissue sections, including BRCA
(n = 1) and ccRCC (n = 2, Supplementary Fig. 1f) samples. We further
assess the CNV score among the boundary spots, their first inner and
outer circle of malignant and non-malignant spots, respectively. We
found CNV scores are significantly higher in malignant cell spots,
whereas lower CNV scores were observed for boundary spots and non-
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Fig. 1 | Schematic representation of the Cottrazm workflow. Step-by-step illus-
tration of the Cottrazm pipeline is as follows: 1. Delineation of tumor boundary.
Initially, based on neighboring spot information and morphological distances of
HE-staining images, Cottrazm normalizes ST gene expression data to obtain a
morphologically adjusted expressionmatrix. Then clustered by k-nearest neighbor
(KNN) algorithm, clusters are identified using copy number variation by InferCNV
which define the core spots of malignant cells. Further, Cottrazm arranged spatial
spots on hexagonal systems, extrapolated layer by layer from core spots of
malignant cells and determined the identity of spots according to UMAP distance
to tumor centroid as malignant cell (Mal) spots or tumor boundary (Bdy) spots.
When all neighbors ofMal spots are not classed as tumor tissue, the extrapolation is
completed. Remaining spots are therefore labeled as nMal. 2. Deconvolution for
each spot, Cottrazm generated a signature score matrix from each cell type in the

scRNA-seq dataset. Enrichment score matrices in each spot were then analyzed by
parametric analysis of gene set enrichment (PAGE) analysis, and each topic was
combinedwith the KNN clusters and location information. Then, cell types for each
topic were determined based on signature score and enrichment score matrices.
Finally, the cell type composition of spots was deconvoluted by dampened
weighted least squares (DWLS). 3. Reconstruction of cell type-specific gene
expression profile (GEPs) at sub-spot level. Featureswereweighted in each cell type
according to the feature contribution in each cell type in the scRNA-seq reference,
then feature expression of sub-spots with a certain cell type was calculated by the
cell proportion as estimated from the deconvolution results and feature weight.
Cottrazm can subsequently be followed by further analysis, including sub-spot GEP
analysis, cell-cell interactions or identification of potential druggable targets in the
tumor boundary.
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malignant spots (Fig. 2b), suggesting that spots in the tumor boundary
contained a low percentage or absence of malignant cells. To validate
the characteristics of these three regions, we assessed the tumor sig-
nature score of these six cancer types based on the tumor-specific
signatures of CRC3,31–33, HCC11,34,35, BRCA36–38, OV39,40, ICC35,41,42, and
ccRCC43–45 (see Methods, Supplementary Table 2), and found the

malignant spots had the highest signature scores. Lower scores were
observed in the boundary spots, while the non-malignant spots had the
lowest signature scores (Fig. 2c, d, Supplementary Fig. 2a), suggesting
that our boundary definition is robust.

To validate the concordance of tumor boundary predicted by
Cottrazm and annotated by pathologist, We obtained an spatial
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transcriptomics of SCC performed by 10X Genomics platform and the
HE staining with leading edge annotated by pathologist in previous
study9 (Supplementary Fig. 2b). Then we asked the professional
pathologist to help us annotate the tumor boundary in representative
HE stainingwhichused in our original study, including BRCA, CRC, and
HCC (Fig. 2e, Supplementary Fig. 2b). Then, we imported the outlined
tumor boundary layer into R and converted into an unordered set of
points (pixel coordinates), each point defining a position on the tumor
boundary layer. Further, we calculated pairwise distances between
spots of ST and tumor boundaryoutline by KNN (dbscan R package) to
find the minimum distance from a spot to the closest outline
(Fig. 2e–g, Supplementary Fig. 2b–d). We considered the tumor
boundary spot predicted by our tool Cottrazm ismatch to the location
of pathologist-annotated tumor boundary outline when their distance
is less than one spot size. Our result showed highly consistency
between predicted tumor boundary spot and pathologist-annotated
tumor boundary outline, ranging from 91.30% in SCC to 99.73% in CRC
(Fig. 2h), suggesting the great performance of our tool on the deli-
neation of tumor boundary.

Cottrazm deconvolutes cellular composition and reconstructs
cell type-specific gene expression profiles at sub-spot level
To evaluate the performance of Cottrazm-SpatialDecon, we created a
simulated mixture of cells with known cell-type labels from a CRC
scRNA-seq dataset, based on the spatial locations obtained from
Cottrazm-BoundaryDefine and characteristics of cell composition in
the TME (see Methods). We benchmarked Cottrazm-SpatialDecon
against other published ST deconvolution tools, including
Stereoscope46, Cell2Location47, RCTD48, SpatialDWLS49, STRIDE50, and
SPOTlight51, as well as methods for bulk RNA-seq, including
CIBERSORTx52 and MuSiC53. We assessed the performance on simu-
lated ST data by these deconvolution tools: the accuracy of Cottrazm
was > 0.75 across T cells, fibroblast cells, B/Plasma cells, endothelial
cells, normal epithelial cells and myeloid cells, respectively, reaching
0.98 inmalignant cells (Fig. 3a). The F1 score of Cottrazm-SpatialDecon
ranged from 0.67 in normal epithelial cells to 0.98 in malignant cells,
and specificity ranged from 0.62 in T cells to 1 in fibroblast cells
(Fig. 3a). These performance parameters suggested Cottrazm-
SpatialDecon can correctly classify cell types with high recall/sensi-
tivity and precision, and can correctly predict the absence of cell types
in spots. Cell type predictions of SpatialDWLS and RCTD show com-
parable accuracy, F1 score, and specificity (Fig. 3a). We performed
Spearman’s correlation on cell type-level and spot-level data compar-
ing the prediction of Cottrazm-SpatialDecon and actual labels in the
simulated dataset. The Spearman correlation coefficient (R) value of
Cottrazm-SpatialDecon prediction and true proportion ranged from
0.55 in T cells to 0.92 in malignant cells (Fig. 3b), indicative of accu-
rately distinguishing cell types. The median Spearman’s correlation
coefficient (R) of Cottrazm-SpatialDecon prediction and true propor-
tion of spots is 0.88, indicating the predicted value of Cottrazm-

SpatialDecon had the highest concordance with the ground truth in
cell composition of spots, and outperformed Stereoscope (median
R = 0.81), and Cell2Location (median R =0.83), SpatialDWLS (median
R = 0.86), CIBERSORTx (median R =0.81) and RCTD (median R =0.80;
Fig. 3c). In addition, we used Pearson correlation coefficient value to
assess the concordance of prediction by Cottrazm and other eight
deconvolution tools and true proportions, we obtained Cottrazm-
SpatialDecon have high performance, and Stereoscope, Cell2Location,
RCTD48, SpatialDWLS, and STRID these tools have comparable per-
formance to Cottrazm in correlation analysis (Supplementary Fig. 3a,
b). Further, we assessed the similarity between the prediction and the
ground truth of cell types in each spot by Jensen–Shannon Divergence
(JSD) distance metric, where a smaller value indicates a higher simi-
larity between the predicted and true dataset (Fig. 3d). Cottrazm-
SpatialDecon achieved median JSD values of 0.089 which are com-
parable with Cell2Location, SpatialDWLS, RCTD, and CIBERSORTx of
0.032, 0.07, 0.061, and 0.067, respectively. These consistently
superior performance metrics demonstrated the enhanced accuracy
and robustness of Cottrazm-SpatialDecon.

To evaluate the performance of Cottrazm-SpatialRecon, we
obtained an additional independent CRC scRNA-seq cohort54 as
training dataset for an independent validation and executed Cottrazm-
SpatialRecon to obtain GEPs at sub-spot level of CRC simulated mix-
tures that we created above. Both the prediction of Cottrazm-
SpatialRecon and the true cellular composition of simulated mix-
tures contain sevendistinct cell types, includingT cells,fibroblast cells,
B/Plasma cells, endothelial cells, normal epithelial cells, myeloid cells,
and malignant cells (Supplementary Fig. 3c). We integrated the sub-
spot matrix for prediction and truth and found consistent cell type
clustering results (Fig. 3e, f). We performed Spearman’s and Pearson’s
correlation based on the predicted results and the true average
expression of each gene in each sub-spot cell type: Spearman’s cor-
relation coefficient (RS) and Pearson’s correlation coefficient (RP) of
Cottrazm-SpatialRecon prediction and true proportion ranged from
0.77 in endothelial cells to 0.86 in malignant cells and myeloid cells,
0.81 in T cells to 0.98 in myeloid cells, respectively (Fig. 3g, h). The
results suggest that the prediction of Cottrazm-SpatialRecon can
reflect cell type-specific gene expression profiles at the sub-spot level
with high fidelity and high-resolution.

Cottrazm characterizes cellular composition along the
malignant-boundary-non-malignant spatial axis
To demonstrate the efficient application of Cottrazm to real spatial
transcriptomics data and dissect the spatial microenvironment along
the malignant-boundary-non-malignant axis, we have classified CRC
tissues into malignant, tumor boundary, and non-malignant regions
through Cottrazm-BoundaryDefine. We then deconvoluted the cellular
composition of CRC tissues in these three regions by Cottrazm-
SpatialDecon and compared different compositions among the
regions (Fig. 4a). We found that malignant spots typically consisted of

Fig. 2 | The delineation of tumor boundary in multiples cancers. a Tissue slides
were annotatedbymalignant spots (Mal, red), boundary spots (Bdy, blue), andnon-
malignant spots (nMal, orange), including colorectal cancer (CRC, n = 3), breast
cancer (frozen sample, n = 2), clear cell renal cell carcinoma (ccRCC, n = 1), hepa-
tocellular carcinoma (HCC,n = 4), intrahepatic cholangiocarcinoma (ICC,n = 1), and
ovarian cancer (OV, n = 1). b Boxplot showing the copy number variations (CNV)
score calculated by R package infercnv in three regions defined in a. The sample
size in each group is labeled in x-axis. c Spatial feature plots of signature score of
malignant cells in CRC, BRCA, HCC, ICC, OV, and ccRCC. d Boxplot showing the
tumor signature score in three regions defined in a. Sample size for different
cancers (CRC1: nMal = 963, nBdy = 713, nnMal = 2781; CRC2: nMal = 844, nBdy = 728,
nnMal = 2320; CRC3: nMal = 502, nBdy = 185, nnMal = 970; BRCA1: nMal = 2378,
nBdy = 487, nnMal = 933; BRCA2: nMal = 2208, nBdy = 722, nnMal = 1797; ccRCC:
nMal = 398,nBdy = 525,nnMal = 1084;HCC1:nMal = 969,nBdy = 280,nnMal = 1542;HCC2:

nMal = 1125, nBdy = 582, nnMal = 2965; HCC3: nMal = 1229, nBdy = 201, nnMal = 3328;
HCC4: nMal = 2036, nBdy = 185, nnMal = 1892; ICC: nMal = 1468, nBdy = 520,
nnMal = 2666; OV: nMal = 1822, nBdy = 801, nnMal = 870). e HE stained images with
pathologist-annotated tumor boundary of HCC. Scale bar, 500 μm. f Tumor
boundary annotated by pathologist (black) and boundary spots annotated by
Cottrazm (Blue). g Line segments of the shortest distance from boundary spots
annotated by Cottrazm to the pathologist’s boundary. h Bar plot showing the
proportion of boundary spots which distance to pathologist’s boundary is less than
or equal to one spot. A two-sided Wilcoxon signed-rank test was used to assess
statistical significance inb and d. The boxes inb and d show themedian ±1 quartile,
with the whiskers extending from the hinge to the smallest or largest value within
1.5× the IQR from the box boundaries. Source data are provided as a Source data
Fig. 2a–d.
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malignant cells, but were absent of T cells or other cell infiltration. The
boundary spots consisted of myeloid cells, fibroblast cells, and endo-
thelial cells, whereas non-malignant spots excluded malignant cells
and had various cellular composition characteristics depending on the
tissue location (Fig. 4a, b). Tertiary lymphoid structures (TLSs) are
ectopic lymphoid organs that develop in non-lymphoid tissues at sites

of chronic inflammation, including tumors, and represent a promising
avenue for cancer immuotherapy30,55–59. Spots in TLSs consisted of a
greater percentage of T cells and B/Plasma cells, and lower percentage
of stromal cells and myeloid cells (Fig. 4a, b). The normal epithelium
tissue-related spots had a high proportion of epithelial cells and fewer
immune cells and fibroblast cells, while stromal-related spots had high
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percentages offibroblast cells and endothelial cells, and fewer immune
cells (Fig. 4a, b). We further deconvoluted the cellular composition in
other cancer types using frozen or FFPE tissues, including HCC, BRCA,
and OV (Supplementary Fig. 4a–d). There was a high fibroblast, mac-
rophage, and endothelial cell component at the tumor boundary,
suggestive of cellular composition commonalities in tumor bound-
aries across cancer types. To further validate the location of T cells, we
compared CD3 staining of invasive ductal carcinoma (IDC) tissue
section of breast cancer (Supplementary Fig. 4e), we obtained the
processed image which highlight CD3 (cyan) staining from a previous
study26. Then, we compared deconvolution results of Cottrazm pre-
dicted T with CD3 staining in IDC sample. We found the location of
predicted T cells by Cottrazm was highly correlated with CD3 fluor-
escence (R =0.56,p < 2.2e−16, SupplementaryFig. 4f–i). In addition,we
examined the expression of CD3-encoding genes of the IDC tissue and
found consistency with the CD3 fluorescence (Supplementary Fig. 4k).
This suggests the tumor boundary acts as a barrier, lymphocytes such
as T and B cells are restricted from infiltrating into the malignant
region, thus a microenvironment of immune exclusion is formed.
Nevertheless, further characterization of cellular composition in var-
ious cancer types with larger sample size is necessary.

To refine the subpopulation characteristics of the above cell
types, we defined sub-spot as different cell types in each spot, and
further performed Cottrazm-SpatialRecon to reconstruct cell type-
specific GEPs at sub-spot level using ST data from multiple cancer
types. We integrated sub-spot GEPs data for different tumor samples
with the harmony algorithm60. In total, we obtained 15,555 sub-spots in
three CRC ST samples, and 43,813 sub-spots in four HCC ST samples.
We performed graph-based clustering based on harmony-corrected
principal components and annotated each cluster with their bio-
markers and visualized by the UMAP analysis. We found that the dif-
ferent cell types of the deconvolution can be significantly separated by
sub-spot GEPs and that all cell types were present in all tumor samples
(Fig. 4c, Supplementary Fig. 5a), suggesting concordance of Cottrazm-
SpatialDecon and Cottrazm-SpatialRecon. We further annotated the
cell subtypes based on sub-spot GEPs. Myeloid cells can be divided in
to three subtypes in CRC tissues, including monocyte/dentritic cells
(Mono/DC) defined by CLEC10A, S100A8, and S100A9 expression,
FOLR2+ macrophages (Macro-FOLR2), and SPP1+ macrophages (Macro-
SPP1) (Fig. 4d, Supplementary Fig. 5b, c). Compared with malignant
and non-malignant regions, Macro-SPP1 was significantly enriched in
the tumor boundary, whileMacro-FOLR2 tended to be enriched in non-
malignant region and Mono/DC cells tended to be enriched in the
region surrounding the TLS (Fig. 4e–g, Supplementary Fig. 5d, e). To
further explore the biological function of differential localization of
different macrophages, we found that Macro-SPP1, which localized
along the boundary, mainly functionally enriched in cellmigration and
metabolic, while Macro-FOLR2, localized around TLS in the non-
malignant region,mainly functionally enriched in antigenpresentation
(Supplementary Fig. 5f). The functional phenotypes of tumor asso-
ciated macrophage in pan-cancer can be defined as dichotomous

functional phenotypes, including angiogenesis and phagocytosis61,62.
Using the angiogenic and phagocytic signatures, we assessed the
functional phenotypes of two macrophage subtypes with differential
localization. We found angiogenesis signature genes preferentially
expressed inMacro-SPP1, while phagocytosis signature genes enriched
in Macro-FOLR2 (Supplementary Fig. 5g). In addition, Macro-SPP1
showed significantly higher M2 score than Macro-FOLR2 consistent
with previous study63, suggesting the key roles of Macro-SPP1 in the
tumorigenesis (Supplementary Fig. 5h).

To validate the differential distribution of myeloid cell subtypes
in other cancer types, we classified subtypes of myeloid cells
according to the clustering of sub-spot GEPs in HCC tissues, includ-
ing monocytes, TGFB1+ macrophages (Macro-TGFB1), Macro-SPP1,
and MACRO+ macrophages (Macro-MARCO) (Fig. 4h, Supplementary
Fig. 5i–l). Macro-SPP1was also significantly enriched in the boundary
region in HCC, while other myeloid subtype patterns were distinct
from CRC. The non-malignant regions of HCC were tended to be
enriched of Macro-MARCO macrophages while the non-malignant
regions of CRC were Macro-FOLR2 enriched (Fig. 4e–g and i, k,
Supplementary Fig. 5k–l). Macro-TGFB1 tended to be enriched in the
malignant region of HCC, but this macrophage subtype was not
identified in CRC (Fig. 4i, k). We speculated that Macro-SPP1 is a
critical cellular composition in the tumor boundary, but other sub-
types ofmacrophageswere not consistently enriched inmalignant or
non-malignant regions. To validate this hypothesis, we further
examined the signature score of Macro-SPP1 in BRCA, ccRCC, and
OV, and found consistent results suggesting that Macro-SPP1 was
significantly enriched in boundary regions in the above cancer types
(Supplementary Fig. 5m).

To explore the differences in fibroblast subtypes along the
malignant-boundary-non-malignant axis, we stratified fibroblasts into
APSN+

fibroblasts (Fib-APSN), SFRP2+ fibroblasts (Fib-SFRP2), and
myofibroblast (Myofib) which express the MYLK marker (Fig. 4l, Sup-
plementary Fig. 5c). We identified significant enrichment of Fib-APSN
and Fib-SFRP2 in tumor boundary and non-malignant regions,
respectively (Fig. 4m–o, Supplementary Fig. 6a, b).Myofib enrichment
tended towards non-malignant spots (Fig. 4m–o). For the function
roles of fibroblast subtypes Fib-APSN and Fib-SFRP2, we found that Fib-
ASPN, which tends to localize along the tumor boundary, is highly
active in pathways that contribute to the formation of desmoplastic
structures, including extracellular matrix assembly, collagen fibril
organization, and collagen biosynthetic process (Supplementary
Fig. 6c), while Fib-SFRP2 localized in the non-malignant region func-
tionally enriched in collagen degradation andmesenchymemigration.
To validate the fibroblast subtype Fib-APSN, we explored fibroblast
subtypes in HCC and found Fib-APSN was also tended to enrich in
boundary region of the HCC samples, therefore fibroblast phenotype
within the non-malignant region was disease-specific (Fig. 4p–s, Sup-
plementary Fig. 6d, e). Furthermore, the Fib-APSN signature score was
enriched in the boundary region of BRCA, OV, and ccRCC samples
(Supplementary Fig. 6f). In addition, we obtained samples with

Fig. 3 | Benchmarking Cottrazm’s performance of deconvolution and recon-
structions using simulated data. a Benchmarking classification performance of
Cottrazm and other eight deconvolution tools on simulated mixtures, including
accuracy, F1 score, and specificity. b A benchmark of the ability to distinguish
different cell types across different deconvolution tools. Spearman’s correlation
was performed to evaluate the correlation between the predicted proportions and
the ground truth for each cell type. c Benchmark of deconvolution tools’ con-
sistency of cell type distribution between the predicted proportions and the
ground truth for each spot. The box plot reflects the overall distribution of
Spearman’s correlation calculated in each simulated spot (n = 2700) for each
method. The boxes show themedian ±1 quartile, with the whiskers extending from
the hinge to the smallest or largest value within 1.5× the IQR from the box
boundaries. d Proportion prediction performance of the different deconvolution

tools on simulated mixtures by Jensen–Shannon Divergence (JSD). e, f UMAP pro-
jections of cell type specific gene expression profiles (GEP) at sub-spot level by
integrating the predicted proportions and the ground truth of simulatedmixtures.
e colored by cell types, f colored by the prediction (orange) and the truth (green).
g Heatmap showing the concordance between cell type proportions measured by
Cottrazm and the ground truth of simulated mixtures by Spearman’s correlation.
h Scatter plots depicting concordance between cell type proportionsmeasured by
the two-sided Spearman’s (Rs) and Pearson’s (Rp) correlation coefficient of Cot-
trazm and the ground truth of simulated mixtures, including tumor cells, T cells,
myeloid cells, fibroblast cells, endothelial cells, and B/Plasma cells. UMAP Uniform
Manifold Approximation and Projection. Source data are provided as a Source data
Fig. 3a–h.
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immunostaining from human protein atlas (HPA)64, and found the
stained sample from CRC patient (id: 3264) we found the ASPN stain
tended to enrich at tumor boundary, while POSTN, representative
marker of another subtype of fibroblasts, tended to enrich at tumor
stroma (Supplementary Fig. 6g). Consistent results were observed in
the sample of BRCA patients (id: 1939, Supplementary Fig. 6h). These
results demonstrate that Cottrazm can spatially dissect the cellular
composition and cell-type signatures along the malignant-boundary-

non-malignant axis. We revealed that Macro-SPP1 and Fib-APSN are
preferentially enriched in the tumor boundary across cancer types.

Crosstalk of Macro-SPP1, Fib-ASPN, and malignant cells in the
tumor boundary contribute to immune exclusion
To investigate differential biological processes occurring at the tumor
boundary niche, we performed enrichment analysis using boundary-
specific gene expression to identify extracellular matrix (ECM)
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organization, collagen fibril organization, cell-substrate adhesion,
positive regulation of chemotaxis, and response to TGF-β, which
contributes to the formation of desmoplastic structure3,65–69. These
were enriched in both CRC and HCC tumor boundaries (Fig. 5a, b,
Supplementary Fig. 7a, b), suggesting that ECM related pathways may
promote tumor boundary structure formation. We further identified
the top 100 specifically expressed genes in the tumor boundary of the
three CRC ST samples which overlapped significantly (Supplementary
Fig. 7c), and included SPP1, MMP11, and COL1A1 (Fig. 5a). Pathway
enrichment for these top 100 genes also highlighted ECM organiza-
tion, further implicating the ECM in tumor boundary formation (Sup-
plementary Fig. 7d). To fully dissect enrichment of genes andpathways
in the tumor boundary, we evaluated cell-cell interactions in the tumor
boundary niche, including the boundary spots, theirfirst inner circle of
malignant regions and first outer circle of non-malignant region,
therefore encompassing the tumor boundary and immediate sur-
roundings (Fig. 5c, d). Integrated analysis by Cottrazm-BoundaryDefine
defined the tumorboundaryandCottrazm-SpatialRecon reconstructed
subspot GEPs. We identified Macro-SPP1 and Fib-APSN, the major cel-
lular constituents of the tumor boundary, which exhibited strong
interactions with each other and significantly with tumor cells (Fig. 5e,
f). In addition, PLVAP + endothelial cells (Endo-PLVAP) were enriched in
the tumor boundary and exhibited interactions with Macro-SPP1, Fib-
APSN, and tumor cells. By contrast, other cell types beyond the tumor
boundary, such as B cells, Macro-FOLR2, Myofib, and Fib-SFRP2,
exhibited weak interactions in the tumor boundary niche (Fig. 5e, f).
We further explored the top regulatory signaling pathways in the
malignant cells, as well as inMacro-SPP1 and Fib-APSN, and established
Macro-SPP1 as themain sender of the SPP1 signaling pathway. Fib-APSN
was identified as the main secretor of collagen, and malignant cells
were the primary senders of the MIF signaling pathway (Fig. 5f, g).
Cottrazm identified various ligand-receptor signaling pathways and
ECM components as key interaction partners between the various
tumor boundary constituents (Fig. 5g).

The ST samples that were investigated typically showed low levels
of lymphocyte infiltration in malignant regions (Fig. 5h, Supplementary
Fig. 7e). Since theMacro-SPP1 and Fib-APSN enriched tumor boundaries
contribute to the formation of desmoplastic boundary structure related
to tumor immune excluded microenvironment (TIEM), these cells
potentially limit T cell infiltration into malignant regions. To test this
hypothesis, we examined the distribution of T cell infiltration and found
that killer T cells (T-KLRB1) were significantly enriched outside malig-
nant regionswhile exhausted T cells (T-HAVCR2) were enriched at the
tumor boundary (Fig. 5i); the infiltration of these cells is limited to the
malignant region. Todetermine the characteristics of TIEM,weassessed
the level of immune exclusion in tumor through using the gene sig-
nature score on the TIEM-specific tumor boundary called the immune
excluded score (ieScore). We calculated ieScore by gene set variation
analysis (GSVA)70 (seeMethods) in each patient of the CRC cohort from
The Cancer Genome Atlas (TCGA)71, and stratified patients into ieScore
high and low groups. High ieScore patients correlated with lower infil-
tration of lymphocytes and CD8+T cells (Fig. 5j). Furthermore, we

performed survival analysis and observed that high ieScore was asso-
ciated with worse overall survival (log-rank test, p=0.039) and
progression-free survival (log-rank test, p =0.04, Fig. 5k). These results
suggest that the specific tumor boundary signature in cancer patients
associated with worse prognosis and tumor immune exclusion. Based
on the identification of 37 up-regulated and20down-regulated genes in
the tumor boundary compared to other regions, we queried this sig-
nature and subsequently mapped the genes to the Connectivity Map
(CMAP)72. Using this method, we identified candidate genes which are
known to be druggable, for example genes with the highest negative
connectivity score from the mapped drugs included TGF beta receptor
which is coupled to the inhibitor D-4476 (Supplementary Fig. 7f). These
drugs couldbepotentially used to target the tumorboundary todisrupt
the barrier structure and enhance T cell infiltration into malignant
regions, thereby increasing patient susceptibility to immunotherapy.

Discussion
Tumor tissues have complex spatial architecture, and the rigorous
analysis of the spatial microenvironment is critical to understanding
tumorigenesis, progression mechanisms and discovery of therapeutic
targets. However, most ST tools are developed based on ST datasets
from developmental tissues (e.g. mouse brain posterior brain, human
heart)27,49,51,73,74, which have relatively clear annotation of cell types. ST
tools developed specifically for application within the tumor micro-
environment are lacking. In this study, we present Cottrazm, a tool
specific for tumor spatialmicroenvironment analysis, to determine the
tumor boundary, deconvolute cellular composition, and reconstruct
cell type-specific gene expression profiles at sub-spot level by inte-
grating spatial transcriptomics with scRNA-seq data and histology
imaging. Furthermore, we utilized our method to demonstrate the
biologic processes and cell-cell interactions at the tumor boundary
thus identifying multiple potential therapeutic targets in this local
microenvironment.

We have presented Cottrazm-BoundaryDefine for the definition of
tumor boundary. Through evaluation of CNV and tumor expression
characteristics, cross-validation with the cellular composition decon-
voluted by Cottrazm-SpatialDecon, tumor boundary spots can be
identified with high accuracy. SNV burden is more pronounced than
the CNV burden in some cancer types (e.g., melanoma), CNV can still
distinguishmalignant regions from Bdy and nMal regions by Cottrazm
(Supplementary Fig. 1e). In future work, the more malignant cells-
related factors may need be involved to assess the tumor boundary. In
the Cottrazm-SpatialDecon section, Cottrazm applied DWLS29 to esti-
mate the cell-type composition from gene expression, compared to
SpatialDWLS49, we combined the signature score matrix and enrich-
ment scorematrix to determine signatures of cell types for each topic.
In addition, we integrated the location information into topics to dis-
tinguish the different characteristics among malignant regions, tumor
boundary, and non-malignant regions, which will improve the accu-
racy of cell type selection. Cottrazm-SpatialRecon enables robust gene
expression profiling of cell types at sub-spot level. In our study, we
reconstruct high-resolution profiling of gene expression in sub-spots

Fig. 4 | Spatial distribution of cell types along the malignant-boundary-
nonmalignant axis. a Spatial scatter pie plots representing the proportions of the
seven cell types predicted by Cottrazm in whole CRC ST slide, malignant spots,
boundary spots, and nonmalignant spots. Scale bar, 500μm. b Bar plots repre-
senting the proportions of the seven cell types predicted by Cottrazm in each spot.
c UMAP projections of sub-spots in three CRC ST dataset predicted by Cottrazm,
each dot denotes one sub-spot; color represents cluster origin (left panel), patient
donors (middle panel), and the region of origin (right panel). d–s The character-
istics of myeloid subtypes and fibroblast subtypes in the ST dataset. The UMAP
projections of subtypes of myeloid cells in CRC (d) and HCC (h), subtypes of
fibroblasts in CRC (i) and HCC (p). Box plots showing proportion of myeloid cell
subtypes of CRC (n = 3, e) and HCC (n = 4, i), fibroblast subtypes of CRC (n = 3, m)

and HCC (n = 4, q) in each region. Spatial feature plots showing the expression of
SPP1 and FOLR2 in CRC (f), SPP1 andMARCO in HCC (j),ASPN and SFRP2 in CRC (n),
ASPN andBGN inHCC (r). Predictedproportionwithin each capture spot forMacro-
SPP1, Macro-FOLR2, and Mono/DC in CRC (g), Macro-SPP1, Macro-MARCO, and
Mcro-TFGB1 in HCC (k), Fib-ASPN, Fib-SFRP2, andMyofib in CRC, Fib-ASPN and Fib-
BGN in HCC (s). Color indicates the percentage of cell type. Scale bar, 500 μm in
g, k, o, and s. The boxes in e, i, m, and q show the median ±1 quartile, with the
whiskers extending from the hinge to the smallest or largest value within 1.5× the
IQR from the box boundaries. A two-sided unpaired t-test was used to assess sta-
tistical significance in e, i, m, and q. Source data are provided as a Source data
Fig. 4a–d, h, i, l–m, p–q.
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levels of tumor ST data to help distinguish cell-cell interaction in the
same spot. This function is introduced in Cottrazm to help in-depth
dissection of the tumor spatial microenvironment. These results
demonstrate the advantages of Cottrazm in dissecting the tumor
spatial microenvironment, regardless of whether samples were pro-
cessed as frozen or FFPE tissues as in the 10X Genomics Visium-based
ST datasets. However, Cottrazm predicted tumor boundary is

composed of spatial spots, the thickness of predicted boundary is
correlated with the size of spot size of different technology. In Cot-
trazm, the diameter of spatial spots and the distance of neighbored
spots were relatively determined by the spot size on sequencing slide
and the resolution of image. Relative diameter can be applied to
variable sequencing resolutionwhile the absolute distance needs to be
re-adjusted according to different resolution of image and spatial spot,
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Fig. 5 | Characterization of microenvironment in tumor boundary. a Rank-
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c d, and h. Source data are provided as a Source data Fig. 5a–g, i.
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which has certain limitations. With the advantage of ST technology,
most ST datasets have high resolution and spot of tumor boundary
contain few cells. We will continue to focus on tumor ST data gener-
ated via other technologies with higher resolution to further improve
the performance of our tool on multiple ST platforms.

Despite the presence of tumor-infiltrating lymphocytes in HCC,
CRC, OV, and BRCA samples, these cancer types have very low
response rates to ICB therapy75–80. Most ST datasets show low infil-
tration of lymphocytes in the malignant region and the T cells around
tumor boundary express exhaustion markers (Fig. 5i and Supplemen-
tary Fig. 4). Cottrazm combines functional enrichment and cell-cell
interaction analysis, and identified that Macro-SPP1 and Fib-APSN cells
were associated with worse prognosis. These cell types accumulate
proximal to, and interactwith,malignant cells, inducing ECM secretion
which promotes the barrier structure to maintain separation of
malignant and immune cells, thus protecting malignant cells from
CD8+ killer T cells. The enrichment of Macro-SPP1 or Fib-APSN cells at
the tumor boundary may be a common characteristic in ICB-
insensitive cancers, that deserve further investigations.

In summary, Cottrazmprovides a computational framework for ST
data in the TSME.We have described the demonstration of Cottrazm to
analyze spatial location, cellular composition, gene expression profil-
ing, and mining of biological process, cell interactions, and potential
therapeutic targets in the tumor boundary. Our package offers an
approach for TSME analysis based on the malignant-boundary-non-
malignant axis. From a translational perspective, Cottrazm can accu-
rately estimate the cellular composition and gene expression profiles in
sub-spots to provide potential therapeutic strategies through targeting
of regulatory factors in specific local microenvironments.

Methods
Implementation of Cottrazm
Cottrazm-BoundaryDefine: Delineation of tumor boundary
Morphologically adjusted expression matrix of spatial tran-
scriptomics. Cottrazm takes expression matrix of spatial tran-
scriptomics (ST) and HE-stained histological image as input. Spatial
gene expression data is stored in an M×N matrix with M spots and
unique molecular identifier (UMI) counts for N genes, and the (x,y)
two-dimensional (2D) spatial coordinates of each spot. Based on spots
2D spatial coordinates, the HE-stained histological images were
extracted and converted to an M×D matrix with M spots and 2048
pixel utilizing ResNet50, a well-established convolutional neural net-
work (CNN) model for image classification in computer vision and
ImageNet, a dataset containing millions of images. We performed
principal component analysis (PCA) to reduce spatial gene expression
and pixel matrix are to 50 PCs, respectively. We employ SME normal-
ization algorithm from Stlearn24 to adjust gene expression according
to the spot image matrix and obtain morphologically adjusted gene
expression matrix (Morph).

Identification of core spots of malignant cell. Cottrazm employed
standard pre-processing forMorph, including log-normalizationwith a
size factor 10,000 for each cell, and expression values z-score trans-
formation for each gene across all spots. After running PCA dimen-
sional reduction, KNN algorithm of Seurat package (v4.1.0)81 was
applied to cluster spatial spots. And the UMAP algorithm of Seurat
package (v4.1.0) was applied to visualize cell subtypes.

A series of immune-related signatures, including pan-immune
markers (PTPRC), pan-T cell markers (CD2, CD3D, CD3E, CD3G, CD5,
CD7)82 and B cell markers (CD79A, MS4A1, CD19)83 were used to score
spot. The average valueof these features inMorphweredenoted as the
normal tissue expression score (NormalScore) of each spot. Based on
the clustering results, Cottrazm selected the CNV in this cluster with
highest median NormalScore was defined as CNV reference. Then, the
pyramidal smoothing algorithm of package Infercnv15 (v1.8.1) was

employed to obtain preliminary infercnv object based on either assay
Spatial or Morph, Hidden Markov Model (HMM) was used to assess
CNV level for remained spots. Tomore accurately classify spatial spots
and distinguish malignant spots from non-malignant spots, Cottrazm
employed hierarchical clustering based on tree partitioning in package
InferNCV with random trees method to divide all spots into 8 clusters.
Reference spots were labeled as “Normal”. According to the gene with
no CNV variation was scored 3, the gene with CNV amplification was
scored greater than 3 and the gene with CNV deletion was scores less
than 3, for genej of spoti, its CNV score was denoted as csi,j, the CNV
score of spoti is denoted as CSi, it is defined as follows:

CSi =
X
j

∣csi, j � 3∣ ð1Þ

The CNV scores of each spot were added to clustered Seurat
object. In combination with the HE staining, CNVLabels with high
median CNV scores (usually 2–4) were included in “MalLabels”, and
spots within these labels were initially defined as core spots of
malignant spots.

Based on the clustering result, if more than half of spots in the
cluster identified as MalLable, this cluster will be defined as malignant
cluster. Cottrazm calculated the coordinates of centroid of malignant
cluster k (CiMal,k) and normal cluster (Cinormal) based on UMAP
embeddings. Then Cottrazm calculated the Euclidian distance from
spot i in malignant cluster k to CiMal,k denoted as radius to CiMal (rti,k)
and to Cinormal denoted as radius to Cinormal (rni,k). The label of spot i
(nbri) was defined according to the following rule:

nbri2k =
Mal, if rti,k<

1
3 × rni,k

unlabeled, if rti,k ≥
1
3 × rni,k

(
ð2Þ

Find neighbor spots of tumor core. Cottrazm arrange spatial spots on
hexagonal lattices and applied a natural way to define the neighboring
spots. Briefly, utilize the spatial information, along each axis, using the
image pixel coordinates and corresponding array coordinates of each
spot to fit a linermodel. Cottrazm then added the distances along each
axis and multiplied this by a scaled factor to get the Manhattan dis-
tance, denoted as radius (r), the maximum distance between neigh-
boring spots. Next, for any two spots in spatial (spot i and spot j), the
Manhattan distance between them (pdisti,j) was calculated using the
image pixel coordinate. When pdisti,j ≤ r, these two spots are con-
sidered neighbors, otherwise they are not neighbors.

Calculating UMAP distance to tumor centroid in hexagon system.
Firstly, Cottrazm described malignant spots neighbored by non-
malignant spots as “lonely malignant spots” (Mall). For system com-
posed of Malli and its neighbor spots (nbri), Cottrazm took the cen-
troid of malignant cluster k to which Malli belongs as CiMal,k of the
system and the centroid of the normal cluster as Cinormal for the sys-
tem. For neighbor spot j of lonely malignant spots i (nbri, j), Cottrazm
calculated its Euclidean distances to CiMal,k and Cinormal denoted as rti,j
and rni,j respectively. Then, Cottrazm extrapolated the neighbor spot
as malignant spot (Mal) or boundary spot (Bdy) based on the com-
parison of rti, j and rni, j:

nbri,j =
Mal, if rti , j<

1
3 × rni, j

Bdy, if rti, j ≥
1
3 × rni, j

(
ð3Þ

Next, in the first round of boundary extrapolation, the optimized
malignant spots and the neighbor spots of lonely malignant spots
considered as tumor spot were regarded as new malignant spots
(MalSpotsN), in which case, all malignant spots have at least one
neighboring malignant spot. New Seurat object (TumorSTn, n means
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the round of extrapolation) composed of malignant spots and their
neighbor spots, boundary spots, and normal spots was subset from
original Seurat object with the labels (Mal, Bdy) of spots. Formalignant
spots i (Mali) in MalSpotsN and the system i composed of Mali and its
neighbor spots (nbri), Cottrazm firstly calculated the coordinate of
malignant centroid in system i, denoted as CiMal,i, then obtained the
maximum Euclidean distance from malignant spot in the system to
CiMal,i, denoted as rMal,i.

If there were less than two spots in system i labeled as Bdy, then
for the unlabeled spot j in system i (nbri,j), Cottrazm calculated its
Euclidean distance to CiMal,i and denoted as pi,j. The label of nbri,j was
extrapolated as (k was the scale factor):

nbri, j =
Mal, if pi, j<k × rMal,i

Bdy, if pi, j ≥ k × rMal,i

(
ð4Þ

If the number of spots in system i labeled asBdy is greater or equal
to two, Cottrazm calculated the coordinates of the centroid of Bdy
spots andMal spots in system i respectively and denoted as CiBdy,i and
CiMal,i. Then Cottrazm denoted the maximum distance fromBdy spots
toCiBdy,i as rBdy,i and themaximumdistance fromMal spots to CiMal,i as
rMal,i. For unlabeled spot j in system i (nbri,j), its Euclidean distance to
CiMal,i (p1i,j) and CiBdy,i (p2i,j) were calculated. The label of nbri,j was
extrapolated as (k was the scale factor):

nbri,j =
Mal, if p1i, j < k × rMal,i andp2i, j>rBdy,i
Bdy, ifp1i, j ≥ k × rMal,r orp2i, j ≤ rBdy,i

(
ð5Þ

If a spot was the neighbor of multiple Mal spots simultaneously,
once it was labeled as Mal in any Mal spot system, this spot will be
labeled asMal; otherwise, this spotwill be labeled as Bdy. After a round
of extrapolation, Cottrazm added the new label of all neighbors of Mal
spots to TumorSTn, the newly defined Mal spots will be denoted as
MalSpotsN and entered the next round of boundary extrapolation.

Until the number of MalSpotsN is less than 3, or the number of
neighbor spots of all the MalSpotsN is less than 3, or the times of
extrapolation ismore than 5, the boundary extrapolationwill stop, and
the round of extrapolation of general ST data can be 2–5 times. After
boundary extrapolation was completed, the remained spots are label
as non-malignant spots (nMal), which are neither Mal spots nor Bdy
spots which belong to the outer tumor tissue.

Tumor-specific signature score is relevance to the boundary
accuracy
To access the tumor-specific score, we applied the 10–15 markers
(Supplementary Table 2) mentioned in papers of CRC3,31–33, HCC11,34,35,
BRCA36–38, OV39,40, ICC35,41,42, and ccRCC43–45 as tumor-specific sig-
natures separately. Signature score was added to metadata of ST
dataset with “AddModulScore” function with default parameters in
Seurat. Spatial feature expression plots were generated with the
“SpatialFeaturePlot” function in Seurat package.

Cottrazm-SpatialDecon: Deconvolution of spatial spots
scRNA-seq data preprocessing. At the single-cell level, we need to
generate a signature expression matrix (sig_exp) based on scRNA-seq
data from the corresponding tissue. Briefly, differentially expressed
(DE) genes were obtained for each of the identified cell type in scRNA-
seq data using a Wilcoxon Rank Sum test from Seurat package “Fin-
dAllMarkers” function (only.pos = T, logfc_threshold = 0.25), the DE
genes for each cell type were denoted as clustermarkers_list. Then
Cottrazm calculated the mean expression of clustermarkers_list in
each cell type and retuned amatrix sig_exp with genes as rows and cell
types as columns.

Selecting cell types in topics. For deconvolution of spatial spots,
Cottrazm mainly extended SpatialDWLS and modified the way gener-
ated the binary matrix for PAGE analysis and the selection of cell types
entering deconvolution to make it more suitable for tumor data.

Generating signature score matrix, enrichment score matrix, and
topic. 1) Signature score matrix: Cottrazm used the top 25 specifically
expressed genes of each cell type in scRNA-seq reference to calculate
the signature score of each cell type in each spot based on their
average expression. 2) Enrichment score matrix: the binary matrix
(enrich_matrix) is generated according to whether gene j in clus-
termarkers_list of cell type k, the value of gene j in the column of cell
type k was 1, otherwise was 0. With enrich_matrix as input file, PAGE
method is performed to generate an enrichment score matrix con-
sisting of cell types as columns and spots as rows. 3) Topics vector is
generated by the above KNN clustering result and the spot location
information, including Mal, Bdy, and nMal.

Determining cell types for each topic based on enrichment and
signature score matrix. Calculating cutoff values of signature score
and enrichment score in each cell type, Cottrazm took the upper
quartile of the signature score denoted as cutoffsig,k and the upper
quartile of the enrichment score witch greater than zero denoted as
cutoffenrich,k. Then, Cottrazm selects the median signature score of cell
type k in all spots of topic t is greater than cutoffsig,k as candidate cell
type (ctsig,t), and selects the top two cell types with max enricht,k was
greater than cutoffenrich,k as candidate cell types (ctenrich,t). Determining
candidate cell types of topics (ctt) as follows. The number of cell types
in ctsig was denoted as n.

ctt =

ctsig,t ∪ ctenrich,t , if n≥ 2

ctsig,t ∪ max ctenrich,t , if n = 1

ctenrich,t , if n =0

8><
>:

ð6Þ

To avoid malignant spots with specific signature affecting other
cell types, Cottrazm took the union of the cell types with the 3 highest
scores of max enricht,k minus cutoffenrich,k and original ctt as final can-
didate ctt. Since spots containing the fibrous tissue are difficult to
permeate completely, these spots have low UMI count and tend to
have non-significant signature scores and enrichment scores. In this
situation, we will add stromal cells to ctt with stomal feature and
median nCount_Spatial lower than 5000.

Infering cell type composition of spots by DWLS method. A weigh-
ted least squares approach was used to infer the composition of cell
types. The weights were chosen to minimize the overall relative error
rate. And the damping constant d determined by a cross-validation
procedure was used to improve numerical stability. Cottrazm
employed the sameweights and d on spots in the same topic to reduce
technical variation. Then another round of deconvolution was per-
formed after filtering the low proportion cell types.

Evaluating Cottrazm’s performance on deconvolution of spatial
spots using simulated ST data
Simulating ST data from CRC scRNA-seq. To simulate spot-like
transcriptomic data,we generated simulated STdata fromCRC scRNA-
seq data based on the spatial location that we dissected on Cottrazm-
BoundaryDefine and cell-type distribution patterns in TME. In the
simulated ST dataset, each spot consists of a mixture of 6–10 cells
randomly picked from scRNA-seq data according to the information
provided by 10X Genomics and followed the following rules to max-
imize the simulation of the true situationof TME.Wedivided simulated
STdata intomalignant regionwith 1000 spots, tumor boundary region
with 500 spots, non-malignant region with 1000 spots, and TLS
regions with 250 spots. The cell composition of spots in each region
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based on random selection of the results obtained from Cottrazm-
SpatialDecon. Summarize UMI counts of selected cells into tran-
scriptome profiles to represent the spot’s expression profile. If the
simulating mixture had >50,000 UMI counts, we randomly down
sampled it to 50,000 UMI counts to better simulate biological situa-
tion of spatial transcriptomics data. Since the selected cells are derived
from scRNA-seq analysis and their cell type identities are known, the
resulting cell composition be considered as the gold standard for
evaluating deconvolution performance.

Evaluating performance of Cottrazm-SpatialDecon. To address how
well theCottrazm-SpatialDeconperformed,we assessed if the predicted
proportions accurately represented the true composition through
accuracy, percentage of correctly classified cell types, F1 score, com-
bined sensitivity and precision, indicating how-corrected and how-well
we are at identifying cell-types present, respectively, and specificity,
predicting cell-types at absent spot. Furthermore, we also used other
two metrics, correlation on spot-level and cell type-level, JSD distance,
to evaluate the deconvolution performance. For each cell type, Spear-
man’s correlation between the proportions of predicted and true cell
types to assess the model performance of distinguishing different cell
types. For each spot, Spearman’s correlation between cell composition
of prediction and the ground truth to assess the deconvolution accu-
racy in each spot. JSDdistancemetricwasused tomeasure the similarity
between predicted and true cell type proportions in each spot.

Benchmarking different deconvolution tools. We benchmarked
Cottrazm-SpatialDecon against other cell-type deconvolution tools of
spatial transcriptomics, including RCTD under spacexr v2.0.0,
SpatialDWLS49, STRIDE50 v0.0.2a, and SPOTlight51 v0.99.11, as well as
the ones for bulk RNA- seq, including CIBERSORTx52 under Docker
Container and MuSiC53 v0.2.0. All tools were run with default settings
specified in their documentation. Performances of these tools were
assessed as described in the “Evaluating performance” section.

Cottrazm-SpatialRecon: Reconstruction of spatial gene expression
matrix for sub-spots. Cottrazm reconstructed the gene expression
matrix of infiltrated cells as sub-spots at almost the single-cell level
according to an algorithm based on the feature weight of cell types,
spot deconvolution result, and ST feature expression. In the signature
expression matrix (sig_exp) of single cell level we obtained above, the
mean expression of feature j in cell type k was denoted as exprj,k, the
contribution of feature j to the annotation of cell type kwasdenoted as
wj,k, so we have:

wj,k =
exprj,kP
k
exprj,k ð7Þ

In the deconvolution result, the proportion of cell type k in spot i
was denoted as di,k. In the expressionmatrix of ST data, the expression
of feature j in spot iwas denoted as fi,j. So, the expression of feature j in
sub-spot k split from spot i (fi,j,k)is defined as follow:

f i,j,k =
wj,k ×di,kP
k
wj,k ×di,k

f i,j ð8Þ

Then Cottrazm synthesized the reconstructed sub-spot matrix of
ST data according to the feature of each sub-spotmatrix after splitting
and generated the reconstructed TME Seurat object with the “Cre-
ateSeuratObject” function. The cell types of deconvolution were
added to reconstructed Seurat object and the original spot id were
added as orig.ident, and the result of boundary extrapolation was
added as Location.

Reduction and clustering of reconstructed spatial TME data
For reconstructed Seurat object of spatial sub-spot, we filtered
according to certain condition (nFeature_RNA> 400 & 400
<nCount_RNA< 50,000) for downstream analysis. The filtered Seurat
object were normalized and scaled, the top 2000 most variable genes
were foundbyusing “FindVariableFeatures” function and thenused for
PCA (npcs = 30). We used “FindNeighbors” in Seurat to get nearest
neighbors for graph clustering based on top 20PCs, and “FindCluster”
(resolution = 1) to obtain cell subtypes. And the UMAP algorithm was
applied to visualize cell subtypes.

Evaluating performance of Cottrazm-SpatialRecon
Base on mixture of cell types created by “Simulating ST data from CRC
scRNA-seq” section, we used Cottrazm-SpatialRecon to reconstruct the
cell type specific gene expression profiles at sub-spot level. Then, we
merge gene expression matrix from simulating ST data and Cottrazm
prediction and utilized RunHarmonymethod in R package harmony to
remove the batch effects. FindNeighbors and FindCluster in Seurat
were used to cluster cell subtypes, and UMAPwas used to visualize the
distribution of cell types between prediction and the truth. We further
performed Spearman’s correlation to estimate the concordance
between gene expression profile of prediction and the ground truth in
each cell types.

Dependencies for Cottrazm
Other dependencies of Cottrazm including R packages magrittr
(v2.0.3), dplyr (v1.0.8),Matrix (v1.4.0), ggplot2 (v3.3.5), stringr (v1.4.0),
RColorBrewer (v1.1.3), patchwork (v1.1.1), ggtree84 (v3.0.4), BioGenetics
(v0.38.0), readr (v2.0.0), rtracklayer (v1.52.1), phylogram (v2.1.0), utils
(v4.1.0), dendextend85 (v1.15.1), assertthat (v0.2.1), reticulate (v1.22),
openxlsx (v4.2.4), scatterpie (v0.1.7), cowplot (v1.1.1), stats (v4.1.0),
quadprog (v1.5.8), data.table (v1.14.2), Rfast86 (v2.0.6), ggrepel (v0.9.1),
tibble (v3.1.6), clusterProfiler87 (v4.05.), org.Hs.eg.db (v3.13.0); and
python modules argparse (≥1.1), scanpy88 (≥1.7.1), numpy (≥1.19.5),
pandas (≥1.3.4).

Data preprocess of spatial transcriptomics
Raw sequencing data of spatial transcriptomics were quality checked
and mapped by SpaceRanger v1.1 Spatial transcriptome data were
qualitatively controlled using parameters including total spots, med-
ian UMIs/spot, median genes/spot, median mitochondrial genes/spot.
Spots used in the subsequent analysis were filtered for minimum
detected gene count of 200 geneswhile genes expressed in fewer than
3 spotswere removed. Normalization across spotswasperformedwith
the LogVMR function in Seurat.

Analysis of differentially expressed genes
The function “FindAllMarkers” in Seurat was used to identify genes
differentially expressed among clusters. The function “FindMarkers” in
Seurat was used to find differentially expressed genes between two
groups. The Welch t-test algorithm was used to identify p value of
differentially expressed genes between boundary spots and other
spots. The non-parametric Wilcoxon rank-sum test was used to obtain
p-values for comparison, as well as the adjusted p-values for all genes
in the dataset based on the Bonferroni correction.

Projection signature scores of Macro-SPP1 and Fib-APSN to ST
datasets
The top 100 differentially expressed genes of Macro-SPP1 and Fib-
ASPN separately derived from the reconstruction of CRC and HCC
datasets was overlapped to obtain the signature score for Macro-SPP1
and Fib-ASPN. Signature scores were added to metadata of ST dataset
of BRCA, ccRCC and OV with “AddModulScore” function with default
parameters in Seurat. Spatial feature expression plots were generated
with the “SpatialFeaturePlot” function in Seurat package.
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Cell-cell interaction analysis
We applied R package Cellchat (v1.1.1)89 to evaluate the interaction
weights of boundary enriched subclusters of boundary spots and its
neighbor spots, implemented with default parameters. Briefly, differ-
entially expressed signaling genes (p <0.05)werefirst identified across
cell clusters in the reconstructed ST sub-spots dataset to infer specific
cellular communications.

Tumor boundary signature score is relevance to lymphocyte
infiltration
To assess the signature score on the tumor immune exclude micro-
environment (TIEM)-specific tumor boundary, immune excluded
score (ieScore), we obtained the overlapping genes of the top
100 specifically expressed genes in the tumor boundary of the three
CRC ST samples as the signature genes. We used GSVA70 to estimate
ieScore in each patients from TCGA CRC cohort and stratified the
patients into ieScore-high and -low group based the median score,
then compared the lymphocytes and CD8+ T infiltration between
these two groups. For patients’ overall survival (OS) and progression-
free survival (PFS) data analysis, the Kaplan–Meier method and log-
rank test were used to detect differences in the survival curves
between groups. The Cox proportional hazard model was used to
assess the relative risk by setting the expression of Schwann cell
abundance as a single covariate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study made use of publicly available spatial transcriptomics, col-
orectal cancer dataset3 HRA000979 and hepatocellular carcinoma and
intrahepatic cholangiocarcinoma dataset11 HRA000437 were obtained
fromGenome Sequence Archive (GSA) under restricted access. Access
can be requested through the GSA access committee. Breast cancer
(BRCA1, https://www.10xgenomics.com/resources/datasets/human-
breast-cancer-block-a-section-1-1-standard-1-1-0; BRCA2, https://www.
10xgenomics.com/resources/datasets/invasive-ductal-carcinoma-
stained-with-fluorescent-cd-3-antibody-1-standard-1-2-0) and ovarian
cancer (https://www.10xgenomics.com/resources/datasets/human-
ovarian-cancer-whole-transcriptome-analysis-stains-dapi-anti-pan-ck-
anti-cd-45-1-standard-1-2-0) were obtained from 10XGenomicwebsite.
Renal cell carcinoma GSE175540 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE175540]30 and squamous cell carcinoma
GSE144240 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE144240]14 were obtained from Gene Expression Omnibus (GEO).
The details of all samples with spatial transcriptomics used in this
study provided in Supplementary Tables 1. For the scRNA-seq used in
this study, including processed breast cancer data (https://
lambrechtslab.sites.vib.be/en/single-cell)90, processed ovarian cancer
data (https://lambrechtslab.sites.vib.be/en/high-grade-serous-tubo-
ovarian-cancer-refined-single-cell-rna-sequencing-specific-cell-
subtypes)91, and colorectal cancer54 GSE132465, GSE132257, and
GSE144735. The bulk RNA-seq data for colorectal cancer from the
TCGA data portal (http://gdac.broadinstitute.org/), which based on
fragments per kilobase of exon model per million reads mapped
(FPKM).The simulated datasets generated in this studywere deposited
at Mendeley Data (https://data.mendeley.com/datasets/m5s3zjrs6j/1).
The lymphocytes and CD8+ T infiltration of TCGA CRC cohort were
obtained from Thorsson et al.92 (https://gdc.cancer.gov/about-data/
publications/panimmune). Source data are provided with this paper.

Code availability
The Cottrazm software package depends on R language and source
code have been deposited at https://github.com/Yelab2020/

Cottrazm93 and achieved at https://doi.org/10.5281/zenodo.751913494.
The package vignette to reproduce the process of Cottrazm is avail-
able in the same website. Other scripts used to reproduce analyses for
plotting figure are available from the author upon request.
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