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A B S T R A C T

Machine learning (ML), an application of artificial intelligence, is currently transforming the analysis of biomedical data and specifically of
biomedical images including histopathology. The promises of this technology contrast, however, with its currently limited application in rou-
tine clinical practice. This discrepancy is in part due to the extent of informatics expertise typically required for implementation of ML.
Therefore, we assessed the suitability of 2 publicly accessible code-free ML platforms (Microsoft Custom Vision and Google AutoML), for
classification of histopathological images of diagnostic central nervous system tissue samples. When trained with typically 100 to more than
1000 images, both systems were able to perform nontrivial classifications (glioma vs brain metastasis; astrocytoma vs astrocytosis, prediction
of 1p/19q co-deletion in IDH-mutant tumors) based on hematoxylin and eosin-stained images with high accuracy (from �80% to nearly
100%). External validation of the predicted accuracy and negative control experiments were found to be crucial for verification of the accu-
racy predicted by the algorithms. Furthermore, we propose a possible diagnostic workflow for pathologists to implement classification of his-
topathological images based on code-free machine platforms.
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I N T R O D U C T I O N

Machine learning (ML) is a paradigm within the broader con-
cept of artificial intelligence characterized by the concept that
computer systems develop and refine algorithms themselves
based on provided data rather than being explicitly pro-
grammed (1). Emerging and predicted future applications of
ML in medicine include interpretation of a broad spectrum of
clinical and laboratory data as well as radiological and histopa-
thological images. As ML thrives on large, well-annotated data-
sets, histopathology is regarded as one of its particularly
promising targets.

Recently, several ML-based histology applications for
screening purposes have received formal approval by health
care authorities and are commercially available for prostate
cancer (2), and cervical cytology (3). An even broader range
of possible applications of ML in histopathology has been sug-
gested in the literature without making the transition to rou-
tine diagnostic applications (4–9). Of note, ML approaches
are currently also used in pathology for classification of com-
plex nonmorphological data such as methylome data (10).

Nevertheless, there is a marked discrepancy between the
promises of ML and its very limited routine application in
pathology. Automated screening of gynecological cytology
specimens, the currently most widely used application of auto-

mated image analysis and arguably one of very few with pro-
ven clinical benefit, has previously been based on decades-old
algorithms, rather than ML. This lag in routine application of
ML in pathology may in part relate to coding competencies
required to implement and modify existing ML solutions for
utilization in the context of histopathology. The “black box”
nature of ML algorithms likely contributes to hesitancy regard-
ing its diagnostic application because it is often impossible for
end users to understand why ML algorithms render obviously
incorrect results in certain situations.

This prompted us to assess the suitability of 2 publicly avail-
able code-free platforms for ML-based image classification
(Microsoft Custom Vision and Google AutoML) for histopa-
thological images. We envisioned a simple workflow (Fig. 1)
within which pathologists would define regions of interest (i.e.
no image segmentation would be required), and subsequently
submit snapshots to the classifier. We reasoned that such an
approach might have fundamental benefits as it would: (1)
allow end users without substantial coding knowledge to gain
hands-on experience with a potent ML tool including the pos-
sibility to perform quality and plausibility controls, and (2)
might be applied in real-life situations that do not result in reg-
ulatory issues because the predictions made by the ML algo-
rithm could be independently verified by other means.
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M A T E R I A L S A N D M E T H O D S
Case selection and reference diagnoses

Cases were identified through full text search of our depart-
ment’s diagnostic database or included from previous studies
(11, 12). Original reports were reviewed and available results
of ancillary testing as well as clinical follow-up were included
in order to establish respective reference diagnoses as gold
standard for image classification. For the purpose of the manu-
script, the 2021 WHO Classification of Tumors of the Central
Nervous System nomenclature was applied (13). Molecular
and immunohistochemical testing had been performed as pre-

viously reported (11). Depending on the respective experi-
ments, cases were attributed to 1 of 2 groups (Table 1).

Generation of histopathological images
Hematoxylin and eosin (H&E)-stained slides were scanned
with a Pannoramic 250 slide scanner (3DHistech, Budapest,
Hungary) with standard settings. Scans (MRXS file format)
were reviewed with the CaseViewer (3DHistech) software.
Snapshots of representative pathological regions of interest
(ROI) of the scan were made at a nominal 400� magnifica-
tion (40� “objective”) in JPEG file format and measuring
1.920� 1.017 pixels (Supplementary Data Fig. S1). Up to 14
representative ROIs reflecting intratumoral heterogeneity were
chosen for each case. Examples of 2 such images are given in
Figure 2. Slides were reviewed and snapshots were taken with-
out access to diagnostic or other clinical information of the
respective cases. The study was performed with approval of
the Ethics committee of the Canton of Bern (KEK 2014-200
and KEK 2017-1189).

Code-free ML
User accounts for Microsoft Custom Vision (14) and Google
AutoML (15) were created. Sets of histopathological images
were uploaded with the respective user interfaces. Training
and analysis were performed with a single tag for each image
(single class rather than multi-class mode) even though the tag
for a specific image could vary between experiments. For
example, the same image might have been labeled as
“oligodendroglioma” in the context of prediction of 1p/19q
status in IDH-mutant gliomas or “glioma” in the distinction
between glioma and gliosis. In order to create our own valida-
tion datasets (in addition to the validation datasets defined by
the image analysis software), sets of images were excluded
from training and subsequently submitted to the respective
classifiers.

R E S U L T S
User interfaces

Both platforms offered a relatively straightforward and intuitive
user experience. Single images files as well as batches of files
could be uploaded and subsequently tagged. Microsoft Cus-
tom Vision, in addition to a general model, offered specific

Figure 1. Illustration of a possible diagnostic workflow based on
the code-free machine platforms. A region of interest is selected
and the image is uploaded. The model returns a prediction. The
results are interpreted in the context of the other pertinent data.

Table 1. Definition of groups for each experiment

Experiment Group 1 Group 2

1. Astrocytoma vs astrocytosis Group 1 from experiment 3 (79 cases, 770
image files)

Nontumoral, reactive brain tissue (47 cases,
286 image files)

2. Glioma vs brain metastasis Group 1 and 2 from experiment 3 (121
cases, 1216 image files)

Brain metastases (57 cases, 577 image files)

3. Prediction of 1p/19q-status in IDH-
mutant tumors

IDH-mutant astrocytomas (grades II-III)
and IDH-mutant glioblastomas (79 cases,
770 image files)

IDH-mutant, 1p/19q co-deleted oligoden-
drogliomas (grades II-III) (42 cases, 446
image files)

4. Negative control experiment: even
vs odd accession numbers

Even accession number (26 cases, 251 image
files)

Odd accession number (25 cases, 249 image
files)

5. Negative control experiment: astro-
cytoma vs astrocytoma

Random selection of half of the images of
cases from group 1 in experiment 3 (67
cases, 335 images)

Other half of images from the same cases as
in group 1 (67 cases, 335 images)
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models termed “food,” “landmarks,” and “retail.” Preliminary
tests showed that all of these performed worse than the gen-
eral model for classification of histopathological images so
these models were not further studied. Even though both plat-
forms underwent several updates over time, the essential func-
tionalities used in our experiments were stable and continued
to be available after our first exploratory experiments in Fall
2018. Registration and an initial test phase, which allowed us
to perform most of our experiments, were free of charge for
both platforms.

After training with a particular set of images, both platforms
provide the user with a number of quality parameters for the
derived model. These are based on whether or not images
from the training set would have been correctly classified with
the model that has been obtained throughout multiple itera-
tions. These parameters include overall accuracy (percentage
of images which would have been correctly classified across all
classes) as well as recall and precision for each class (i.e. per-
centage of images that would have been correctly attributed to
that class; and 1 minus the percentage of images erroneously
attributed, respectively). Furthermore, misclassified images can
be reviewed. Google AutoML additionally creates an internal
validation dataset with each training session for which predic-
tions can be reviewed. Interestingly, it proved difficult to trace
back misclassified images as both platforms would only display
the image itself, but not the name or other data of the submit-
ted image file. With standard settings and for single-tag classifi-
cations, both platforms would choose as optimal compromise
between recall and precision a confidence level of 0.5, that is,
recall and precision would have the same numerical value.

After training, image files can be submitted to the algorithm.
Upon submission of an image file, a classification and quantifica-
tion of accuracy of fitting with the respective class are returned.

Apart from uploading and tagging images, no particular
specifications needed to be made by the user. In particular, the
entire interface required no coding for either of the platforms.
For each image submitted after the training period, the plat-
forms not only provided a classification, but also a quantitative
estimate of the classification’s certainty (ranging from 0% to
100%).

Training
We uploaded a variety of image datasets of different sizes and
compositions. The recommended minimum number of images

per class is 100 with Google AutoML, whereas Microsoft Cus-
tom Vision does not specify a minimum number of images.
Small numbers of training images would result in increased
misclassification and overestimated accuracy of classification.
We found it important to include heterogeneous examples of
each entity and to be aware of what the algorithm had been
trained for. Training with few samples of non-neoplastic lung
and liver, for example, resulted in an apparently accurate dis-
tinction. However, at this stage, an image composed of a small
amount of liver tissue on an empty background would be erro-
neously classified as lung. This indicated that the distinction
between lung and liver might have simply been based on the
proportion of area covered by tissue. Interestingly, inclusion of
only a few images containing small areas of liver with adjacent
empty space was sufficient to adequately train the algorithm so
that it would not further misinterpret these types of images.

We recurrently observed across multiple experiments that
the quality parameters would decrease after inclusion of addi-
tional image files. This was particularly true in the range of the
minimum numbers of recommended training images and indi-
cated that estimates based on limited numbers of images may
have been too optimistic. On the other hand, across the vari-
ous experiments, we observed a ceiling effect, in that once a
certain size of training sets had been reached (typically around
100 to several hundred images), inclusion of additional images
would not result in an increased accuracy of predictions.

Astrocytoma versus astrocytosis
A total of 770 images from 79 cases with an IDH-mutant
astrocytoma were assigned to the group called “astrocytoma”;
286 images from 47 cases with gliosis were attributed to the
group “gliosis.” Based on the images in these 2 separated
groups, the model was trained to recognize and distinguish
images from IDH-mutant gliomas and gliosis. Considering its
own statistics, Google AutoML was able to identify testing
images as astrocytoma or gliosis with a precision and recall
rate of 94.1%. For the same task, Microsoft Custom Vision
reached - also based on its own statistics - a precision and
recall rate of 96.7% (Table 2 and Fig. 3).

Glioma versus brain metastasis
The group “glioma” contained a total of 1216 images from
121 cases with an IDH-mutant glioma as follows: 720 images
from 74 cases of IDH-mutant astrocytoma, CNS WHO grades

Figure 2. Examples of the image format used for training. (A) IDH-mutant astrocytoma. (B) IDH-mutant oligodendroglioma, 1p/19q-
codeleted.
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2–3, 50 images from 5 cases of IDH-mutant astrocytoma,
CNS WHO grade 4, and 446 images from 42 cases of oligo-
dendroglioma. The group “brain metastasis” consisted of 577
images from 57 cases with a brain metastasis as follows: 162
images from 14 cases of small cell lung cancer brain metastasis,
208 images from 21 cases of breast carcinoma brain metastasis,
and 207 images from 22 cases of melanoma brain metastasis.
The distinction of the 2 entities was performed with a preci-
sion and recall rate of 98.4% on Google AutoML and 96.9%
on Microsoft Custom Vision (Table 2).

To verify whether the predictions and recall rate stated by
Google AutoML and Microsoft Custom Vision were adequate,
we performed our own statistics. We trained the model again
with a slightly reduced selection of the images mentioned
above and kept the rest as testing images with the aim of test-
ing test the model with images from cases that are not
included in the training set (Table 3). For this, we used 1028
images from 103 cases with an IDH-mutant glioma (620
images from 64 cases of IDH-mutant astrocytoma, CNS
WHO grades 2–3, 40 images from 4 cases of IDH-mutant

Table 2. Accuracy of the algorithms as determined by the machine learning platform

Experiment

Precision and
recall by Google

Auto ML

Precision and
recall by Microsoft

Custom Vision

Astrocytoma vs astrocytosis 94.1% 96.7%
Glioma vs brain metastasis 98.4% 96.9%
Prediction of 1p/19q-status in IDH-mutant tumors 88.6% 83.5%
Prediction of 1p/19q-status in IDH-mutant tumors without “Oligoastrocytoma” 90.9% 88.5%
Negative control experiment: even vs odd accession numbers 80.8% 78%
Negative control experiment: astrocytoma vs astrocytoma 45.3% 45.5%

Figure 3. Astrocytoma versus astrocytosis experiment. (A) IDH-mutant astrocytoma, correctly recognized by both platforms. (B) IDH-
mutant astrocytoma, erroneously identified as gliosis by Microsoft Custom Vision, correctly recognized by Google AutoML. (C) Gliosis,
correctly recognized by both platforms. (D) Gliosis, erroneously identified as astrocytoma by Microsoft Custom Vision, correctly recognized
by Google AutoML. (E) IDH-mutant astrocytoma, correctly recognized by both platforms. (F) IDH-mutant astrocytoma, erroneously
identified as gliosis by Google AutoML, correctly recognized by Microsoft Custom Vision.
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astrocytoma, CNS WHO grade 4, and 368 images from 35
cases of oligodendroglioma). There were 477 images from 47
cases with a brain metastasis as follows: 132 images from 11
cases of small cell lung cancer brain metastasis, 178 images
from 18 cases of mammary carcinoma brain metastasis, and
167 images from 18 cases of melanoma brain metastasis.

After having trained the model with those images, we subse-
quently tested it with 188 images from 18 cases with an IDH-
mutant glioma (100 images from 10 cases of IDH-mutant
astrocytoma, 10 images from 1 case of an IDH-mutant astrocy-
toma, CNS WHO grade 4, and 78 images from 7 cases of oli-
godendroglioma) and with 100 images from 10 cases with a
brain metastasis (30 images from 3 cases of small cell lung can-
cer brain metastasis, 30 images from 3 cases of mammary car-
cinoma brain metastasis, and 40 images from 4 cases of
melanoma brain metastasis).

In the first trial, Google AutoML recognized 179 out of 188
images correctly as glioma, which corresponds to a recall rate
of 95%. In the second trial, it recognized 181 out of 188
images, which corresponds to a recall rate of 96%. The average
precision was 98.9% in the first trial and 98.6% in the second
trial. For brain metastases, with a precision of 96.9% in the first
trial and 97.6% in the second trial, Google AutoML correctly
recognized 95 and 98 of 100 images in the first and second
trial, which corresponds to a recall rate of 95% and 98%,
respectively. Microsoft Custom Vision achieved the same
results in both trials, that is, a recall rate of 98% in the recogni-
tion of glioma (185 out of 188), with a precision of 98.7%; for
brain metastases, the recall rate was 97% (97 out of 100), with
a precision of 97%. These results largely confirm results based
on the statistics made by Google AutoML and Microsoft Cus-
tom Vision.

Despite the high recall rates and precision, the alleged
“certainty” of the few misclassified images was also high. On
Google AutoML, the mean certainty of erroneously identified
brain metastasis was at 79% in the first trial and 90.6% in the
second trial and for erroneously identified glioma at 80.9% in
the first trial and at 91.6% in the second trial. The mean preci-
sion of the misclassified images on Microsoft Custom Vision
accounted for 78.5% of erroneously identified brain metastasis
and 81% of erroneously identified glioma in both trials. Inter-
estingly, only one of the images was misclassified by both pro-
grams, AutoML and Microsoft Custom Vision (Fig. 4F).

To investigate the numbers of training images required for
optimal classification, we compared different models with 50

or 100 images per class. Additionally, we varied the number of
cases from whom the images had originated. The performance
of Microsoft Custom Vision and of Google AutoML, based on
their own statistics, was considerable even if the different
classes only contained 50 images. Nevertheless, models with
100 images per group always showed better or at least equal
precision and recall rates compared to models with only 50
images. In this context, it must be said that when the training
was repeated several times, some variations in the results were
observed, particularly if the models only contained 50 images
per category. Furthermore, a larger variety of cases did not
improve precision and recall rate. It seems that this is due to
the fact that the training images and the testing images (on
which the statistics made by Google AutoML and Microsoft
Custom Vision were based) originated from the same cases.
Nonetheless, it can be assumed that for testing images from
unknown cases, a higher number and variety of training images
and cases should lead to higher precision and recall rates.

Prediction of 1p/19q co-deletion in IDH-mutant gliomas
A total of 770 images from 79 cases of IDH-mutant astrocy-
toma (including 50 images from 5 cases of IDH-mutant astro-
cytoma, CNS WHO grade 4), comprised the group
“astrocytoma”; 446 images from 42 cases of oligodendro-
glioma with 1p/19q co-deletion comprised the group
“oligodendroglioma.” Twenty-six of these total 121 cases ini-
tially were given the histological diagnosis of an oligoastrocy-
toma. Of these, sixteen cases subsequently were diagnosed as
IDH-mutant astrocytoma and 10 were diagnosed as oligoden-
droglioma. Both programs had some difficulties distinguishing
an image as either astrocytoma or oligodendroglioma: Google
AutoML showed a recall rate and precision of 88.6%, Micro-
soft Custom Vision of 83.5%, both based on their own statis-
tics (Fig. 5).

To verify whether these results were due to histologically
more equivocal “oligoastrocytomas,” the experiment was
repeated without the 257 images from the 26 cases with the
initial diagnosis of an oligoastrocytoma. Consequently, the
group “astrocytoma” was composed of 613 images from 63
cases of IDH-mutant astrocytoma (CNS WHO grades 2–4)
and 346 images from 32 cases of “oligodendroglioma.” The
exclusion of the images from cases with the original diagnosis
of “oligoastrocytoma” led to slightly better results as follows:
Precision and recall rate from Google AutoML were at 90.9%

Table 3. External validation of the “Glioma vs metastasis” classifiers in 2 runs

Auto ML (1st run) Auto ML (2nd run) Microsoft Custom Vision

Results

Mean
“certainty” of

prediction Results

Mean
“certainty”

of prediction Results

Mean
“certainty”

of prediction

Correctly recognized as glioma 179/188¼ 95% 98.9% 181/188¼ 96% 98.6% 185/188¼ 98% 98.7%
Erroneously recognized as brain metastasis 9/188¼ 5% 79.0% 7/188¼ 4% 90.6% 3/188¼ 2% 78.5%
Correctly recognized as a brain metastasis 95/100¼ 95% 96.9% 98/100¼ 98% 97.6% 97/100¼ 97% 97.0%
Erroneously recognized as glioma 5/100¼ 5% 80.9% 2/100¼ 2% 91.6% 3/100¼ 3% 81.0%

Google AutoML provided slightly different results (despite identical images submitted); results with Microsoft Custom Vision were identical between the 2 runs.
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and from Microsoft Custom Vision at 88.5%, again based on
their own statistics.

Multiple classes
Because a pilot experiment to test whether the ML platforms’
performance would be approximately similar for experiments
with multiple classes or multiple labels, we included all images
from the above experiments and assigned them applicable
labels of “astrocytoma,” “oligodendroglioma,” “glioma,”
“metastatic small cell carcinoma,” “metastatic breast
carcinoma,” “metastatic melanoma,” “brain metastasis,” or
“gliosis.” We also included 200 images from 38 other cases
with unrelated pathologies and labeled them “other.”

For this task, Google Auto ML reached a precision of 88.3%
and a recall rate of 85% (based on its own statistics). By far
the most misclassifications were due to images of gliosis that
were erroneously misclassified as glioma. On the same task,
Microsoft Custom Vision reached a precision of 79.5% and a
recall rate of 90.1% (based on its own statistics). Without the
group “other,” Microsoft Custom Vision reached a slightly
increased precision of 81.1% and a recall rate of 90.1%.

With Microsoft Custom Vision we repeated the same
experiment with a smaller number of groups, that is,
“astrocytoma,” “oligodendroglioma,” “glioma,” and “brain
metastasis.” Each group consisted of the above-mentioned
number of images and cases. In this task, Microsoft Custom
Vision reached a better precision of 87.1, but an inferior recall
rate of 86.3%.

Negative control experiments
As a negative control experiment, we defined 2 classes com-
posed of 251 images of IDH-mutant astrocytoma from 26 cases
with even pathology accession numbers and 249 images of
IDH-mutant astrocytoma from 25 cases with odd pathology
accession numbers. Contrary to the expectations of a control
task, Microsoft Custom Vision reached precision and recall rates
of 78% and Google AutoML precision and recall rates of 80.8%.
To verify those results, we retested the models doing our own
statistics with separate testing images from cases that were not
part of the training images. Google AutoML recognized the
images with a “mean certainty” of 76.3%, 82% were recognized
“correctly” as odd, only 34% were recognized “correctly” as

Figure 4. Glioma versus brain metastasis experiment. (A) IDH-mutant astrocytoma, correctly recognized as glioma by both platforms. (B)
Oligodendroglioma, misclassified as brain metastasis by Google AutoML, possibly due to the epithelioid morphology with abundant
eosinophilic cytoplasm. (C) Brain metastasis (small cell lung carcinoma), correctly recognized as brain metastasis by both platforms. (D)
Brain metastasis (breast carcinoma), erroneously identified as glioma by Google AutoML. (E) Brain metastasis (melanoma), erroneously
identified as glioma by Microsoft Custom Vision. (F) Brain metastasis (melanoma), erroneously identified as glioma by both platforms. This
was the only image of our separate testing set that was misclassified by both algorithms.
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even. Microsoft Custom vision reached a “mean certainty” of
72%, 88% were recognized “correctly” as odd, only 6% were rec-
ognized as even. These results show that it seems possible that
the automated ML programs may be able to find similarities
between images that humans are not able to see and that may
direct diagnostic testing on the wrong pathway.

In a second control task, each control group contained
images from the same cases (335 images of IDH-mutant astro-
cytoma from 67 cases in one group and 335 different images
of IDH-mutant astrocytoma from the same 67 cases in the
other group). Here, Google AutoML showed a precision and
recall rate of 45.3% and Microsoft Custom Visio a rate of
45.5%.

As an additional negative control experiment, we trained
the 2 platforms with 2 training sets, each consisting of the
exact same 100 images from 10 cases, but rotated by 180� in
one of the groups. In this control task, Microsoft Custom
Vision reached a precision and recall rate of 57.5%. On Google
AutoML, the experiment could not be performed, because the
control group images were identified as rotated versions of the
original images.

D I S C U S S I O N

In this study, we found that 2 platforms for code-free ML,
Google AutoML and Microsoft Custom Vision, classified his-
tological images with an accuracy potentially useful for diag-
nostic purposes. Both user interfaces are user-friendly and
accessible to investigators without coding experience while
offering adequate versatility to address image classification
tasks of clinical interest. Such an approach to code-free ML
may have a significant potential to bypass the obstacle of
requiring qualified staff with both training in data science and
sufficient understanding of histopathology to implement code-
based solutions. Importantly, this study is one of the first to
assess the performance of more than one platform for code-
free learning on the same datasets of histopathological images.
In part, the potential utility of this approach relates to the low
threshold for beginners in the field. On the other hand, the
existence of application programming interfaces would facili-
tate real-life implementation of such classifiers.

We found independent validation of the accuracies pre-
dicted by each platform to be important for several reasons.
Both Google AutoML and Microsoft Custom Vision tended to

Figure 5. Prediction of 1p/19q co-deletion in IDH-mutant gliomas. (A) IDH-mutant astrocytoma, correctly predicted not to be co-deleted
by both platforms. (B) IDH-mutant astrocytoma, CNS WHO grade 4, erroneously predicted to be co-deleted by Google AutoML, correctly
recognized by Microsoft Custom Vision. (C) Oligodendroglioma, correctly recognized by both platforms. (D) Oligodendroglioma,
erroneously predicted not to be co-deleted by both platforms. (E) IDH-mutant astrocytoma, correctly recognized by both platforms. (F)
Oligodendroglioma, erroneously predicted not to be co-deleted by Microsoft Custom Vision, correctly recognized by Google AutoML.
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overestimate accuracy when they were trained with inad-
equately low numbers of images. More critically, when
exposed to a nonsense classification without plausible morpho-
logical underpinning (i.e. odd vs even accession number), both
platforms reported a relatively high alleged accuracy (78% and
80%, respectively), which was presumably due to overfitting
for random differences between the respective cases. Indeed,
our independent validation confirmed that the actual accuracy
of the classifiers corresponded to pure chance in these negative
control experiments.

In contrast, estimated accuracy was close to our assessment
of accuracy with external validation datasets, when the plat-
forms had been trained with sufficient numbers of images (i.e.
in the order of magnitude of several hundred images per class),
and in meaningful experiments. These ranged between 98.4%
(Google AutoML in the “Glioma vs Metastasis” task) and
83.5% (Microsoft Custom Vision in the “1p/19q” task). Inter-
estingly, accuracy obtained with the ML platforms paralleled
the ease with which humans would presumably perform the
different tasks: Accuracy was highest for the distinction
between glioma and metastasis, followed by the distinction
between gliosis and glioma, while it was lowest for the predic-
tion of 1p/19q status in IDH-mutant gliomas (which can be
notoriously difficult, even for experienced neuropathologists).

Interestingly, accuracy for the “1p/19q” task increased when
a cohort of cases originally classified as oligoastrocytomas (i.e.
morphologically indeterminate for astrocytoma vs oligodendro-
glioma and thereby for anticipated 1p/19q status) were
excluded. The latter finding may suggest that cases that are per-
ceived as ambiguous by neuropathologists, indeed are also mor-
phologically less distinctive for ML. Along the same lines, our
approach may be expected to perform less well in classification
tasks where there are significant morphological gray zones
between tumor types, such as in the case of low-grade glio-
neuronal tumors. On the other hand, the morphological distinc-
tion between astrocytomas and oligodendrogliomas, which both
platforms achieved reasonably well, already represents a signifi-
cant challenge (16). This is evident by the fact that more than a
decade of research and extensive molecular characterization
were required to convince the neuropathological community
that essentially all IDH-mutant gliomas represent either astrocy-
tomas or oligodendrogliomas, with oligoastrocytomas not
actually corresponding to a separate tumor type (17, 18).

The strengths of the study design include the existence of a
robust ground truth for all 3 experiments and adequate size
and heterogeneity of the training sets. Furthermore, external
validation of the classifiers and negative control experiments
proved to be critical. In particular, the latter type of control is
often not reported in studies published to date. Furthermore,
we submitted identical datasets to 2 different platforms, both
of which tended to perform similarly on each dataset, albeit
with a tendency for Google AutoML to predict slightly higher
accuracy. As we sought to use standard settings of the 2 user
interfaces wherever possible, both interfaces would balance
precision and recall within each experiment. Further optimiza-
tion, such as prioritization of either a greater precision or
recall, would be possible depending on the intended use of a

classifier but exploring the utility of such an approach was
beyond the scope of the present study.

For reasons of feasibility we restricted this study to H&E
stains performed in a single laboratory (although over a period
of 2 decades). The slides were scanned with one specific
device and screenshots were performed at one particular mag-
nification. These restrictions would likely limit the transfer of
these image classifiers to other laboratories, which, however,
was beyond the scope of the present study.

Another limitation of this study consists of its restriction to
classification of entire image files rather than segmentation or
object identification, which would prevent the algorithms from
being applied directly to whole slide scans. Image classification
as a study subject, however, offered several important advan-
tages, in that: (1) it was available in both platforms from the
beginning of our study (while object identification was only
gradually implemented), (2) it facilitated definition of a robust
ground truth for each image, and (3) it allowed for a simple
potential workflow (either by manually submitting image files
to the classifiers or possibly through application programming
interfaces). Furthermore, image classification may be consid-
ered easier to implement from a regulatory perspective. An
immediately available image classifier might, for example, be
used to support intraoperative interpretation or guide the ini-
tial choice and/or sequence of ancillary testing without having
a direct impact on the definitive diagnosis.

Google AutoML has been used for the classification of his-
topathological images in a small number of published studies,
generally with findings consistent with our observations. A
study entitled “A ML model for detecting invasive ductal carci-
noma with Google Cloud AutoML Vision,” showed “a score of
91.6% average accuracy” by testing their trained Google
AutoML model for the identification of invasive ductal carci-
noma on whole slide images. Accuracy was slightly inferior
(84.6%) with a validation dataset (19). The authors suggested
that a balanced sample size between training groups was an
important factor for accuracy, which motivated them to per-
form “data augmentation” by rotation of images even though
the actual benefit of such an artificial inflation of training
groups remains unclear. With regard to neuropathological
applications, Google AutoML used for distinction between
tufted astrocytes, astrocytic plaques and neuritic plaques on
phospho-tau immunohistochemical-stained images from the
motor cortex achieved precision and recall rates between 98%
and 100% (20). Google AutoML was trained on microphoto-
graphs from testicular biopsies to class them into 1 of 4 John-
sen score groups (a histological score for assessment of
spermatogenesis). The authors found out that expanded
images focusing on “characteristic areas with seminiferous
tubules” resulted in a much higher precision and recall (99.5%
average precision, 96.23% recall) than nonexpanded images on
400� magnification (82.6% average precision, 60.96%) (21).

A study published as a preprint compared the performance
of Google AutoML to that of a code-based solution (Apple
Create ML) with regard in the ability to classify histopatho-
logic images in a series of experiments including normal versus
corresponding tumoral tissues, different tumor types, and
molecular alteration (presence of KRAS mutation) (22). In
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that study, recall and precision were between approximately
80% and 100% without significant differences between the 2
platforms. Puri et al used Google AutoML for classification of
histological patterns of drug-induced liver injury according to
the causative drug and obtained 92.9% accuracy, though with-
out an external validation cohort (23). Of note, a concept of a
locally run code-free pipeline for deep learning based on open-
source software has also been described (7). In their proof-of-
concept study, the authors used the pipeline for image seg-
mentation tasks but it would be expected to be equally able to
perform other tasks such as image classification.

With the exception of the study concerning classification of
tau-related lesions mentioned above, neuropathological appli-
cations of ML-based image classification for the most part
have used code-based solutions. Fields of application have
included glioma classification based on H&E-stained slides
(24), classification of tauopathies (25), cerebral amyloid path-
ologies (26), white matter pathology in tauopathies (27) or
microglia detection and morphology (28).

A number of studies have assessed the performance code-
free platforms for classification of nonhistological medical
images. Faes et al used publicly available open source datasets
including retinal fundus images, optical coherence tomography
(OCT) images; images of skin lesions, and chest X-ray to
assess the performance of Google AutoML (29). They found
accuracy to be better for binary classifications than for tasks
with multiple classes. Korot et al performed a comparative
study of 6 different platforms (including Google AutoML and
Microsoft custom vision) on OCT images and fundus photo-
graphs with regard do diabetic retinopathy (8). The major
platforms generally showed a similar performance; of note, the
authors found published bespoke algorithms not to perform
systematically better than code-free algorithms. The same
group used Goggle AutoML for prediction of sex from photo-
graphs achieving 86.5% accuracy in the training cohort and
78.6% accuracy in the external validation cohort (9). Antaki et
al found an interactive application within MATLAB to allow 2
ophthalmologists without previous coding experience to build
a ML mode for proliferative vitreoretinopathy (30).

Our findings are in accordance with the published literature
in that we found code-free ML to be easily accessible to inves-
tigators without previous coding experience while being suffi-
ciently accurate in diagnostically meaningful tasks to be of
potential utility in real-life applications. In comparison to the
published literature, the present study highlights a number of
points that have rarely been addressed: (1) We found external
validation of the predicted recall and precision to be crucial, as
both platforms tended them when sample sizes were small,
while we predicted values to be accurate when the algorithms
were trained with a sufficient number of images (in the order
of several hundreds). (2) Along the same line, we found nega-
tive control experiments to be important, as both platforms
predicted an accuracy of around 80% when trained with non-
sense input (even vs odd accession number); also, the external
validation cohort showed the true accuracy to be much lower.
(3) We systematically compared the performance of 2 major
code-free ML platforms and found minor differences in the

user interface and the workflow but an overall comparable per-
formance throughout a series of experiments.

In summary, we conclude that code-free ML platforms ena-
ble researchers without previous coding experience to perform
meaningful experiments and develop classifiers with sufficient
accuracy for potential real-life applications at low costs. Appli-
cation programming interfaces in principle allow for integra-
tion of these classifiers in external work-flows. These classifiers
might most easily be used in settings that pose no or minor
regulatory issues, for example, in research settings, for auto-
mated annotation of image archives or possibly in diagnostic
work-flows with some redundancy; for example, the decision
in which order a certain series of tests should be requested.

Platforms for code-free ML may arguably be of even more
interest to neuropathologists as a training tool (and play-
ground) as they significantly lower the threshold in order to
make their first steps in the field. Their morphological compe-
tences as well as their understanding of the biology and clinical
consequences of lesions of the nervous system will be a key
factor for successful implementation of ML-based image classi-
fication in general. Therefore, hands-on experience that may
be obtained more easily through code-free platforms will likely
be of utmost importance.
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