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A B S T R A C T

Computational machine learning (ML)-based frameworks could be advantageous for scalable analyses in neuropathology. A recent deep
learning (DL) framework has shown promise in automating the processes of visualizing and quantifying different types of amyloid-b deposits
as well as segmenting white matter (WM) from gray matter (GM) on digitized immunohistochemically stained slides. However, this frame-
work has only been trained and evaluated on amyloid-b-stained slides with minimal changes in preanalytic variables. In this study, we
evaluated select preanalytical variables including magnification, compression rate, and storage format using three digital slides scanners (Zeiss
Axioscan Z1, Leica Aperio AT2, and Leica Aperio GT 450), on over 60 whole slide images, in a cohort of 14 cases having a spectrum of amy-
loid-b deposits. We conducted statistical comparisons of preanalytic variables with repeated measures analysis of variance evaluating the out-
puts of two DL frameworks for segmentation and object classification tasks. For both WM/GM segmentation and amyloid-b plaque classifi-
cation tasks, there were statistical differences with respect to scanner types (p< 0.05) and magnifications (p< 0.05). Although small
numbers of cases were analyzed, this pilot study highlights the significance of preanalytic variables that may alter the performance of ML
algorithms.
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I N T R O D U C T I O N

Whole-slide imaging has become an increasingly popular
modality to assess brain tissues. With the help of a digital slide
scanner, ultra high-resolution whole slide images (WSIs) are
generated to aid in the preservation of tissue details (1). WSIs
can be viewed and annotated through computer software such
as Aperio ImageScope, ZEN, and QuPath (2). The digitization
of tissue information allows for the application of computa-
tional approaches, which include but are not limited to
machine learning (ML) and image processing that can aid
with automated analyses of tissues.

Many types of pathologies within the brain define the neu-
ropathologic classification of many neurodegenerative diseases
(3). For example, amyloid-b deposits, in the form of plaques,
are a hallmark pathological feature of Alzheimer disease (AD)
(3). It is becoming advantageous to have more quantitative
assessments of these pathologies for deeper phenotyping that

is paving the way for precision medicine approaches for these
devastating diseases (4–6). The manual quantification of path-
ologies, such as amyloid-b plaques, can be a time-consuming
task that has been automated through Convolutional Neural
Networks (CNN) (7), a type of ML framework. Other deep
learning (DL) studies in pathology have applied similar techni-
ques for WSI analysis (7–9). However, the performance of the
aforementioned CNN models has not been fully demonstrated
for WSIs scanned under variable conditions (i.e., magnifica-
tions, compression rates, etc.).

Many promising DL-based studies in neuropathology utilize
WSIs from a single scanner, with single WSI formatting set-
tings (10–13). Such design choices lead to a study with little
or no variation in preanalytical variables such as image format,
image compression rate, and scanner types. Despite displaying
competitive performance, studies may not adequately assess
generalizability; this lack of preanalytical variable diversity
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could be a concern for the reported performance metrics (10–
13). Research on organ tissues other than brain has revealed a
model trained with data from diverse settings, such as different
scanners, outperform models trained with single-source WSIs
(14). Although 2 WSIs from different scanners may look iden-
tical to a human evaluator, they may look distinct to the DL
model due to the scanner, formatting applied to the scan, and/
or the digital watermark left by preprocessing software. Differ-
ent formatting settings or scanners introduce variables includ-
ing but are not limited to compression standard, compression
rate, storage format, and magnification. The pixel values such
as mm/pixel, in each WSI, may differ due to compression or
other variables and yet display an identical image to the evalua-
tor. Since DL models learn through backpropagation (15) and
thus “see” the pixel values, not the overall picture like an
expert, they may be affected by the change in these preanalytic
variables.

Concerning the performance of DL frameworks when pre-
sented data with different preanalytical variables, few studies
have tested and observed degradation in performance with dif-
ferent tissue areas and quantities (16, 17), different scanners
(18), and different class distributions (19). Another study has
experimented with a single framework facing changes in stor-
age format and architecture used (20). In real-world model
deployment, data from different scanners or generated with
different scanning formatting will likely be evaluated by the
model, leading to a concern about the performance metrics
displayed in studies that demonstrate no variance in preanalyti-
cal variables. Studies that present the same preanalytical varia-
bles in training and testing data do not adequately test a
model’s generalizability despite good reported performance
metrics. Therefore, there may be many published DL models
with good reported performance that can only replicate good
performance when fed data similar to the training set.

Our study seeks to provide a proof of concept in the neuro-
pathology realm examining the potential prediction effects of
different preanalytic variables of DL models. We aim to test
the generalizability capacity of 2 DL models, one for segmenta-
tion and the other for classification, trained using WSIs from a
single scanner by testing them on the same slides scanned
with different scanners and scanner settings. By displaying and
comparing the qualitative and quantitative outputs of 2 differ-
ent DL tasks when applied to data with different preanalytical
variables, we report and highlight effects by such variable
changes.

M A T E R I A L S A N D M E T H O D S
Datasets

We utilized WSI from a total of 14 cases (see Supplementary
Data Table S2 for demographic details) from slides of
formalin-fixed paraffin-embedded 5 mm sections of postmor-
tem human brain temporal cortex immunohistochemically
stained with an antibody against amyloid-b diluted 1:1600
(4G8, BioLegend, formally Covance, San Diego, CA, USA); all
sections were subjected to standard procedures on automated
machines, pretreatment included 10 minutes in 87% formic
acid; endogenous peroxidases were blocked with 3% hydrogen

peroxide. All antibody staining was conducted on an autos-
tainer (DAKO AutostainerLink48, Agilent, Santa Clara, CA,
USA) utilizing proper positive and negative control for the
antibody. All staining was conducted using proper controls by
the University of California Davis Histology Core, which is a
Clinical Laboratory Improvement Amendments (CLIA) and
College of American Pathologists (CAP) accredited laboratory
that also operates under the best laboratory practices standards
and meets all Federal, State of California and UC Davis guide-
lines and regulations. The stained slides were digitized to cre-
ate 6 different WSIs datasets having different preanalytic
variables (see Fig. 1 for schematic). In the following sections,
we describe each of our datasets according to its preanalytical
variables. The names of the datasets reflect a formatting of
scanner-magnification-compression. To ensure fair perform-
ance through similar processing times for each WSI, all 40�
WSIs were resized to 20� through PyVips package. Other
than resizing, no preprocessing was done in any of the WSIs.
No preprocessing was applied prior to feeding the WSIs to the
model to avoid any digital watermarks generated by the image
software such as ImageScope or ZEN. All scanners undergo
routine servicing once a year. The AT2 scanner was purchased
in 2016, the Zeiss Axio Z1 Scanner was purchased in 2019,
and the GT450 was purchased in 2021. We selected the stand-
ard processing method for all scanners, which included but
were not limited to standard automatic color profile and tissue
detection. Tissue detection automatically crops the WSI to
ensure reduced background. Color profile normalizes the pixel
values for optimal monitor display. The effects of cropping
and color profile can be observed in Supplementary Data Fig-
ure S1.

AT2-203
A total of 14 slides from our cohort were scanned into JPEG-
2000 compressed .svs files. The WSIs were digitized by Leica
Aperio AT2 at 20� magnification. This dataset contains the
same preanalytical variables as the WSIs used for training of
both amyloid-b deposit detection and white matter (WM)/
gray matter (GM) segmentation.

AT2-403

All 14 slides from our cohort scanned into JPEG-2000 com-
pressed .svs files. The WSIs were digitized by Leica Aperio
AT2 at 40� magnification. This dataset presents only 1 prea-
nalytical variable change, that is, magnitude change, as the
WSIs used for training of both evaluated DL frameworks. Case
11 displayed cover slip deadherence not seen in other datasets.

GT450-403
A total of 14 slides from our cohort were scanned into JPEG-
2000 compressed .svs files. The WSIs were digitized by Leica
Aperio GT450 at 40� magnification. Despite having the same
storage format, and compression standard, these WSIs came
from a different Leica scan than the AT2.

Axio-Z1-403-45
A total of 13 slides from our cohort were scanned into JPEG-
XR compressed .czi files. The WSIs were digitized by Zeiss
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Axio Z1 scanner at 40� magnification. The JPEG-XR com-
pression reduced the size of the file by 55%.

Axio-Z1-403-75
A total of 13 slides from our cohort were scanned into JPEG-
XR compressed .czi files. The WSIs were digitized by Zeiss
Axio Z1 scanner at 40� magnification. The JPEG-XR com-
pression reduced the size of the file by 25%.

Evaluated pipelines
This study evaluated 2 pretrained models (overall workflow is
depicted in Fig. 2). The first model, aimed at WM/GM seg-
mentation (8), was trained on 20� JPEG-2000 compressed
.svs slides digitized from Leica Aperio AT2. The second
model, aimed at detecting amyloid-b plaques (7), was trained
on 20� JPEG-2000 compressed .svs slides. We performed no
tuning or additional training on any of the 2 models. The prea-
nalytic variables for the data used in the 2 pretrained models
displayed constant scanner (Aperio AT2), constant magnifica-
tion (20�), consistent storage format (SVS), and constant
compression standard (JPEG-2000), matching the preanalytic
variables from the AT2-20� dataset.

Both models employed CNN-based DL. The amyloid-b
deposit detection was originally trained on a version of VGG
(21). The WM/GM segmentation model was trained on a ver-
sion of ResNet-18 (22). Both ResNet and VGG are commonly
used CNN-based DL architectures. The pipeline used to gen-
erate both models’ predictions was similar to the one described
in (23). We patched each WSI in 256 � 256 segments and
those patches were the input to both classification and seg-

mentation models simultaneously as depicted in Figure 2.
Although the input is the same, each model performs different
tasks, while the ResNet performs patch-based segmentation,
the VGG model performs classification and detection of amy-
loid-b present in each patch.

The ResNet-based WM/GM segmentation module outputs
a heatmap with yellow, cyan, and black representing WM,
GM, and background, respectively (Supplementary Data Fig.
S2). The model also outputs WM and GM size in mm/pixel,
which we use to calculate the WM/GM ratio. The VGG-based
amyloid-b deposit detection module outputs separate heat-
maps based on each plaque classification (cored and diffuse)
colored in red. Counts/area of each plaque classification were
also generated by incorporating the WM/GM predictions. All
codes related to these processes are located in this GitHub
(https://github.com/ucdrubinet/BrainSec, last accessed Janu-
ary 10, 2023).

Registration
Due to the distinct field-of-view and automatic tissue detection
present in each scanner, the output WSI files from different
scanners (see Supplementary Data Table S1 for additional
details on each WSIs parameters) are not aligned and present
different tissue sizes and aspect ratios despite being generated
from the same slide. Automatic cropping caused loss of tissue
area for select Zeiss scans (Supplementary Data Fig. S1).

Hence, to register the WSIs and ensure as much alignment
and as little loss of tissue as possible, we employed a technique
for restained histological WSI coregistration (24). Aligning
restained WSIs is similar to our task since the tissue borders

Figure 1. Schematic representation of preanalytical variables evaluated. Variables linked by arrows are nested, for example, all Zeiss Axioscan
Z1 data employed are in CZI storage format.
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are similar between restained slides. However, due to the dif-
ference in magnification in some WSIs, we also needed to
resize the 40� files into 20� to ensure similar tissue size. We
achieved this by calculating the resizing factor that allowed for
the height and width difference to be minimal when compared
to the original AT2-20� WSI. Due to distinct aspect ratios
from different scanners, the height and width from resized
WSIs were not able to match the ones from the original AT2-
20� WSI. This required an additional manual tuning step to
the registration technique employed. All codes related to these
processes are located in this GitHub (https://github.com/
smujiang/Re-stained_WSIs_Registration, last accessed January
10, 2023).

Statistical analysis
Because all slides were scanned using each of the scanners,
repeated measures analysis of variance (ANOVA) was used to
compare differences in WM/GM segmentation and amyloid-b
core or diffuse plaque counts derived from the ML models
across preanalytic variables. Key factors of interest included
scanner, magnification, and compression rate. Not all combi-
nations of factors were considered, so separate analyses were
conducted for each comparison of interest, including all rele-
vant data. For example, when considering compression rate,
only outcomes from the slides on the Zeiss Axioscan were
included. All analyses were conducted using Python and a
p value of less than 0.05 was considered statistically significant.

R E S U L T S
Effects of preanalytic variables on the amyloid-b deposit

detection/classification model
The amyloid-b deposit detection with subsequent plaque clas-
sification outputs counts for cored and diffuse amyloid-b
plaques. The module acquires these counts by detecting and
then classifying all deposits located in the WSI. A comparison
of these predictions for a single case can be seen in Figure 3.
We observed some disagreement in prediction between the
different datasets for both diffuse and cored plaques. Figure 3
shows an example with heatmaps and accompanying quantita-
tive results for plaque counts in background, GM, and WM.
Figure 4 is a graphical representation of the quantitative results
for cored and diffuse plaque counts and GM/WM ratios across
all cases based on the preanalytic variable.

By acquiring the quantitative results for cored/diffuse plaque
counts and applying ANOVA, we can test whether the preanalyt-
ical variables affect the target outcome (deposit counts). Table 1
shows that magnification and scanner type are 2 preanalytical var-
iables with the most effect on our DL predictions. Results from
Table 1 show similar effect observed in the case of the segmenta-
tion model, where magnification and scanner (GT450) are the
preanalytical variables with the most effect on DL predictions.

Effects of preanalytic variables on the WM/GM
segmentation model

The WM/GM segmentation module yields WM/GM ratio as
a quantitative measure that can be used in statistical analysis.

Figure 2. Convolutional Neural Network-based deep learning (DL) pipeline employed in this study. The approach for prediction is patch-
based; therefore, whole slide image must be patched prior to analysis. The different blue and green segmented circled on the gridded images
in the top figure (light orange box) panel refer to the different resolutions (1536 � 1536 and 256 � 256, respectively) patched by the
framework. There are 2 DL modules responsible for predictions (lower figure panel—light blue box), a white matter (WM)/gray matter
(GM) segmentation and an amyloid-b deposit detection with subsequent classification module which operate on the 256 � 256 pixel
resolution. For heatmaps in the bottom left corner of the figure, WM is represented in yellow, GM as cyan, background as black, and
plaques as orange (figure adapted from [23]).
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We plotted the WM/GM ratios for the different datasets eval-
uated in Figure 4. When applying ANOVA to those values, we
can check whether the preanalytical variables affect the target
(WM/GM ratio). Table 1 summarizes our results; both
magnification and scanner type (GT450) have significant
effects on DL prediction outcomes.

The WM/GM segmentation map also outputs a heatmap of
the segmented WSI, in this heatmap, we have GM predictions
denoted as cyan, WM as yellow, and background as black
(Fig. 3 and Supplementary Data Figs. S2 and S4). This
method of visualizing the results is a better indicator of stable
performance, as that is the final product to be analyzed by the
expert, as well as the map to be used for the calculation of den-
sities of deposits and structures seen in the WM/GM. As seen
in Figure 4, changing scanners and magnification has an effect
on our model’s predictions. For case 7, when comparing the

results from AT2-20�, Axio-Z1-40�-75, and Axio-Z1-40�-45,
there are prediction disagreements between GM and WM
close to the boundaries of GM and background (Supplemen-
tary Data Fig. S2).

Saliency maps
When analyzing heatmaps and quantitative scores acquired
from the 2 DL frameworks, we can assess how the preanalyti-
cal variables affect the outputs. However, this information only
tells us how the final output was affected, but the effect on the
prediction process of the DL frameworks is still unknown. Sali-
ency maps allow us to tap into the black box nature of DL
models and learn a bit about their prediction process, more
specifically, how much the different locations in each image
contributed to the final output. We employed Class Activation
Mapping (CAM) (25), Grad-CAM (26), and Grad-CAMþþ

Figure 3. Schematic of heatmaps of white matter (WM)/gray matter (GM) segmentation and plaques counts for case 4. Top panel—GM/
WM cored plaque heatmap (left) and counts by area based on select preanalytic variables (right). Bottom panel—GM/WM diffuse plaque
heatmap (left) and counts by area based on select preanalytic variables (right). A zoomed-in area (not the whole slide image) of case 4 was
chosen to aid in visualization. For heatmaps, plaques are depicted in orange, background as black, WM as yellow, and GM as cyan.
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(27) as methods to acquire the saliency maps. By analyzing
the saliency maps generated from each 256 � 256 patch, we
can observe which areas of each patch contributed most to the
final model output and how these areas may differ according
to the preanalytical variables. That is especially relevant for the
WM/GM segmentation DL model, as there is no obvious sin-
gle structure linked to the predictions such as an amyloid-b
plaque classification, as it relies on features such as texture of
the tissue, as shown previously (23).

The Grad-CAM presented in Figure 5 shows that despite the
prediction outcome remaining constant as GM in all the cases
shown, the areas that led the WM/GM frameworks to reach

that conclusion were different. The Grad-CAMþþ displays less
differences, pointing toward a higher level of agreement that
occurs when taking in consideration a more complex interpret-
ability framework. The same effect is observed when the agreed
predictions are WM, as seen in Figure 5.

We are also able to see in Supplementary Data Figure S3
the difference remains when the final output disagrees. This
patch is taken from the patch with high WM-GM prediction
disagreement observed between AT2-20� and Axio-Z1 data-
sets in case 7 (Supplementary Data Fig. S2). Despite a level of
overlap in the saliency map, the AT2-20� CAM covers a
wider area than its Axio-Z1 counterparts.

Figure 4. White matter (WM)/gray matter (GM) ratio, cored, and diffuse plaque (A), cored plaque (B) counts, and WM/GM ratio (C) for
each case by preanalytic variable. Cases with none/low likelihood Alzheimer disease (AD) [5, 6, 8, 10, 11, 14] typically had low numbers of
core plaques, while cases with high likelihood AD [1, 3, 4, 12, 13] had higher counts. More information on the demographics of cases
located in Supplementary Data Table S2. Further details on case 6 for GM/WM ratio is located within Supplementary Data Fig. S4.

Table 1. p-Values for ANOVA Tests

Statistical analysis values

Axio-Z1-40�-45 versus
Axio-Z1-40�-75

AT2-20� versus
Axio-Z1-40�-75

AT2-20� versus
GT450-40�

AT2-20� versus
AT2-40�

Cored count 0.4024 0.0738 0.0078 0.0160
Diffuse count 0.2272 0.4290 0.0073 0.0705
WM/GM ratio 0.0853 0.2475 0.0005 0.0013

ANOVA, analysis of variance; GM, gray matter; WM, white matter.
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D I S C U S S I O N

Recent studies utilizing ML/DL in pathology have been suc-
cessful in displaying high prediction performance (7–9, 23).
However, due to the black box nature of trained DL models,
rigorous testing is needed since there is no guarantee a model
trained without domain adaptation (DA) techniques (28–30)
will have the same performance when applied to data with dif-
ferent preanalytic variables. Furthermore, as other studies have
shown feeding WSIs with different preanalytical variables may
degrade performance (17), we must extend the rigorous test-
ing to account for such differences. Studies including generaliz-
ability testing are limited (17–20).

Our study’s AT2-20� dataset constitutes a fair baseline: it
shares the same scanner, magnification, brain region, storage
format, stain, and compression standard as the training data.
Therefore, when performing tests on this data subset, we
expected the model to achieve the most accurate performance
in both DL modules as there is no variance in preanalytical
variables. Here, we utilized the AT2-20� in the training set, so

it was the gold standard of performance for all other datasets.
By evaluating the DL frameworks on AT2-20� and then
evaluating on other datasets with different preanalytical varia-
bles, we investigated the effect preanalytical variables on DL
generalizability in WSIs and observed some level disagreement
in both DL frameworks.

We demonstrated the detection of amyloid-b plaques in
brain WSI trained on 20� AT2 slides is affected by WSI mag-
nification (40�) and GT450 scanner. We saw a similar effect
for both diffuse and cored amyloid-b plaques. In addition to
the statistical analysis result, we can reliably identify an overall
effect of preanalytical variables on amyloid-b plaque counts
when observing heatmaps and counts per area.

We also observed performance differences when our gener-
alizability test was applied to a WM/GM segmentation task.
Our results revealed WSI magnification (40�) and scanner
type (GT450) have an impact on predicted WM/GM ratio.
Our observation of WM/GM segmentation heatmaps and sali-
ency maps also displays unstable WM/GM predictions when

Figure 5. Grad-CAM and Grad-CAMþþ of agreed predictions of gray matter and white matter. All datasets agreed on the tile’s prediction
and got the correct prediction.
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applied to WSIs from GT450 scanner (Fig. 5). Some outlier
WM/GM predicted heatmaps can be observed in Zeiss scan-
ners having stark differences when compared to the AT2-20�
heatmap (Supplementary Data Fig. S4).

The outlier performance from GT450 expanded to all cases
employed in this study. When analyzing the overall scan from
the GT450 in comparison to other scanners, subjective obser-
vations denoted an increase in brightness and white tones. We
hypothesized the different standard color profile applied to the
scan (i.e., ICC profile) is responsible for the difference
observed. Since scanning was done with default parameters,
the difference in color profile may extend to the software ver-
sion employed at the time of the scan. Studies have argued a
normalization step is required to match performance between
scanners or different scanning protocols (31). In future works,
we will examine how color normalization may alter results
within the preanalytic variable realm (32–34). Preliminary
experiments revealed Reinhard normalization (32) to be a suit-
able intervention to address GT450 performance differences
(Supplementary Data Fig. S5).

Although this study contributes to the field, there are some
limitations to consider. First, there is the misalignment of digi-
talized tissue caused by the different scanners’ field of view.
Due to such misalignment, we could not perfectly overlap the
heatmap predictions. Such limitation prevented us from using
our WM/GM annotated ground truth to reliably calculate
Intersection over Union (IoU) or DICE coefficient between
our WSIs digitized from the same slides. Both DICE coeffi-
cient and IoU have been used to compare ground truth and
predictions on a pixel-by-pixel basis (35, 36). This misalign-
ment prevented automated tile comparison, as a human
observer was required to fine tune registration for each individ-
ual area compared. Second, there was also the use of only 20�
and 40� magnification; additional works with other magnifica-
tions such as 10� and 5� may be advantageous as file sizes
may be smaller and easier to process. Third, our study exam-
ined only a limited number of cases from a single brain bank.
Due to the large file size of WSIs, especially at 40� magnifica-
tion, it becomes a time-consuming task to generate predictions
for both WM/GM segmentation and amyloid-b deposit
assessment, approximately 6 hours per 20� slide when
employing an NVIDIA Tesla T4 GPU. We processed a total
of 65 slides, which account for almost 400 hours of GPU use.
Lastly, we utilized the AT2-20� as the gold standard to con-
duct comparisons. To our knowledge, although checklists for
ML algorithms in medical imaging have been proposed (34),
there are no gold standards for preanalytic variables for digital
pathology when conducting ML algorithms. The choice of
using AT2-20� as gold standard is due to data of same preana-
lytical variables being employed in training. This choice best
matches the recommendations of item 7, regarding data sour-
ces, in previous works (37) as test data from AT2-20� match
the trained model best. Unlike other medical imaging fields
such as Radiology that have standard file formats, there have
been no proposed standards in digital pathology and there
exist many options given the vast array of available slide scan-
ners and associated settings in the WSI realm. This study high-
lights the importance of denoting scanner types,

magnifications, as well as compression rates when conducting
such workflows.

Generalizability is a crucial challenge for deploying DL in
real-life pathology problems. Currently, in the field, there are
studies seeking to perform DA techniques to address generaliz-
ability from diverse preanalytical variables in ML frameworks
(28–30). These efforts are important to advance the generaliz-
ability of frameworks in the field and address the unwanted
effects we observe when varying preanalytical variables. Unlike
normalization, DA does not need any additional preprocessing
steps for generalization to many different scanners. The appli-
cation of these DA techniques has also been shown in the WSI
domain (30) and would be a great candidate to address the
performance difference we observed.
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