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Single-cell transcriptome sequencing allows
genetic separation, characterization and
identification of individuals in multi-person
biological mixtures
Lucie Kulhankova1, Diego Montiel González1,5, Eric Bindels 2, Daniel Kling3, Manfred Kayser 1,6✉ &

Eskeatnaf Mulugeta 1,4,6✉

Identifying individuals from biological mixtures to which they contributed is highly relevant in

crime scene investigation and various biomedical research fields, but despite previous

attempts, remains nearly impossible. Here we investigated the potential of using single-cell

transcriptome sequencing (scRNA-seq), coupled with a dedicated bioinformatics pipeline

(De-goulash), to solve this long-standing problem. We developed a novel approach and

tested it with scRNA-seq data that we de-novo generated from multi-person blood mixtures,

and also in-silico mixtures we assembled from public single individual scRNA-seq datasets,

involving different numbers, ratios, and bio-geographic ancestries of contributors. For all 2 up

to 9-person balanced and imbalanced blood mixtures with ratios up to 1:60, we achieved a

clear single-cell separation according to the contributing individuals. For all separated mixture

contributors, sex and bio-geographic ancestry (maternal, paternal, and bi-parental) were

correctly determined. All separated contributors were correctly individually identified with

court-acceptable statistical certainty using de-novo generated whole exome sequencing

reference data. In this proof-of-concept study, we demonstrate the feasibility of single-cell

approaches to deconvolute biological mixtures and subsequently genetically characterise,

and individually identify the separated mixture contributors. With further optimisation and

implementation, this approach may eventually allow moving to challenging biological mix-

tures, including those found at crime scenes.
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Genetic characterization and individual genetic identifica-
tion of persons who contributed to biological mixtures is
relevant in different areas of science and society. Biolo-

gical mixtures with a contribution of more than one individual
are often collected at crime scenes. In cases with known perpe-
trators, individual genetic identification can pinpoint a perpe-
trator via comparative forensic DNA profiling1, while in those
with unknown perpetrators, genetic characterization (such as on
sex, biogeographic ancestry) can provide investigative leads to
help finding the unknown perpetrator1. Successful genetic char-
acterization and identification of individuals from mixed bio-
materials starts with accurate mixture deconvolution, i.e., the
separation of the mixed biomaterial according to the individual
contributors, which is the most crucial, but at the same time most
difficult step. Despite various attempts based on different meth-
odologies, limitations in deconvoluting biological mixtures
remain one of the major challenges of forensic DNA analysis2–6.
Moreover, mixture separation is also relevant in other areas of
biomedical research and applications, e.g., for detecting and
resolving contamination in widely used cell, tissue and organoid
cultures.

Currently, the most common technique used in forensic mix-
ture deconvolution is differential lysis7, which is applied in
mixtures involving semen cells of the male perpetrator and epi-
thelial cells of the female victim typically encountered in sexual
assault cases by analyzing vaginal swabs. However, differential
lysis often results in incomplete separation of the male and female
DNA fractions. In consequence, the resulting autosomal short
tandem repeat (STR) profile still shows a mixture of alleles from
the female victim and the male perpetrator. This makes it diffi-
cult, and often impossible, to single-out the STR-profile of the
male perpetrator from the mixed DNA profile, even if the STR-
profile of the female victim is known from reference DNA
analysis8. Targeting the male-specific portion of the
Y-chromosome offers help as it allows to specifically analyse
male-specific STRs in the mixture and works in mixtures with
large access of female DNA as in material from sexual assault
cases9. However, forensic Y-STR profiling comes with the dis-
advantage that it most often cannot differentiate between pater-
nally related men who typically share the same Y-STR profile. In
consequence, the match probability obtained for the male suspect
also applied for his paternal male relatives, and thus, conclusions
cannot be drawn on the individual level as needed in court9.
Methods for deconvoluting mixed autosomal STR-profiles
obtained from mixed stains with the help of statistical methods,
such as probabilistic genotyping, are available10–13, but their
success is limited and depends on many factors12,13. Because of
its quantitative nature, the use of next generation sequencing
(NGS), also referred as massively parallel sequencing (MPS), for
forensic STR-profiling provides some improvement in deconvo-
luting mixed STR-profiles, but its success is mainly restricted to
less complex mixtures such as those of two persons1. Moreover,
differential lysis is not suitable for resolving mixtures of semen
from different men and not for mixtures involving no sperm cells
at all.

Another major disadvantage of the current methods is that
they aim to separate the mixed DNA profile rather than separ-
ating the mixed sample according to its contributors prior to
DNA profiling. A potentially more promising mixture separation
strategy would be to first separate the biological mixture
according to the individual contributions, so that subsequent
DNA analysis for genetic identification or characterization of the
separated individual contributors becomes a technically less
challenging single-source analysis. Recently, few methods for
separating cells from a mixture prior to forensic STR-analysis
have been tested for the purpose of forensic mixture

deconvolution, such as DEPArraytm 14–16, laser capture
microdissection17, or FACS18,19. The main disadvantage of
DEPArraytm and laser capture microdissection is the low number
of cells the techniques can separate. The lower the number of
separated cells, the more likely it is to miss a minor contributor to
the mixture. Although the number of cells can be increased by use
of FACS, which requires fluorescent differences between separ-
able cell types, FACS does not work for mixtures of the same cell
type or cell types that cannot be fluorescently separated.

An overall drawback that unifies all currently available meth-
ods for mixture deconvolution is that, based on the limited
amounts of DNA obtained from crime scenes, only partial STR-
profiles are typically generated14–16,18–20. Because of the limited
number of STRs included in commercial STR kits used in forensic
practice, the match probabilities resulting from partial STR-
profiles often are not high enough for concluding individual
identification with the necessary statistical certainty accepted by
the court. Increasing the number of STR markers in forensic STR
kits is technically challenging; particularly for kits based on
widely applied fluorescently labelled multiplex PCR and capillary
electrophoresis (CE). Although targeted MPS can increase the
number of STR markers relative to CE-analysis, in case such
commercial kits become available in the future, sequencing STRs
remains a challenge due to enzyme problems with sequencing
repetitive DNA. Notably, this limitation is absent when it comes
to single nucleotide polymorphisms (SNPs), which not only allow
individual genetic identification but also genetic characterization
of individuals1,21,22. Moreover, SNPs can easily be genotyped
simultaneously in large numbers with targeted or non-targeted
MPS technologies.

In recent years, several single-cell sequencing technologies
involving large-scale genome, epigenome, and transcriptome
sequencing have emerged and are revolutionizing biological and
biomedical research and applications23. Single-cell sequencing
techniques allow pre-labelling cells prior to large-scale sequencing
and deliver ample amounts of SNP data for subsequent analysis.
In principle, such single-cell sequencing technologies are expected
to overcome the limitations of currently used methods for mix-
ture deconvolution. However, to the best of our knowledge, high-
throughput single-cell sequencing has not been applied as of yet
for mixture deconvolution with subsequent genetic character-
ization and individual genetic identification of the separated
contributors.

Here, we introduce a novel approach based on single-cell
transcriptome sequencing with a dedicated bioinformatics pipe-
line that, by analysing multi-person biological mixtures, achieves
genetic separation of the individual contributors as well as genetic
characterization and individual genetic identification of the
separated contributors, and additionally, determines the tissue of
origin of biological mixtures. In this proof-of-principle study, we
introduce our approach with and a dedicated bioinformatics
pipeline and provide the first validation results using de novo
generated scRNA-seq datasets from multi-person blood mixtures,
and in silico generated mixtures from publicly available indivi-
dual scRNA-seq datasets, involving different numbers of con-
tributors with different bio-geographic ancestries and different
ratios of the individual contributions.

Results
Bioinformatics pipeline. Aiming to genetically separate, char-
acterize, and individually identify persons who contributed to
multi-person blood mixtures from single-cell transcriptome
sequencing (scRNA-seq) data, we have developed a bioinfor-
matics pipeline called de-goulash (Fig. 1a)24. We applied de-
goulash on scRNA-seq datasets that we de-novo generated from
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multi-person blood mixtures and on in silico mixtures that we
created by mixing publicly available single-person scRNA-seq
datasets. Although there are several bioinformatic tools available
for the separation of scRNA-seq data, such as ScSplit25,
Souporcell26, or Vireo27, none of them allow streamlined
application to combine single-cell separation with genetic char-
acterization and individual genetic identification of the separated
mixture contributors. De-goulash first deconvolutes mixtures,
i.e., separates individuals who contributed to the mixtures in a
two-step approach, using two sets of SNPs automatically called
from the scRNA-seq data. The deconvoluted cell clusters, which
correspond to the individuals who contributed to the mixture as
described below, are then used to automatically call additional
SNP sets per each of the separated cell clusters for genetic
characterization regarding sex, biogeographic ancestry and
individual genetic identification of the separated mixture
contributors.

With de-goulash, after the alignment of the scRNA-seq data,
two subsequent rounds of genetic mixture deconvolutions are
applied. In the first iteration step, SNPs from mitochondrial DNA
(mtDNA) that are abundant in the scRNA-seq data are called and
used. Since mtDNA in humans is inherited uniparentally via the
maternal line, multi-allelic mtDNA SNPs are caused by the
presence of DNA from multiple individuals, with the rare
exception of heteroplasmic sites in mtDNA. Therefore, mtDNA
SNPs are suitable for mixture deconvolution given the many
mtDNA SNPs with differences between individuals belonging to
different maternal lineages (called mtDNA haplogroups). This
first iteration allows a fast computation with less resources, since
only a small subset of the large scRNA-seq data (i.e., the mtDNA
part) is processed. Informative mtDNA SNPs are selected based
on frequency across cells. To overcome the inherent problem of
missing data in scRNA-seq, which creates gaps in positions in the
SNP cell matrix, we applied the computational method
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Fig. 1 De-goulash bioinformatics pipeline for genetically deconvoluting a multi-person biological mixture with subsequent genetic characterization and
individual identification of the separated mixture contributors based on single-cell transcriptome sequencing data. Pipeline description and
application on balanced two-person blood mixture. a The de-goulash pipeline workflow for single-cell-based mixture deconvolution with pre-processing
of the scRNA-seq sequencing data in two iteration steps (mtDNA SNP-based separation followed by genome-wide SNP-based separation). b The 3D
UMAP representation of the two-step single-cell separation process of a balanced two-person blood mixture (dataset M2) involving one male contributor
of East African ancestry and the one female contributor of European ancestry. c EMPOP47 map of the worldwide distribution of mtDNA haplogroup L2a1j
inferred from haplogroup-diagnostic mtDNA SNPs of cell cluster 1 with inferred African maternal ancestry. d EMPOP map of mtDNA haplogroup U5b2b4a
inferred from haplogroup-diagnostic mtDNA SNPs of cluster 2 with inferred European maternal ancestry. e Literature map53 of Y haplogroup E inferred
from haplogroup-diagnostic Y-SNPs of cell cluster 1 with inferred African paternal ancestry. Cluster 2 did not present a Y haplogroup due to female sex, as
also revealed in the genetic sex analysis for cluster 2, while for cluster 1 male sex was obtained. f, g Biparental ancestry analysis with STRUCTURE of the
genome-wide SNPs obtained per each of the cell clusters with continental reference population data (Eur: Europeans, Eas: East Asians, Amr: Native
Americans, Afr: Sub-Saharan-Africans), the result for the cells clusters are denoted as Sample, result for cell cluster 1 demonstrates inferred admixed
biparental ancestry with a major African ancestry, result for cell cluster 2 demonstrates European biparental ancestry. The maternal, paternal, and bi-
parental genetic ancestries inferred from cell cluster 1 and 2 agree with the family-based ancestries of the two individuals involved in the mixture.
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DINEOF28. After recalculating missing data, the resulting cell-
matrix is used for cluster analysis. Uniform manifold approxima-
tion and projection (UMAP)29 is applied for dimension reduction
and visualisation. When the number of individuals in the mixture
is unknown (or presumed unknown), we first determined
the number of clusters using NbClust30, a collection of multiple
clustering methods reaching a consensus about the ideal number
of obtained cell clusters. The resulting matrix was used for
K-means clustering, using a priori determined k or k obtained
from NbClust calculation. In the second iteration step, de-goulash
uses the cell clusters established based on mtDNA from the first
iteration, to call suitable genome-wide SNPs per generated cell
cluster. After filtering for informative SNPs and recalculating
missing data, this expanded SNP list is used for the second
clustering iteration that follows the similar steps as the first
iteration.

After this two-step procedure, the pipeline uses the finally
obtained cell clusters to automatically generate additional SNP
sets per each of the separated cell clusters. These different sets of
SNPs, selected based on different principles, are subsequently
applied by the pipeline to characterize the separated mixture
contributors regarding their sex and biogeographic ancestry (by
use of population reference databases), and finally to individually
identify the separated mixture contributors by use of a whole-
exome sequencing reference database. In subsequent analyses, we
also use the scRNA-seq data to obtain information about the
tissue(s) of origin of the cells in the analysed mixture (using
differentially expressed genes in each single-cell expression data
clusters).

Mixture deconvolution and genetic characterization from
simple balanced mixtures. To test our approach, we first de novo
generated scRNA-seq data from a simple two-person balanced
blood mixture (dataset M2, Supplementary data 1), where the
contribution of the two individuals was equal. For simplicity, the
two individuals were selected to have different sex and different
continental biogeographical ancestry (African and European).
De-goulash revealed a clear separation of the cells in the mixture
into two clusters in both iterations (Fig. 1b). In the first iteration,
62 mtDNA SNPs were used and separated 21.3% of the cells in
the mixture, while in the second iteration 630 genome-wide SNPs
were applied and separated nearly all of the cells (97%) (Sup-
plementary Table 1).

To test if the two obtained cell clusters correspond to the two
contributing individuals, we first performed genetic characteriza-
tion analysis regarding sex and biogeographic ancestry for each of
the two cell clusters separately (for individual genetic identifica-
tion analysis, see below). To genetically determine sex, we first
performed Y-chromosome SNP analysis and found very low
number of Y-SNP sequencing reads for cluster 2, which we
attributed to noise or errors in alignment, while for cluster 1 we
detected ~10-fold more sequencing reads (Supplementary Fig. 1,
Supplementary data 2). Second, we looked at the expression level
of the gene coding for the non-coding RNA XIST, which is
specifically expressed in somatic cells of biological females to
inactivate one of the two X chromosomes31. After extracting the
sequencing reads that map to the XIST gene, we plotted the
expression level and found ~10-fold higher expression for cluster
2, and almost no expression for cluster 1 (Supplementary data 3,
Supplementary Fig. 2). These results together allowed us to
conclude that cell cluster 1 corresponds to a male and cluster 2 to
a female, which agrees with the a priori knowledge about one
female and one male in the blood mixture sequenced.

Genetic inference of biogeographic ancestry based on the two
cells clusters was performed separately in three different ways

using three different parts of the human genome allowing us to
conclude biogeographic ancestry on three different levels. First,
we established maternal ancestry, i.e., the person’s ancestry from
the maternal side, by inferring the mtDNA haplogroups from the
obtained mtDNA SNP data using Haplogrep232, and investigated
the geographic distribution of the identified mtDNA-haplogroups
using literature knowledge. Here we found that cluster 1 (Fig. 1b)
was assigned to mtDNA haplogroup L2a1j, which is most
commonly observed in Africa (Fig. 1c), while cluster 2 was
assigned to mtDNA haplogroup U5b2b4a, which is most
commonly found in Europe (Fig. 1d). Both of these assignments
were done with high confidence (Q= 0.9767 and 0.9139
respectively).

Second, we established paternal ancestry, i.e., a male’s ancestry
from the paternal side, by inferring the Y-chromosomal
haplogroups from the obtained Y chromosomal SNP data using
Yleaf33, and investigated the geographic distribution of the
identified Y-haplogroups using literature knowledge. For cell
cluster 1, we detected Y-haplogroup E1b1b1b2a1a1, which shows
a spatial distribution covering the Middle East and South Africa
(Fig. 1e), while for cluster 2, no reliable Y-chromosomal data were
obtained (Supplementary data 4) in agreement with the
concluded female sex of the contributor of cluster 2.

Third, we inferred bi-parental biogeographic ancestry, i.e., a
person’s ancestry from both paternal and maternal side, based on
genome-wide autosomal SNPs using STRUCTURE34 and refer-
ence population data from the public 1000 Genomes Project35. To
this end, per each cell cluster, genome-wide SNPs were filtered to
be suitable for ancestry inference based on minor allele frequency
difference between continental populations (max 0.3), and
physical distance (min 500 kb) to adjust for linkage disequili-
brium. For cell cluster 1, we obtained 53.6% African and 44.6%
European ancestry, while other continental ancestries were minor
(0.4% Native American, 0.2% South Asian), or zero (East Asian)
(Fig. 1f, Supplementary data 5). For cluster 2, we revealed an
almost complete (99.2%) clustering towards the European
ancestry (Fig. 1g, Supplementary data 5).

Taken together, and supported by each of the three separate
genetic ancestry analyses, our data allow us to conclude that the
male individual of cluster 1 is of mostly African ancestry and the
female individual of cluster 2 is of European ancestry. This
genetic finding agrees with the a priori knowledge about the
European female and African male in the sequenced blood
mixture. Notably, based on a questionnaire, the male contributor
originates paternally from East Africa. East Africa is not well
represented in the 1000 Genomes reference data used (most
African individuals are from Sub-Saharan Africa), which explains
the higher African and lower non-African ancestry components
we detected.

Furthermore, we determined the tissue of origin of the cells
present in the mixture using gene expression profile derived from
the same scRNA-seq data. Differentially expressed genes in each
of the clusters obtained using t-SNE clustering analysis were used
to determine the tissue and cell types via gene enrichment
analysis with Enrichr (Human Gene Atlas)36. We found that the
cell types in both clusters belong to different blood cell types,
which is in agreement with the a priori knowledge that the
scRNA-seq was generated from a blood mixture (Supplementary
Fig. 3a).

Since the first iteration step of the mixture deconvolution
procedure is solely based on mtDNA SNPs, one may speculate
that the single-cell separation success is influenced by the degree
of mtDNA differences between the individuals in the mixture. In
order to test the impact of more closely related mtDNA
haplogroups on the mixture deconvolution, we generated
scRNA-seq data (dataset M2-cl, Supplementary data 1) from a
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second 2-person balanced blood mixture involving the individual
2 described above (European female with haplogroup U5b2b4a)
and a new individual 3 (male with mtDNA haplogroup U5a2b4 of
maternal European ancestry but with African paternal ancestry).
Although, for technical reasons, the overall sequencing depth
obtained from this blood mixture was relatively low (Supple-
mentary data 1), a clear separation of cells into two clusters was
revealed (Fig. 2a). While in the first iteration, three clusters were
detected, which may be caused by the reduced number of mtDNA
SNPs available due to the low sequencing depth and overall noise
of the data, the second iteration demonstrated two clearly
separated cell clusters, as expected for this two-person mixture.
The results from the biological sex and biogeographic ancestry

analysis agreed with the expectations from the a priori knowledge
about the two individuals who contributed to this blood mixture
(Supplementary data 3–5, Supplementary Figs. 2–4). These
findings suggest that the degree of mtDNA differentiation of
the to be separated individuals in a mixture does not negatively
impact the success of our mixture deconvolution approach.

Mixture deconvolution and genetic characterization from
complex balanced mixtures. To further test our approach on
more complex mixtures, we performed scRNA-seq on blood
mixtures from more than two individuals. First, we generated a
3-person balanced blood mixture from three individuals of the
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Fig. 2 Mixture deconvolution and subsequent genetic characterization of the separated mixture contributors via de-goulash analysis of single-cell
transcriptome sequencing data obtained from balanced blood mixtures involving two, three, and four individual contributors, respectively. a–c 3D
UMAP representation of the single-cell separation of balanced blood mixtures involving two individuals (top, dataset M2-cl), three individuals (middle,
dataset M3), and four individuals (bottom, dataset M4), respectively. The left panels show the results after the first iteration step of mixture deconvolution
based on mtDNA SNPs. The right panels show the results after the second iteration based on genome-wide SNPs. a mixture of two European individuals
with closely related mtDNA haplogroups separated in two distinct clusters after both iteration steps, b mixture of three European individuals separated in
three distinct clusters after both iterations, c mixture of four individuals of diverse origin (individual 1&2: female, European ancestry, individual 3: male,
European ancestry, individual 4: male, maternal European ancestry, paternal African ancestry) separated in 4 distinct clusters after both iterations.
d, f, i, k Biparental ancestry analysis with STRUCTURE from autosomal SNPs obtained individual clusters from the 4-person mixture (Fig. 2c) with
continental reference population data from 1000 Genomes Project data (Eur: Europeans, Eas: East Asians, Amr: Native Americans, Afr: Sub-Saharan-
Africans) for d cell cluster 1 with inferred European biparental ancestry, f cell cluster 2 with inferred European ancestry, i cell cluster 3 with inferred
European ancestry, and k cell cluster 4 with inferred major African ancestry. e, g, j, l EMPOP map of mtDNA haplogroups inferred from mtDNA SNPs from
indiviudal clusters from the 4-person mixture in (Fig. 2c) for e cell cluster 1 with mtDNA haplogroup U5b2b4a (European maternal ancestry), g cell cluster
2 with mtDNA haplogroup T2a1a (European maternal ancestry), j cell cluster 3 with mtDNA haplogroup H11a1 (European ancestry), and l cell cluster 4 with
mtDNA haplogroup U5a2b4 (European ancestry). h–m Literature maps53 of Y haplogroups inferred from haplogroup-diagnostic Y-SNPs per two of the four
cell clusters from the 4-person mixture (Fig. 2C) for f cell cluster 2 with Y-haplogroup I2a1b1a2b1a (South-European ancestry), and m for cell cluster 4 with
Y-haplogroup E1b1a1a1a1a (African ancestry).
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same continental ancestry, all being Europeans, and performed
scRNA-seq on this mixture with subsequent de-goulash data
analysis (dataset M3, Supplementary data 1). While in the mix-
ture deconvolution, the first iteration step did not provide a clear
clustering, three distinct clusters were obtained after the second
iteration (Fig. 2b) based on the vast majority (96.5%) of the cells
(Supplementary Table 1) in agreement with the 3-person mixture.
Genetic characterization analysis from the three separated cell
clusters provided high confidence information about the sex,
mitochondrial and Y-DNA haplogroups (Supplementary data 4)
with inferred maternal and paternal ancestry, and biparental
ancestry based on genome-wide SNPs (Supplementary Fig. 4,
Supplementary data 5), which were in full agreement with the a
priori knowledge on the presence two European females and one
European male in this 3-person blood mixture.

Second, we produced a 4-person balanced blood mixture using
the aforementioned three Europeans plus one African male and
performed scRNA-seq and de-goulash data analysis (dataset M4,
Supplementary data 1). As with the 3-person mixture, the first
iteration of the mixture deconvolution did not provide clear
separation (Supplementary Table 1, Fig. 2c), while the second
iteration showed four distinct clusters using almost all (98%) of
the cells (Fig. 2c) in agreement with the 4-person mixture.
Genetic characterization analysis demonstrated the sex, hap-
logroups, and paternal, maternal and bi-parental biogeographic
ancestries as expected from the a priori knowledge of the
individuals in this 4-person blood mixture (Fig. 2d–m, Supple-
mentary Figs. 1–4, Supplementary data 2–5).

Third, we generated in silico balanced mixtures containing
5–9 individuals per each mixture (datasets M5–M9). The
5-person in silico mixture was created by combining datasets
M2 and M4 (one individual participated in both experiments
therefore was present in both M2 and M4 dataset). Different in
silico mixtures containing 6–9 individuals were created by
combining four publicly available single individual scRNA-seq
datasets with the M4 dataset (Supplementary Table 2). With de-
goulash, for all of these in silico mixtures, we obtained the
respective number of cell clusters that matched the number of
individuals in the mixtures (Fig. 3a–e, Supplementary Fig. 5),
including for the most complex 9-person mixture (Fig. 3e,
Supplementary Fig. 5e). The separated cell clusters also revealed
the correct information on sex, mtDNA and Y haplogroups and
consequent maternal and paternal ancestry (Supplementary
data 2–4 and Supplementary Table 3) as we deduced by
analysing the individual datasets separately. These results suggest
that with nine individuals representing the most complex
mixture we tested, the limits of our mixture deconvolution
approach have not been reached, and it is expected that balanced
mixtures of more than nine individuals can be deconvoluted
successfully with our approach. While maternal and paternal
ancestry were derived correctly for all contributors in these
mixtures, inferring biparental ancestry in individuals with more
complex ancestry (datasets A1 and A2 in the in silico mixtures
M6-M9, Supplementary Table 4) seems less reliable in the highly
complex mixtures (Supplementary Fig. 4, Supplementary data 5),
requiring further investigations.
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Individual genetic identification from deconvoluted balanced
mixtures. Next, we investigated if individual genetic identification
of the separated contributors is feasible based on the successfully
deconvoluted scRNA-seq data obtained from the mixtures. For
this purpose, we additionally generated whole-exome sequencing
(WES) data from buccal swab reference samples of all individuals
who contributed for the aforementioned blood mixtures, which
served as study reference database for individual identification
based on comparative matching (Supplementary Table 5).
Autosomal SNPs were extracted from the scRNA-seq data from
each of the deconvoluted cell clusters in all of the mixtures by
taking two general criteria for identity SNP selection into con-
sideration: (i) minimal difference in minor allele frequencies
between the major population groups using the 1000 Genomes
Project data with frequency not larger than 0.3, and (ii) the
physical distance between the SNPs being larger than 500 kb to
mitigate effects caused by linkage disequilibrium. Individual
genetic identification was performed by matching identity SNPs
obtained from each of the separated cell clusters in each of the
mixtures against the WES reference database. Per each separated

cell cluster and across mixtures, identity SNPs obtained from the
cell clusters that overlapped with WES reference, thereby being
used for genetic matching, ranged from 35 to 162 between clus-
ters and mixtures.

To determine the strength of the evidence of a genetic match
for individual genetic identification, likelihood ratio (LR) and
probability matching (PM) were applied as statistical parameters.
LR is used to determine whether the matching sample and
reference sample came from the same individual37, while PM
indicates the probability that the match has been caused by an
unrelated individual. In a genetic identification process, generally
a LR of more than 10E+ 6 is considered as extremely strong
evidence supporting the hypothesis in favour of individual
identification38. Here, we used a more conservative 10E+ 9
threshold since we are using a new technique. In all our datasets,
we found a significant match (over 90% of SNPs) towards one of
the samples in the study reference database (Fig. 4a–f, Supple-
mentary Fig. 6). We attribute the percentage of non-matching
SNPs to errors in either sequencing or minor bleed-through
between clusters (Supplementary data 6). For all obtained
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individual matches, the LR of the matching SNP profile was
significantly higher than the threshold used, ranging from
1.71E+ 14 to 5.00E+ 65 across matching samples, providing
robust evidence for successful identifying the individual con-
tributors to the analysed mixture (Fig. 4g–l). Notably, even in the
most complex mixtures tested that included up to 9 individuals,
where the number of separated cells was significantly lower,
individual genetic identification of all mixture contributors was
achieved successfully (Fig. 4l, Supplementary data 7). Subsequent
inspection of the matching individuals that were used in the
mixtures and in the study reference database confirmed the
correct individual identification in all cases.

Mixture deconvolution, genetic characterization and indivi-
dual identification from imbalanced mixtures. Next, we tested
our approach on more challenging imbalanced mixtures, i.e.,
mixtures to which the different individuals contributed differ-
ently. We started with imbalanced 2-person mixtures for which

we selected 1000 cells from two datasets (A2 and A4) and mixed
them in different proportions ranging from 1:10 to 1:99 (Sup-
plementary Table 6). The cells of the minor component were
selected from highly informative cells, i.e., cells that contain the
highest number of sequencing reads in the respective dataset. The
cell barcodes that were retained during the selection of the cells
allowed us to evaluate the success of the separation process by
comparing it to the original dataset from the balanced mixture.
For the 1:10, 1:20, and 1:40 imbalanced in silico mixtures, a clear
cluster separation according to the two individuals in the mixes
were observed (Fig. 5a) without any “bleed-through” between the
clusters (Supplementary Table 7). In the 1:60 dataset, we observed
two cell clusters with a minor number of five cells of the minor
component incorrectly assigned to the cluster of the major
component (Supplementary Table 7). In the 1:80 dataset,
although the data was visibly separated into two distinct cell
clusters, significant incorrect assignment and bleed-through
between clusters was seen (Supplementary Table 7). Finally,
with the 1:99 dataset, the pipeline did not reach any cluster
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separation of the cells (Fig. 5a). These results suggest that for
imbalanced 2-person mixtures, our approach is able to correctly
deconvolute the two individual contributors with contributions
up to about 1:60, at least.

Next, we tested our approach on more complex imbalanced in
silico mixtures with more than two individual contributors by
generating two imbalanced cell mixtures of four individuals from
the aforementioned M4 dataset. These mixtures were generated
by using earlier clustering assignments of the M4 dataset (Fig. 2c).
The first imbalanced 4-person mixture included one minor
component accounting for 3% of the total cells in the mixture and
three major components with equal parts together accounting for
the remaining 97% cells. Our approach achieved successful
mixture deconvolution by revealing a clear separation of the four
individual clusters (Fig. 5b). When compared to the cluster
assignment of the original balanced dataset, we observed minimal
changes in the assignments of cells toward the minor component
(3 cells), and 49 cells were incorrectly assigned between the major
component clusters (Supplementary Table 7).

In the second imbalanced 4-person mixture, we reverted the
compositions of the minor and major components in that each of
the three minor components represented 3% of the total number
of cells, while the one major component represented the
remaining 91% cells. Again, we obtained a clear separation of
the four individual clusters (Fig. 5c). And again, the difference in
the minor clusters compared to those in the original balanced
dataset was minimal (two of them contain 1 cell previously
differently assigned), while the observed bleed-through from the
minor components into the major component was 42 cells total.
This analysis suggests that in 4-person imbalanced mixtures, the
minor components representing 3% of the total number of cells
can be successfully deconvoluted in addition to the major ones.

When performing genetic characterization analyses on the
dataset we obtained the correct information on sex, mtDNA and
Y haplogroups and consequent maternal and paternal ancestry
both in the major and minor clusters (Supplementary Table 8,
Supplementary Figs. 7, 8). Though regarding bi-parental ancestry,
the STRUCTURE results of the minor-component clusters did
not result in clear evidence, likely due to the limited number of
autosomal SNPs available for this analysis (Supplementary
Table 8, Supplementary Figs. 7, 8).

Finally, we investigated the sensitivity of our approach for
individual genetic identification by using the previously separated
M4 dataset involving four contributors (Fig. 2c) and created data
points of different numbers of cells ranging from 10 to 500. For
each cell cluster, we randomly picked cellular barcodes to
simulate various numbers of cells in a dataset. Each sampling
was repeated 10 times to correct for selection bias and the results
of the analysis pipeline were averaged and plotted to determine
the average number of cells required for successful determination
of each parameter. Genetic matching toward the study reference
database for individual identification reaches the 90% matching
SNP threshold already with 10 cells for most of the cases.
Individual genetic identification was more unstable with low
number of cells, but stabilised when more than 50 cells were
included (Fig. 5d, e, Supplementary Table 9). However, the
percentage of matching SNPs stayed above 90% for all of our
collected data points consisting of more than 20 cells (Fig. 5d, e,
Supplementary Table 9). For LRs, we observed an overall linear
trend, especially beyond 30 cells (Fig. 5f, g, Supplementary data 8)
similar trend can be observed with determination of haplogroups
(Supplementary data 9 and 10). All clusters exceeded the
conservative LR threshold (10E+ 9) with 100–200 cells. These
analyses suggest that at the sequencing depth and coverage we
used here, our approach is able to deliver individual genetic
identification on separated imbalanced multi-person mixtures

containing more than 150 cells per individual contributor. This
minimum number of cells is expected to further decrease with
increase in scRNA-seq read depth, which will lead to an increase
of the total number of detectable SNPs and thus an increase of the
number of identity SNP available for matching.

Comparison of de-goulash with other mixture deconvolution
tools. In the past few years, some single-cell sequencing data
analysis pipelines that allow mixture deconvolution such as
ScSplit25, Souporcell26, and Vireo27 have been developed.
However, unlike our de-goulash pipeline, none of them includes
genetic characterisation and individual genetic identification
steps, which are vital for future forensic applications in addition
to mixture deconvolution. As direct comparison of these existing
pipelines with our integrated pipeline de-goulash is therefore not
possible, we have compared the mixture deconvolution part of
de-goulash with the deconvolution-only pipelines. When we
tested with a mixture of two individuals, with 5000 number of
cells, all tested tools (SoupOrCell, Vireo, ScSplit and our tool de-
goulash) were able to deconvolute the two individuals; however,
ScSplit failed to assign 45.16% of cells from donor-1 to any
cluster (Supplementary Fig. 9a, b). De-goulash consumed the
least amount of RAM compared to SoupOrCell and Vireo
(Supplementary Fig. 10a, b). SoupOrCell and Vireo took shorter
time compared to de-goulash (Supplementary Fig. 10a, b).
ScSplit, took less time but more recourses (Supplementary
Fig. 10a, b). When we increased the complexity of the mixture to
9 individuals, with a total of 10,000 cells, Vireo performed as
good as degoulash (Supplementary Fig. 9c, e), while SoupOrCell
showed a high rate of wrong cell assignments in multiple clusters
(Supplementary Fig. 9d) and ScSplit failed to deconvolute with
similar recourses. The resources needed (RAM and time) to
deconvolute a mixture of nine individuals follow similar trend to
that the amount of resources needed to deconvolute a mixture of
two individuals (Supplementary Fig. 10c, d). We conclude that
for the mixture deconvolution stage, de-goulash is an accurate
mixture deconvolution pipeline that requires fewer recourses
compared to other deconvolution-only tools. With the stream-
lined integration of the genetic characterisation and individual
genetic identification parts, as well as the tissue identification
part, which all other software tools are lacking, de-goulash pro-
vides unique opportunity for future forensic applications, where
mixture deconvolution represents the first step followed by
genetic characterization in cases with unknown suspects and
individual genetic identification in cases with known suspects
and where knowledge of the tissue type of the mixture is highly
relevant too.

Discussion
The separation of individuals who contributed to biological
mixtures, and their subsequent genetic characterization and/or
individual identification, is crucial in many areas, especially in
forensic investigation. In order to solve the long-standing chal-
lenge of mixture deconvolution, we hypothesized that, provided
the availability of a suitable method, genetic information present
in single-cell transcriptome data will allow to (i) separate the
individuals who contributed to the biological mixtures, (ii)
characterise the separated contributors such as regarding sex and
ancestry, (iii) individually identify the separated contributors, and
(iv) determine the tissue of origin of the cells in the mixture. We
tested our hypothesis by developing a new approach based on
single-cell sequencing and a dedicated bioinformatics pipeline
and tested it in various scRNA-seq datasets obtained from de
novo generated and in silico multi-person mixtures, simple and
complex as well as balanced and imbalanced ones. Our proof-of-
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principle study demonstrates the feasibility of genetically separ-
ating individuals who contributed to multi-person blood mixtures
with different levels of complexity (simple and complex, balanced
and imbalanced mixtures) and genetically characterizing and
individually identifying the separated contributors to the mixture.

While most previous attempts on mixture deconvolution,
particularly in forensics, aimed at separating the contributors
based on mixed DNA profiles, with our novel approach, we
separated the individual contributors prior to genetic character-
ization and genetic individualization analyses. Downstream
genetic analyses were thus performed as single-source analyses,
thereby avoiding the challenges of characterizing and identifying
individuals from mixed DNA profiles. We demonstrate that our
approach is able to accurately separate individual contributors to
biological mixtures containing up to nine individuals. However,
with this maximal number of nine individuals in a mixture that
we tested here, we did not see any limitations in mixture
deconvolution. This suggests that our approach has the potential
to successfully deconvolute mixtures of more than nine indivi-
duals, depending on the obtained number of SNPs per individual
cell cluster, which warrants future experimental testing. As we
demonstrated, the design of our deconvolution approach by
considering mtDNA SNPs as the first step is not hindered by the
degree of mitogenome similarity, as mixtures from individuals
with closely as well as distantly related mtDNA haplogroups were
separated equally well. As also shown, our approach can separate
individuals from balanced and imbalanced mixtures up to a 1:60
ratio at least, and from 150 cells at least. However, single-cell
sequence analysis with higher depths than done here will increase
the number of available SNPs, thereby allowing successful
deconvolution and downstream genetic characterization and
identification analyses from less cells, which requires future
empirical confirmation.

That our approach can cope successfully with highly imbal-
anced mixture is especially interesting in the forensic context,
where imbalanced mixtures are more commonly found at crime
scenes than balanced ones. Our approach opens new opportu-
nities for future applications such as in forensics either directly or
with further modifications and developments. In its current state,
our approach has the potential to get applied in violent crime
cases where multi-person blood mixtures are available for ana-
lysis, and regarding both scenarios: whether a suspect is already
known to the investigative authorities or remains unknown. In
cases with unknown suspects, genetic characterization of a sample
donor via forensic DNA phenotyping of sex and bio-geographic
ancestry—as studied here—but additionally also appearance
traits, is crucial, as this can allow finding the unknown suspect via
focussed police investigation. In order to achieve this, the con-
sidered SNPs need to be included in population reference data
used for ancestry inference and in statistical models used for
appearance prediction. Due to the large number of autosomal
SNPs with redundant information on continental ancestry, and
the redundancy in mtDNA and Y-DNA SNPs to characterize
mtDNA and Y haplogroups to infer maternal and paternal
ancestry, it simply is a matter of obtaining enough SNPs from the
deconvoluted cells, and not necessarily specific ones, and not
necessarily the same SNPs across different individual cell clusters
within and between mixtures. Because of this and the sufficient
numbers of mtDNA, Y-DNA, and autosomal SNPs we obtained
from the separated cell clusters, our approach allows successful
inference of maternal, paternal, and bi-parental ancestry for the
separated mixture contributors. However, this is expected to be
more challenging when it comes to extending the genetic char-
acterization to additionally include appearance prediction, which
works based on specific SNPs used in the statistical prediction
models. For this extension of genetic characterization in the

context of forensic DNA phenotyping it would be beneficial to
move from transcriptome to genome sequencing of the biological
mixtures, which will deliver more SNPs and thus potentially also
specific SNPs used in appearance prediction models.

In cases with known suspects, the crucial forensic outcome is
individual genetic identification of the sample donor via com-
parative forensic DNA profiling. To achieve this, individuals, such
as those who contributed to a biological mixture and separated
via the deconvolution approach here, are matched against a
reference dataset obtained from a reference DNA sample of the
known case suspect or from previously convicted crime offenders
stored in a forensic DNA database. We showed that our approach
allows individual genetic identification of separated mixture
contributors from balanced and imbalanced multi-person mix-
tures with the highest statistical standard, which was possible
because sufficiently enough identity SNPs were obtained from the
separated individual cell clusters, respectively. However, because
identity SNPs are acquired from every separated individual cell
cluster, our approach is not working with universal identity SNPs,
i.e., the same identity SNPs across all individuals. As for ancestry
SNPs, there also is redundancy in identity SNPs, albeit based on
the opposite population genetic features used for SNP selection.
Hence, what matters too for individual genetic identification is to
obtain enough identity SNPs, and not necessarily specific ones.
Because no universal identity SNPs are used, the requirement for
the reference dataset is to include as many as possible SNPs, and
thus as many as possible identity SNPs. This way, there is a good
chance that whatever set of identity SNPs being obtained from a
cell cluster after successful mixture deconvolution is mostly
available in the reference dataset used and thus available for
matching. In the present study, we solved this complexity issue by
using WES data as reference dataset due to the expected overlap
between SNPs present in WES data with those obtained from
transcriptome sequencing performed on the mixtures. Whole
transcriptome sequencing could also be used on the reference
samples, which would increase the number of identity SNPs
available for genetic matching. This would be especially inter-
esting for mixtures where a small number of separable cells per
minor or all contributors are involved. Moreover, in the future,
our single-cell mixture deconvolution approach could be trans-
ferred to genome sequencing for both the mixtures and the
reference samples, which is expected to further increase the
number of SNPs available for individual genetic identification (in
addition to genetic characterization).

We envision that our approach could also be applied to
investigative genetic genealogy (IGG) or forensic genetic geneal-
ogy (FGG) whereby dense SNP data set are used to find relatives
of the donor of a crime scene sample via public genetic
databases39. The approach has gained increased attention in
recent years due to the successful identification of several missing
persons and perpetrators. Indeed, our approach could discern
individual profiles in a mixture to create single profile SNP data
sets, although in the current study too sparse to be used in an IGG
settings. Genetic imputation could further augment the data to a
level where it can be uploaded to public databases for subsequent
genealogy searches40.

In a forensic casework application, for a given suspect known
by the police in a specific case, it would be possible to generate
transcriptome or exome or genome sequencing data from the
suspect’s reference sample, serving as prerequisite to solve a
mixture case with our approach. Unfortunately, in many cases, no
suspects are known to the police and thus no reference samples
are available for D/RNA sequence analysis, where our approach
with its genetic characterization part can help finding the
unknown suspect and present him/her to standard forensic STR
profiling. It currently appears unrealistic, however, that for
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solving cases with unknown suspects, national forensic DNA
databases will include transcriptome or genome sequencing data
in the near future. Maybe this will change with further develop-
ments in D/RNA sequencing technologies provided sequencing
costs to decrease.

A disadvantage especially regarding future forensic applica-
tions is that the 10X genomics scRNA-seq platform we used here,
requires live cells for successful genetic separation, which con-
sequently limits the application to biological mixtures containing
living cells. For a broader forensic application, alternative single-
cell platforms not requiring living cells or those that can work
with fixed cells should be tested and developed in the future. In
addition, for mixtures with very low number of cells of all or
minor contributor(s), deeper sequencing with higher coverage of
the transcriptome or genome will be necessary to increase the
total number of SNPs so that enough SNPs for successful genetic
separation, genetic characterization, and individual genetic
identification of the mixture contributors are available, which
should be tested empirically too.

To conclude, in this study, we have developed a novel approach
for genetically separating, characterizing and individually identi-
fying contributors to biological mixtures. Our approach is based
on single-cell sequencing of the biological mixtures for genetically
separating the cells per each of the individual contributors, so that
the subsequent genetic characterization and individual genetic
identification of the separated mixture contributors became a
single source analysis. In this proof-of-principle study, we
demonstrate the feasibility of our approach on simple and com-
plex as well as balanced and imbalanced mixtures. Future work
needs to show transferability to other types of biological mixtures
than the blood mixtures used here. Notably, our bioinformatic
pipeline de-goulash works with any type of sequence dataset from
which SNPs can be extracted, thereby allowing to move from
transcriptome to genome sequencing in the future. Such further
development is expected to increase the number of extractable
SNPs, which will benefit the deconvolution of mixtures with
(minor) contributors of low number of cells and genetic char-
acterization and individual genetic identification of the separated
mixture contributors, and may also allow expanding genetic
characterization analyses towards appearance prediction. Further
work may eventually allow applying our approach to biological
mixtures found at crime scenes and in biomedical research where
mixture deconvolution is required, such as identifying con-
taminations in cultures of cells, tissue and organoids.

Methods
Blood sample preparation for single-cell sequencing. From each donor blood
was collected into a 10 mL EDTA anticoagulant tube using venepuncture proce-
dure by a trained phlebotomist. PBMC were isolated by density gradient using
LymphoprepTM (Stemcell Technologies, #07851) protocol. In short, first the blood
was transferred into 15 mL tubes and centrifuged. The plasma was then removed
and the sample was resuspended in 1 volume of PBS with 2% FBS. Samples were
then layered on LymphoprepTM and centrifugated. The PBMC layer was trans-
ferred into PBS with 2% FBS, washed twice and filtered through 40 µL cell strainer.
Cell viability was assessed using Countess II cell counter. A balanced mixture of the
donors was prepared by mixing equal number of cells from each individual, and
the resulting cell suspension was diluted as recommended by 10X Genomics single-
cell preparation guide.

Library preparation and sequencing. Single-cell RNA sequencing libraries were
generated by following the 10X Chromium Single-cell library preparation proto-
cols. The mixture M2 and M2-cl scRNA-seq library was prepared following the
10X Chromium Single-cell 3’ Reagent Kits v3 protocol. Mixture M3 and M4 were
prepared using the 10X Chromium Next GEM Single-cell 3’ Reagent Kits v3.1
(dual index). The libraries were sequenced on a Illumina Novaseq6000. The
sequencing depth, reads per cell and number of sequenced cells per experiment are
available in Supplementary data 1.

Data processing. Sequencing reads were aligned to the human genome (GRCh38)
with the STAR aligner that is part of the Cell Ranger 3.0.2 software (10X Geno-
mics). On average, we obtained a 91.63% alignment rate to the GRCh38 genome
(alignment information available in Supplementary data 1). Valid cells were called
based on total UMI counts per barcode. Expression matrix based on barcode, UMI,
gene annotation and gene expression were used for grouping and t-SNE clustering.
Differential expression was calculated by using the difference between the mean
expression among clusters and cluster of interest.

Mixture deconvolution
SNP calling. In order to start the 2-step deconvolution process, the aligned scRNA-
seq data (BAM file) was filtered using two criteria with subset-bam v1.1.041 (i)
reads containing of cellular barcodes and (ii) BAM file containing only mtDNA
reads (needed for the first iteration only). The resulting BAM file was indexed and
sorted by TAG using samtools v.1.942 and split into individual cell BAM files with a
custom made Pysam v0.15.443 script based on the cellular barcodes. Variants were
called (on the whole dataset BAM file) with parallel FreeBayes v1.3.144 using
parsing arguments “-iXu -C 2 -q 1”. The resulting vcf file (containing the SNPs)
was further filtered by bcftools filter QUAL < 80 DP < 100 (QUAL, quality; DP
depth). In each individual cell, the number of reads supporting each SNP was
counted using samtools mpileup. Indels were excluded and frequency table of each
base was calculated for every SNP. SNPs with two or more bases per position were
considered as variants of interest. Next variants were further filtered base on
abundance between cells. For a variant to be considered, it needed to be present in
minimum 1% of cells.

Generation of cell matrix and clustering. To filter cells, the variants obtained in the
previous steps were applied to count the number of SNP reads per cells (base call
quality ≥90, & read coverage of variant per cell ≥2). The cells were then filtered to
contain a minimum of 20 SNPs (10 for imbalanced mixture datasets or when the
data quality was low). The resulting cell matrix was used to impute the missing data
using Dineof28. The recalculated matrix was utilized for dimension reduction and
plotting using UMAP29 with parameters n_neighbors = 300, min_dist =0,
n_components = 3 (the n_neighbors has been lowered to 50 for imbalanced
datasets with reduced number of cells). When needed, if the number of individuals
(number of clusters) in the mixture is not known, the number of clusters was
determined by NbClust30. The rusting matrix was used for k-means clustering and
plotting. By applying these steps, the first iteration was completed by generating a
clustering assignment of cells based on mtDNA.

Cluster variant calling. To expand the SNPs from mtDNA and increase the cell
number as well as effectivity of clustering, we first merged the cell BAM files based
on the mtDNA clustering. After merging, variants were called using parallel
FreeBayes v1.3.144 with arguments “-iXu -C 2 -q 1”. The cluster variant lists were
merged using Picard Tools version 2.25.6 MergeVcfs. The resulting vcf was filtered
using bcftools filter (QUAL < 80 DP < 100) and non-unique variants were dis-
carded with bcftools norm45. The created list was used to create counts per variant
per cell and start a 2nd iteration to call SNPs and cluster cells (Fig. 1a). The BAM
file and SNPs per cluster generated at the end of the 2nd iteration was used for the
final analysis (biogeographical ancestry, sex, and individual identification).

Whole-exome sequencing. Whole-exome sequencing (WES) was performed on
DNA extracted from buccal swabs. Each individual was asked to rub their cheeks
with a swab for 15 s on each side without touching their teeth. DNA was then
extracted by adding 800 µl of water, 30 µ of Proteinase K (10 mg/ml), 90 µl of 10%
SDS and incubated in 55 °C for 3 h. Next 300 µl of 5 M NaCl were added and the
samples were incubated for 10 min at RT. After centrifugation the supernatant was
mixed with 1 volume of isopropanol and centrifuged again. The pellet was then
washed twice with 70% ethanol and dried. The resulting pellet was then dissolved
in 50 µL of milliQ water and measured with pico green. Samples were then diluted
to contain 500 ng of DNA in 30 µL. The quality of the DNA (integrity) was checked
on 0.1% gel.

The library was prepared using a Hyperprep kit (Roche) with enzymatic
fragmentation and dual index adapter ligation. Exome capture was performed
using the SeqCap EZ MedExome probes (Roche). The samples were then
sequenced on a Novaseq6000. The data was demultiplexed and high-quality reads
were aligned to the human genome reference hg19 using the Burrow-Wheeler
alignment tool (BWA version 0.7.3a). Base quality score was recalibrated and indels
realigned using Genome Analysis ToolKit (GATK version 3.7)46. Duplicates were
marked using Picard (Picard Tools version 1.90). Variant calling was performed
with HaplotypeCaller (GATK v3.8). Subsequently, the samples were pooled for
combined calling with GATKs GenotypeVCFs and
VariantQualityScoreRecalibration workflow. Sample QC metrics were obtained
using GATKs DepthOfCoverage and VariantEvaluation modules. Background
noise levels were estimated and corrected for using the verifyBAMid tool and the
“contamination fraction” option in GATKs HaplotypeCaller.
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Genetic characterisation analyses
Uniparental ancestry analysis. Maternal (mtDNA) ancestry was acquired by
applying Haplogrep2.1.20 on vcf file of each cluster after the vcf file using bcftools
filter (QUAL < 80 DP < 20). The results of the analysis were compared to an
mtDNA database EMPOP47 (for geographical density of mtDNA haplogroup), and
PhyloTree48 (for phylogenetic tree of mtDNA variations). The Y chromosome
ancestry was determined using Y-leaf33 that uses the cluster BAM file as an input
and parameters –b 90 –q 20 –r 2 as recommended by the user manual.

Sex determination. The presence of Y chromosome was determined by counting the
number of reads that align to the Y chromosome and comparing between different
clusters. The expression level of the long non coding RNA, XIST RNA, (from the X
chromosome) that covers the inactive X chromosome in female cells, was used to
determine the presence of an inactive X chromosome. The location of XIST gene
was determined using Ensembl49 gene coordinates. The reads in the XIST gene and
Y chromosome were extracted from the SAM file and counted using samtools45.

Bi-parental ancestry analysis. We first determined the match percentage by com-
paring the variants from each cluster (from scRNA-seq) and the exome reference. A
match between a reference exome and a given cluster is called if the match per-
centage was more than 90%. For further processing, non-matching SNPs (SNPs with
no match between the exome reference and the cluster) and only SNPs common
between the exome reference and the cluster were retained. Variants were further
filtered based on presence in the 1000 Genomes database35. Next, we generated a
1000 Genomes reference data set using the five continental populations (European,
African, American, South Asian, and East Asian) in the 1000G project. A pruning
step was performed to avoid linkage disequilibrium effects where a minimum of
500 kb distance was required between included SNPs. For each sample, biparental
ancestry analysis was performed using the STRUCTURE (v2.3.4)34. Briefly, the
software uses a statistical model to iteratively assign each individual to fractions of a
number of presumed populations until the model is assumed to converge. We
performed 10,000 burn-in s iterations and 10,000 subsequent iterations with five
presumed populations (K= 5) with the admixture model was applied.

Individual genetic identification analysis. The results from the biparental
ancestry analysis were used to determine the dominant population in the sample
(cluster), which was in turn used to extract allele frequency (AF) for our SNPs. For
the calculations of forensic parameters, the SNPs were further pruned to only
include genetic markers where the allele frequencies did not vary by more than 0.3
between the populations. Simultaneously we pruned the SNPs using a 500 kb
distance between included markers, which mitigates potential effects of linkage
disequilibrium. We then computed:

1. Total random match probability (RMP) using:

RMP ¼
YN

i¼1

PrðGiÞ ¼ PrðG1ÞPrðG2Þ¼ PrðGN Þ

where i denotes the i’th SNP, N the total number of SNPs and Pr(Gi) takes
the value AFi2 for homozygous genotypes, Gi, and 2AFi(1-AFi) for
heterozygous genotypes and where AFi is the allele frequency of the SNP.
We have assumed Hardy Weinberg Equilibrium throughout our calcula-
tions although adjusting for disequilibrium is a small change.

2. The likelihood ratio (LR) was derived directly from the RMP as

LR ¼ 1
RMP

where we have assumed the scenario where there is a perfect match between
the sample’s genotype and some reference (not used in this study), whereas
the model can easily be expanded to account for allelic dropouts/dropins
and other errors.

3. Combined match probability (CPM), referred to only as PM in the text, was
calculated as

CPM ¼
YN

i¼1

∑
G

g¼1
Pr ðGi;g Þ2

where the inner summation traverses all possible genotypes (Gi,g) at marker
i and summarizes the probability to observe two identical genotypes at each
marker. The CPM is the product of the probabilities for each marker.

Note that 1 and 2 are related to the specific DNA profile whereas 3 is related to the
average statistics for the markers available from the cluster and remaining after pruning.

Analysis of public scRNA-seq datasets. Four publicly available scRNA-seq
datasets were obtained from 10x genomics (https://www.10xgenomics.com/
resources/datasets). SNPs were called using FreeBayes v1.3.144 parsing arguments
“-iXu -C 2 -q 1–throw-away-indels-obs”. The SNP vcf file was filtered using
bcftools filter QUAL < 80 DP < 20, and was used for further analysis. Maternal,
paternal, and biparental ancestry were determined as described above.

In silico mixtures to determine the impact of balanced and imbalanced
mixtures
Generation and analysis of balanced mixtures. Balanced mixture containing
between 5 and 9 individuals were generated by randomly selecting barcodes from
each dataset (Supplementary Table 2 for all in-silico mixture contents) and mer-
ging the reads from the selected barcodes of each dataset. Each dataset retained the
cellular barcode information to allow further assessment. The number of cells in
each mixture is available in Supplementary Table 2. The datasets were processed
via the deconvolution and analysis pipeline as described above.

Generation and analysis of imbalanced mixtures. Imbalanced mixtures were made
using two datasets (A2, A4) that were obtained from publicly available sources by
randomly selecting a total of 1000 cells. For the major dataset (A4) all available cells
were used. For the minor dataset (A2) 1000 cells, with the most reads per cell, were
preselected to avoid skewing of the analysis with low information cells. The ratio
between the minor and major component ranged between 1:9 and 1:99. Each of the
datasets was then filtered for the reads containing the selected barcodes. The
subsets of the resulting dataset were merged into a new mixture. For the separation
we used a modified deconvolution pipeline using lowered number of SNPs and
UMAP neighbours to reflect lower number of cells. In this, due to the low number
of cells, the SNP filtering parameters of QUAL < 50 DP < 50 were used. The data
were further analysed using the analysis pipeline with the described modification
for limited datasets as well as analysing the correct assignment of each cell to
cluster of its original source.

Generation and analysis of imbalanced mixtures of higher degree. Based on the
deconvolution cluster assignment of M4 dataset we randomly selected cell barcodes
from each cluster. We then filtered the reads of the selected barcodes to create an
imbalanced subset of the original dataset. Next, we generated two datasets, each
containing proportional mix of minor and major components. In the first mixture,
we selected one minor component (3% of total cells) and three major components
(proportionally 97% of total cells). The second mixture contained three minor
component cluster (each 3% of total cells) and one major component cluster
(remaining 91% of total cells). The mixtures were processed using the deconvo-
lution and analysis pipeline as previously described.

Determination of cell number limitation. For each cluster of the M4 dataset, we
randomly selected 10–500 cell barcodes (based on previous deconvolution and
cluster assignment of cells). For every point (number of barcodes) we selected 10
times to correct for batch effect. Reads of the selected barcodes were filtered from
the original M4 dataset creating a new subset dataset. Each subset dataset had
variants called using FreeBayes v1.3.144 with arguments “-iXu -C 2 -q 1–throw-
away-indels-obs”. Next, the analysis pipeline was performed for each subset (using
the called SNP vcf file and the subset BAM file as input). The results of exome
match and forensic parameters per point were averaged. Results for haplogroup
assignment were given 1 or 0 if the haplogroup was correct or incorrect, respec-
tively. The value of 0.5 was given when the haplogroup was 1 branch up according
to PhyloTree48. The accumulated scores were then averaged.

Deconvolution pipeline comparison. In total four mixture deconvolution pipe-
lines were tested (ScSplit 1.0.8, Vireo 0.2.3, SoupOrCell 2.0, De-goulash) on two in
silico mixtures. The first silico mixture was prepared by mixing two single donor
datasets (datasets A3 and A4, see Supplementary Table 2) that generated a total of
5000 cellular barcodes (2500 per donor). The respective bam files have been sub-
setted and merged using samtools 1.9. The second in silico mixture used for the
comparison of the pipelines was a complex mixture that was generated by mixing
de novo generated data and single donor datasets (M9 mixture, see Supplementary
Table 2).

For each pipeline we followed the provided manual and applied the
recommended parameters. Preprocessing for scSplit was done with samtools 1.9 for
Vireo with cellSNP 0.3.1. Since Vireo and SoupOrCell require the number of
individuals in the mixture to be known, we provided the number of individuals. For
each pipeline, the amount of time consumed, the amount of recourses used, and
the final clustering (deconvolution was recorded) were compared.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual datasets used in the in silico part of the study are available via the 10x
website: A1: https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-
mononuclear-cells-pbm-cs-from-a-healthy-donor-v-3-chemistry-3.0.2 A2: https://www.
10xgenomics.com/resources/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-
a-healthy-donor-chromium-connect-channel-1-3.1.0 A3: https://www.10xgenomics.
com/resources/datasets/4-k-pbm-cs-from-a-healthy-donor-2.1.0 A4: https://www.
10xgenomics.com/resources/datasets/10-k-pbm-cs-from-a-healthy-donor-gene-
expression-and-cell-surface-protein-3.0.0 The mixture datasets that were de-novo
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generated in this study are available at the EGA database with EGAS00001006202. The
UMAP coordinate files and STRUCTURE 1000Genomes clustering used to generate the
clustering graphs can be found on figshare50–52.

Code availability
The bioinformatics pipeline de-goulash24 is available at: https://github.com/genid/de-
goulash.
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