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Abstract

We coexist with a vast number of microbes that live in and on our bodies. Those microbes 

and their genes are collectively known as the human microbiome, which plays important roles 

in human physiology and diseases. We have acquired extensive knowledge on the organismal 

compositions and metabolic functions of the human microbiome. Yet, the ultimate proof of 

our understanding of the human microbiome is reflected in our ability to manipulate it for 

health benefits. To facilitate the rational design of microbiome-based therapies, there are many 

fundamental questions to be addressed at the systems level. Indeed, we need a deep understanding 

of the ecological dynamics associated with such a complex ecosystem before we rationally 

design control strategies. In light of this, this Review discusses progress from various fields, 

e.g., community ecology, network science, and control theory, that are helping us make progress 

towards the ultimate goal of controlling the human microbiome.

Graphical Abstract

Abstract

*Correspondence: yyl@channing.harvard.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cell Syst. Author manuscript; available in PMC 2024 February 15.

Published in final edited form as:
Cell Syst. 2023 February 15; 14(2): 135–159. doi:10.1016/j.cels.2022.12.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To facilitate the rational design of microbiome-based therapies, there are many fundamental 

questions to be addressed at the systems level. This Review discusses progress from various 

e.g., community ecology, network science, and control theory, that are helping us make progress 

towards the goal of controlling the human microbiome.

INTRODUCTION

We coexist with a vast number of microbes that live in and on our bodies. Those microbes 

and their genes are collectively known as the human microbiome, which plays very 

important roles in human physiology and diseases. Propelled by next-generation sequencing 

technologies, many scientific advances have been made through the work of large-scale, 

consortium-driven microbiome projects1–3, helping us acquire more accurate taxonomic and 

functional compositions of the human microbiome than before.

It is now well known that the largest portion of the microorganisms live in our gut, 

and most of them are bacterial4. The human gut microbiome can be altered by dietary 

changes5,6, medical interventions7, and many other factors8–10. The alterability of our gut 

microbiome offers a promising future for microbiome-based therapies for the prevention and 

treatment of diseases associated with disrupted gut microbiomes9,11. In particular, infections 

by human pathogens are likely preventable with microbiota-based approaches, offering an 

intriguing alternative to antibiotic treatment with the added benefit of helping to curb the 

rise of antibiotic resistant strains. Yet, due to its high complexity, untargeted interventions 

could shift our microbiome to an undesired state with unintended health consequences 

and hence raise safety concerns12–14. So far, FDA has not approved any microbiome-

based therapeutics15. Only a handful of products have entered phase-3 trials. And those 

products are typically based on donor-derived treatments for recurrent Clostridioides 
difficile infection, for which the traditional treatment, i.e., fecal microbiota transplantation 

(FMT)16,17,18, has already been very successful.

Beyond some technical difficulties (e.g., the false negative and false positive issues in 

metagenomic profiling19, distinguish the living from the dead in microbial communities20, 

etc.), there are several conceptual challenges in developing microbiome-based therapies 

to control human microbiome. First, we don’t know the wiring diagram of the complex 

ecosystem associated with the human microbiome. Consequently, we don’t have a fully 

parameterized mathematical model to describe its systems-level dynamics in the absence or 

presence of different interventions. This represents the biggest hurdle to the development 

of any model-based control strategies. Second, our microbiome is highly personalized. We 

can never find two individuals who share the same microbial composition. This prompts us 

to ask how personalized the design of microbiome-based therapeutics should be. Third, our 

microbiome is stable, functionally redundant, and likely difficult to manipulate. Indeed, for 

the human gut microbiome, in the absence of large perturbations, such as repeated antibiotic 

treatment or drastic diet changes, it is very stable. This stability or resilience is closely 

related to its functional redundancy, which underscores the difficulty of manipulating its 

composition with mild or short-term perturbation.
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In this Review, we will describe those three challenges in detail (Sec.2). Then, we 

will review recent progresses made from community ecology, network science, and 

control theory perspectives, which facilitate our understanding and control of complex 

microbial communities. In particular, we first introduce different modeling frameworks of 

microbial communities in Sec.3.1, serving as the foundation of designing model-based 

control strategies. In Sec.3.2, we focus on simple population-level models and discuss the 

universality of their microbial dynamics, which determines how personalized the design of 

microbiome-based therapeutics should be. In Sec.3.3, we introduce different computational 

methods to reconstruct the ecological network of complex microbial communities, using 

either temporal (“longitudinal”) data or steady-state (“cross-sectional”) data. In Sec.3.4, we 

introduce a theorical framework of controlling microbial communities and two practical 

control strategies. Finally, in Sec.4, we suggest a few promising directions that require 

insights and tools from other disciplines (e.g., bioinformatics, machine learning, and 

culturomics).

CONCEPTUAL CHALLENGES

Challenge 1: We don’t know the wiring diagram of this complex ecosystem.

We consider the human gut microbiome as a dynamic ecosystem associated with a 

complex ecological network. As such, tools from community ecology, network science, 

dynamical systems and control theory can be used to infer network structure and microbial 

interactions, predict temporal behavior, and design efficient control strategies. Unfortunately, 

the ecological network of the human gut microbiome is largely unknown. In fact, this is true 

for the microbiome of any site on or in the human body.

Depending on the model complexity, we can consider two different representations of the 

ecological network (see Fig.1). The first representation is a bipartite graph connecting 

two types of nodes: microbial species (denoted as ‘S’-nodes); and chemical compounds 

(denoted as ‘C’-nodes, representing nutrients, metabolites, toxins, etc.)21. The edges in 

this bipartite graph encode various mechanisms of microbial interactions, e.g., multiple 

species consume the same nutrients22, resulting in mutual competitions; one species 

produces some metabolites that are consumed by other species, leading to metabolic cross-

feeding23; one species secrets antimicrobial peptides (e.g., bacteriocins24,25) that kill or 

inhibit other species; one species secrets signaling molecules that stimulate the growth of 

other species; etc. We emphasize that edges in this bipartite graph are determined by the 

functional repertoire encoded by the microbial genomes, and hence are mechanistic and 

relatively robust to changing environmental conditions or host factors over short ecological 

time scales. Some edges might be “silenced” sometimes, because species may choose 

to deactivate some functions, but activate other functions to consume certain resources 

to reduce the niche overlap with other species. However, we do not expect completely 

new edges will emerge over short ecological time scales. In other words, this bipartite 

graph represents a relatively constant wiring diagram or ecological network of microbial 

communities. However, mapping out this type of ecological network is very challenging, 

if not impossible. For complex habitats, e.g., the human gut, we don’t even have a 

comprehensive catalog of those chemical compounds that mediate various types of microbial 

Liu Page 3

Cell Syst. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interactions. (In Sec.3.1.2.2 and 3.1.2.3, we will describe population dynamics models based 

on this type of ecological network, and further explain the difficulty of parameterizing those 

models.)

The second representation of the ecological network is a unipartite graph, where nodes 

represent microbial species and edges represent direct inter-species interactions (e.g., 

parasitism, commensalism, mutualism, amensalism, or competition) mediated by various 

mechanisms and chemical compounds as discussed above. The direction, sign and strength 

of a given edge in this unipartite graph might be jointly determined by several mechanisms 

together for a given set of environmental conditions or host factors. This unipartite graph 

(Fig.1b) can be conceptually considered as a projection of the bipartite graph (Fig.1a) onto 

the ‘S’-nodes. Even though this projection may not accurately capture all situations in 

which microbial interactions take place through different mechanisms (e.g., a change in the 

environment, or when the shared chemical compounds is produced or consumed by multiple 

species21,26, or higher-order interactions27,28), it does simplify the network reconstruction 

problem. In Sec.3.4, we will discuss two types of network reconstruction methods (based on 

longitudinal and cross-sectional data, respectively) and the caveats of their usage (especially 

the requirement on the data informativeness). Here we point out that edges in this unipartite 

graph are phenomenological or effective, which might be influenced by the change of 

environmental conditions or host factors (especially drastic change of diet or disease status) 

even over short ecological time scales. In a sense, the effective unipartite wiring diagram 

of a microbial community might change in response to large perturbations. Empirical data 

analysis indicates that for the human gut microbiome of healthy adults, despite they have 

different age, race, body mass index, long-term dietary pattern, and transit time through the 

gut, their effective wiring diagrams are relative universal or host-independent29. However, 

we don’t know if this is true for diseased microbiome or microbiome of infants or the 

elderly.

The two representations of the ecological network discussed here are fundamentally 

different from any correlation or co-occurrence network constructed from similarity-based 

techniques, e.g., Pearson or Spearman correlations for abundance data or the hypergeometric 

distribution for presence-absence data30. Those correlation or co-occurrence networks are 

undirected and cannot be used to predict the dynamic behavior of ecological systems, simply 

because correlation is not causation. In fact, mirage correlations can be observed even from a 

simple two-species system with deterministic dynamics31.

The fact that the ecological network of our gut microbiome (regardless of the unipartite 

or bipartite representation) is largely unknown raises fundamental challenges in designing 

microbiome-based therapies. Let’s consider the simplest scenario of an acute infection 

(e.g., Clostridioides difficile infection), where our control objective is simply to decolonize 

the pathogen (i.e., Clostridioides difficile). Bottom-up experimental approaches may offer 

mechanistic understanding on those microbial species that can directly inhibit the growth 

of the target pathogen (through either bacteriocin or niche competition). However, using 

species that directly inhibit the pathogen can backfire because these species may also 

indirectly enhance the growth of the pathogen through interactions with other “mediator” 

species. In other words, the effective or net impact of species-i on species-j is really context 
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dependent. This is a typical network effect, which is ubiquitous in microbial communities32. 

Consequently, naive perturbations can ripple through an ecological network causing 

unexpected outcomes. This network effect underscores the importance of understanding the 

network structure in controlling the human microbiome effectively and safely. The reason is 

simple: our microbiome is highly personalized (See Sec.2.2). The mediator species might be 

present or absent for any given individual. So, the context matters.

Challenge 2: Our microbiome is highly personalized.

Thanks to big efforts of the Human Microbiome Project (HMP)1, we know that, for any 

given body site, we can never find two subjects who share exactly the same species 

collections and abundance profiles. In fact, community composition within the human 

microbiome varies a lot across individuals. This variation is sufficient to uniquely identify 

individuals within large populations and stable enough to identify them over time33. In other 

words, our microbiota is so personalized that it can serve as a “microbial fingerprint”.

The highly personalized microbial composition can be due to many host factors, such 

as birth mode (caesarean section delivery vs. vaginal delivery), breastfeeding vs. formula 

feeding, antibiotic exposure, environmental contaminants, medications, long-term dietary 

patterns, etc. Moreover, observational studies of ecological systems have shown that 

different species compositions can arise from distinct species arrival orders (or colonization 

history) during community assembly—also known as the priority effects34,35. Extensive 

numerical simulations have found that the strength of priority effects (calculated as the 

probability that community composition is dominated by colonization history) increases 

monotonically with community size, network connectance, and the variation of species 

intrinsic growth rates36.

Beyond all the influences from host factors and historical contingencies, the highly 

personalized microbial compositions raise a fundamental question: Do different hosts have 

different microbial ecosystems associated with different assembly rules and population 

dynamics? If this is the case, then designing generic microbiome-based therapeutics 

will be very challenging, because we need to consider not only the unique microbial 

compositions of different hosts, but also their unique microbial dynamics. (In Sec.3.2, 

we present a computational method to detect the universality of microbial dynamics and 

discuss its limitations.) However, if different hosts share similar microbial dynamics, then 

the highly personalized microbial compositions are simply due to their different species 

collections. In this case, we can design interventions based on universal dynamic rules 

to control the microbiome of different individuals, although caution is still warranted. 

It is hard to believe that a one-size-fits-all “probiotic cocktail” (a consortium of well-

selected live microorganisms that presumably provide health benefits) will work for 

everyone, simply because our healthy baseline (and very likely the disrupted) microbiomes 

are highly personalized. We might have to design “personalized probiotic cocktails” to 

effectively control the microbiome of different individuals32. In Sec.3.4.2.2, we present a 

strategy of designing personalized probiotic cocktail to decolonize a single pathogen (e.g., 

Clostridioides difficile) and demonstrate its efficacy using simulations.
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The highly personalized microbial compositions also make the test of true multi-stability 

in the human microbiome almost impossible. And whether true multi-stability exists in the 

human microbiome has implications for multiple computational analyses, e.g., the detection 

of universal microbial dynamics (see Sec.3.2), and the network reconstruction based on 

steady-state data (see Sec.3.3.2). Here, true multi-stability means that for a given set of 

species, there are multiple different stable states with all the species present in the same 

environment. Mathematically, those stable states are interior equilibrium points (rather than 

boundary equilibrium points where some species are absent) of the corresponding ecological 

system. True multi-stability has been well discussed in macro-ecological systems37. Yet, 

its detection in the human microbiome is rather difficult and has not been demonstrated 

experimentally.

Challenge 3: Our microbiome is stable, functionally redundant, and likely difficult to 
manipulate.

Many previous studies have reported the long-term stability of human gut, oral and skin 

microbiome40–42,43. For the human gut microbiome, compelling evidence has demonstrated 

that abundance fluctuations in the human gut microbiota are mainly due to temporal 

stochasticity44,45, and the human gut microbiota has two distinct dynamic regimes: auto-

regressive and non-autoregressive38. In particular, most of the variance in gut microbial 

time series is non-autoregressive and driven by external day-to-day fluctuations in host 

and environmental factors (e.g., diet), with occasional internal autoregressive dynamics as 

the system recovered from larger shocks (e.g. facultative anaerobe blooms)38. Overall, the 

human gut microbiota (in the absence of drastic interventions, e.g., repeated antibiotic 

treatments or drastic diet changes) can be considered as a dynamically stable system, 

continually buffeted by internal and external forces and recovering back toward a conserved 

steady-state38. Note that for some healthy reproductive-age women, their vaginal microbial 

compositions changed markedly and rapidly over time, which has been associated with their 

menstrual cycle46. The notion of stability or equilibrium does not apply to this case (despite 

the metabolic functioning of the vaginal microbial community was probably maintained). 

The importance of long transients47, sustained oscillations48,49, or even chaos50 in microbial 

communities on host health is largely unknown and warrants further studies.

The stability or resilience of our gut microbiome against perturbations has been attributed to 

its high level of functional redundancy (FR)51–53. As a classical concept in community 

ecology, FR means that phylogenetically unrelated taxa perform similar functions in 

ecosystems so that they can be interchanged with little impact on overall ecosystem 

functioning54–57. The roots of FR extend back to the concept of ecological guilds58, 

whereby species are grouped together based on functional similarities in what they perform 

within communities. Naturally, high level of FR can be related to the reliability with which 

an ecosystem will continue to deliver services in the face of moderate species loss59,60. 

Moreover, an ecosystem with high FR will be resistant to the addition of new species, 

because newly added species will very likely be functionally similar to certain existing 

ones and hence fail in the competition with their functionally similar species, rendering 

poor engraftment. This could be an evidence of the competitive exclusion principle61 (only 
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one species can occupy an ecological niche in one location at any one time), although this 

principle has often been challenged or reformulated (see Refs.62,63 and references therein).

For the human gut microbiome, compelling evidence of strong FR has been 

demonstrated1,52,64. For example, dietary carbohydrates can be processed by either 

Prevotella (from the phylum Bacteroidetes) or Ruminococcus (from the phylum 

Firmicutes)65. Short-chain fatty acids can be produced by multiple predominant genera: 

Phascolarctobacterium, Roseburia, Bacteroides, Blautia, Faecalibacterium, Clostridium, 
Subdoligranulum, Ruminococcus and Coprococcus66. An astonishing discovery from the 

HMP is that, despite the carriage of microbial taxa varies tremendously across individuals, 

the gene compositions or functional capacities remain highly conserved within a healthy 

population, regardless of the body site1. The finding implies for a healthy human microbiota 

changing its taxa composition will not drastically change its genetic potential or its overall 

metabolic capacity9. This is also a strong signal of FR.

Recently, a computational framework has been developed to quantify the FR for any 

microbiome samples using the whole-metagenome shotgun (WMS) sequencing data53. This 

framework is based on the genomic content network (GCN), a bipartite graph that links 

microbes to the genes in their genomes. It was reported that the GCN of the human 

microbiome exhibits several topological features (e.g., its strikingly nested structure) that 

favor high FR, because randomizing the GCN structure will significantly decrease FR53. The 

GCN-based framework enabled us to quantitatively test the intriguing relationship between 

the stability and FR of microbial communities. In particular, by analyzing WMS data from 

two published FMT studies67,68, it was found that high FR of the recipient’s pre-FMT 

microbiota raises barriers to donor microbiota engraftment53. In a sense, the FR level of the 

human microbiome may serve as a resilience indicator in response to perturbations such as 

FMT.

There are two sides to the high FR of the human microbiome. On one hand, high FR 

will help the human microbiome avoid drastic functional impairment from moderate taxa 

loss. On the other hand, it underscores the difficulty of manipulating its composition 

and functioning. For example, in the case of Clostridioides difficile infection, we want 

to decolonize the pathogen Clostridioides difficile (a notorious bacterium that is well 

known for producing toxins and causing serious diarrheal infections), and hence remove 

the functioning of toxin generation of the community. In this case, microbiome-based 

therapeutics, e.g., probiotic cocktails, have to be carefully designed, because the external/

exogenous species cannot colonize a very stable ecosystem due to its high FR and 

preoccupied ecological niches. If those exogenous species cannot easily colonize our gut 

microbiota, we might have to keep consuming them.

THEORETICAL PROGRESSES

Modeling framework.

Mathematical models of microbial dynamics serve as the foundation of designing any 

model-based control strategy to manipulate the human microbiome. Different modeling 

frameworks with different levels of complexity have been adopted from macro-ecological 
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systems or developed on purpose in the past to describe the dynamics of microbial 

communities. In this subsection, we will review those models and discuss the tradeoff 

between model complexity and parametric uncertainty. Not all the models discussed below 

are relevant to the central theme of controlling the human microbiome for this Review. Some 

of the complicated and more mechanistic models were actually developed for quite different 

purposes (e.g., explaining generic ecological patterns observed in microbial communities). 

Nevertheless, we introduce them here for the purpose of completeness so that readers can 

appreciate the whole spectrum of model complexities and better understand the motivation 

of working on simpler models for control strategy design (as discussed in Sec.3.4) or even 

completely model-free or data-driven approaches (as discussed in Sec.4.3).

Population-level models vs. Individual-based models—Various modeling 

frameworks of microbial dynamics have been developed69,70. Basically, they can be 

classified into either population-level models (PLMs) or individual-based models (IBMs). 

As the name suggests, PLMs directly describe the population changes of different microbial 

species present in the community. Some PLMs also explicitly model the abundance 

changes of abiotic resources (e.g., nutrients) consumed/produced by microbial species or 

chemical compounds that mediate the microbial interactions (see Sec.3.1.2.2 and 3.1.2.3). 

PLMs can be written as either differential or difference equations, depending on if time 

is treated as continuous or discrete. PLMs can be applied to spatially homogenous (or 

structured) environments using ordinary (or partial) differential equations (ODEs or PDEs), 

respectively. Thanks to their simplicity (especially for those PLMs that focus on the 

modeling of species population changes only), PLMs have proven to be of immense value in 

studying fundamental problems in microbial ecology and modeling the human microbiome 

to inform microbiome-based therapeutics design. Of course, PLMs have several intrinsic 

limitations: they do not incorporate phenotypic heterogeneities, adaptive processes, and 

interactions with local biotic or abiotic environment at the individual level.

IBMs are designed to resolve the limitations of PLMs69. In contrast to PLMs, IBMs do 

not describe changes on the population level at all. Instead, they only describe activities/

properties of individuals, as well as their interactions with the environment or host. Thanks 

to remarkable technological advances in metagenomics, bioinformatics, and culturomics71, 

we have accumulated ever more properties and behaviors of individual microorganisms, 

facilitating the development of IBMs to provide insights into various emergent phenomena, 

e.g., self-organized spatial patterns of biofilms72, and the coevolution of the archaeal 

and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses73. Despite the 

success of IBMs in certain application scenarios, and the availability of generic open-source 

platforms for individual-based modeling (e.g., iDynoMiCS74), building IBMs for the human 

microbiome to inform microbiome-based therapeutics design can be a daunting task due to 

(i) a huge number of model parameters that are often difficult to infer from observed data; 

(ii) many environmental variables (such as the concentrations of bacteriocins and nutrients) 

are hard to measure in real time; (iii) spatial distribution of microbial species in certain body 

sites (e.g., gut) is hardly available.

In the following, we will review different PLMs that have been heavily used to study 

microbial communities (including the human microbiome). Regarding the application of 
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IBMs in studying microbial sciences, we refer readers to Refs.69,75 for comprehensive 

reviews.

Population-level models: from simple to complex

Species-only models: When modeling a dynamical system, we first need to decide how 

complex the model needs to be so as to capture the phenomenon of interest. In the context of 

human microbiome, if we are just interested in exploring the impact that any given species 

has on the abundance of other species and predicting the abundance changes of microbial 

species present in the community, it is sufficient to use species-only PLMs written as a set of 

ODEs without assuming any spatial structure76,77:

ẋi(t) = fi(x(t)),

i = 1, ⋯, N. Here, fi(x(t))’s are some unspecified functions characterizing the population 

dynamics of the community, x(t) = x1(t), …, xN(t) ⊤ ∈ ℝN is an N-dimensional vector with 

xi(t) denoting the abundance (or population density) of species-i at time t. Here we have 

implicitly assumed that chemical compounds or resources that mediate the microbial 

interactions rapidly reach steady state, hence can be mathematically eliminated from the 

model.

We can further decompose fi(x(t)) into the sum of intrinsic dynamics and microbial 

interactions. If we assume pair-wise microbial interactions, then the ODEs take the generic 

form of

ẋi(t) = ℎi xi(t) + ∑j = 1
N aijg xi(t), xj(t) ,

i = 1, ⋯, N. The classical Generalized Lotka-Volterra (GLV) model is a representative 

species-only PLM with pairwise interactions:

ẋi(t) = xi ri + ∑j = 1
N aijxj ,

i = 1, ⋯, N. Here, r = ri ∈ ℝN is the intrinsic growth rate vector, A = aij ∈ ℝN × N is 

the inter-species interaction matrix. Note that the model parameters (r, A) depend on both 

environment-independent factors (e.g., biochemical processes and metabolic pathways) and 

environment-specific ones (e.g., pH, temperature, nutrient intake, host immune system). 

Hence, environmental (or host) factors are not explicitly considered here but are absorbed in 

the model parameters. Therefore, this is a “phenomenological” or effective model.

The key advantage of the “phenomenological” PLMs, especially the GLV model, is its 

simplicity. In a sense, the GLV model is a minimal dynamical systems model of microbial 

communities. All the model parameters in the GLV model are relatively easy to infer from 

temporal or steady-state data of the community (given the data is informative enough, see 

Sec.3.3)77–79. Hence, this modeling framework is suitable for us to explore the impact 
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that any given species has on the abundance of other species, and design microbiome-

based therapeutics (e.g., personalized probiotic cocktails32) to achieve desired microbial 

compositions. Indeed, the GLV model has been heavily used to model host-associated 

microbial communities77,78,80,81.

It has been shown that for many commonly encountered microbial interactions traditional 

Lotka-Volterra pairwise interactions may not be adequate26. Furthermore, it was pointed out 

that the GLV model does not have the necessary complexity to explain a wide variety of 

independent growth outcomes82. These limitations might be due to multiple reasons. First, 

the steady-state assumption of the chemical compounds (e.g., consumable metabolites and 

reusable signaling molecules) that mediate the inter-species interactions may be violated, 

and hence should be modeled explicitly. Second, it is likely that microbial interactions occur 

in high-order combinations, whereby the interaction between two species is modulated by 

one or more other species27. Indeed, a recent experiment on a well-controlled microbial 

trophic chain has identified a higher-order interaction between its species28. In particular, 

it was observed that a single-celled algae (Chlamydomonas reinhardtii) modulates the 

interaction between a predatory ciliate (Tetrahymena thermophila) and the bacterium 

Escherichia coli. Directly incorporating higher-order interactions into the species-only PLMs 

with pairwise interactions, e.g., the GLV model, will lead to a very complicated model in the 

form of

ẋi(t) = xi ri + ∑j = 1
N aijxj + ∑j = 1

N ∑k = 1
N bijkxjxk + ⋯⋯ ,

i = 1, ⋯, N. The significant increase of the model parameters will render the 

parameterization extremely challenging, especially in the absence of any a priori knowledge 

on the sparsity of the model parameters.

Mediator-explicit models: To remedy the inadequate pairwise modeling approach and 

avoid directly modeling of higher-order interactions, mediator-explicit models have 

been proposed21,26. These models explicitly incorporate production/release of chemical 

compounds as well their consumption/degradation by microbes. Each chemical compound 

in turn can facilitate or inhibit the growth of microbes within the community. A general 

mediator-explicit model can be written as a set of coupled ODEs:

ẋi(t) = xi ri + ∑α = 1
M ρiα

+ Cα
Cα + Kiα

− ρiα−
Cα
Kiα

Ċα(t) = ∑i = 1
N pαi − cαi

Cα
Cα + Kiα

xi
,

i = 1, ⋯, N; α = 1, ⋯, M. Here, xi still represents the abundance of species-i, Cα is the 

concentration of chemical compound-α, ri is the baseline growth rate of species-i in the 

absence of chemically-mediated interactions, ρiα
+  (or ρiα−) represent the strength of facilitation 

(or inhibition) of compound-α on the growth rate of species-i, Kiα is the saturation 

concentration, pαi is the rate of production of compound-α per cell of species-i, and cαi is 

the maximum rate of consumption of compound-α per cell of species-i. In case of reusable 
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mediators, microbes are affected by the mediator but without considerably consuming or 

degrading it (e.g., in response to a signaling molecule in quorum sensing), we set cαi = 

0. Note that this model assumes the species growth rate linearly drops as the inhibitor 

concentration increases, but saturates as the facilitator concentration increases (in the Monod 

form Cα/Cα + Kiα). More complicated formulations of inhibitions (e.g., the inhibition 

threshold model, the growth inhibition model) and facilitations (in a general saturating form, 

i.e., the Moser form Cα
n/ Cα

n + Kiα
n  with n > 1) can be incorporated. This mediator-explicit 

model has been used to simulate a typical experimental process of enrichment (where a 

multi-species community is grown in excess shared resource and is periodically diluted to a 

pre-determined threshold cell density). In particular, it facilitates our understanding of how 

chemical-mediated microbial interactions lead to coexistence when external nutrients are 

replenished to be in excess21.

Parameterization of mediator-explicit models for large communities (e.g., the human gut 

microbiome) is a big challenge. Experimental characterization of the growth of microbial 

species in the presence of different concentrations of chemical compounds (including but not 

limited to metabolites) that stimulated or inhibited their growth could be a very demanding 

task. In fact, having a comprehensive catalog of those chemical mediators in the human gut 

microbiome requires extensive experimental efforts.

Consumer-resource models: The mediator-explicit model discussed in Sec. 3.1.2.2 can 

be considered as a special type of consumer-resource model (CRM) in which chemical 

mediators generated by species are modeled, but external resources are not modeled since 

they are assumed to be supplied in excess. To model all the resources explicitly, we need 

to build more complex and mechanistic CRMs. The starting point is MacArthur’s CRM83,84 

where each of the N species (“consumers”) can consume some of M substitutable resources, 

whose dynamics are described by a set of coupled ODEs:

ẋi(t) = bixi ∑α = 1
M ciαwαRα − mi

Ṙα(t) = ℎ Rα − ∑i = 1
N xiciαRα

,

i = 1, ⋯, N; α = 1, ⋯, M. Here, xi is the abundance of species-i, Rα is the abundance of 

resource-α, wα is the value of one unit of resource-α to the consumer/species, ciα is the 

rate at which species-i captures and consumes resource-α per unit abundance of resource-α. 

Note that the matrix C = ciα ∈ ℝN × M is often referred to as the consumer preference 

matrix, which naturally has a bipartite graph presentation. mi is the minimum maintenance 

energy required for the growth of species-i, bi is a factor converting the resource excess 

into the per capita growth rate of species-i. h(Rα) is the intrinsic resource dynamics (which 

usually takes the logistic form, i.e., rαRα(1 − Rα/Kα), representing logistic self-inhibition of 

resource-α by itself), and the term xiciαRα represents the mortality of resource-α imposed 

by the consumer species-i.

Note that in MacArthur’s CRM, different species may consume the same type of resource, 

which naturally leads to competition. In fact, one application of MacArthur’s CRM 
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is to derive the competition coefficients in the Lotka-Volterra competition equations. 

Indeed, if we assume the population dynamics of resources are much faster than that 

of consumer species, and we can insert the consumer-dependent equilibrium value 

of Rα, i.e., Rα* = Kα 1 − ∑i = 1
N ciαxi/rα , into the ODE of xi, rendering a competitive 

Lotka-Volterra equation: ẋi(t) = xi ri + ∑j = 1
N aijxj  with ri = bi ∑α = 1

M ciαwαKα − mi  and 

aij = − bi∑α = 1
M ciαcjαwαKα/rα < 0.

To better describe microbial interactions (which are certainly more diverse than 

competition), a more complicated CRM --- Microbial Consumer-Resource Model (MiCRM) 

has been proposed recently85–87,88,89. By introducing energetic fluxes and cross-feeding to 

the original MacArthur’s CRM, MiCRM takes the form of

ẋi(t) = bixi ∑α = 1
M 1 − lα ciαwαRα − mi

Ṙα(t) = ℎ Rα + 1
wα ∑i = 1

N ∑β = 1
M xidαβ

(i)lβciβwβRβ − ∑i = 1
N xiciaRa

,

i = 1, ⋯, N; α = 1, ⋯, M. Here, we assume a fraction lα of the energy imported by 

species-i from resource- α is returned (“leaked”) to the community as metabolic byproducts. 

dαβ
(i) specifies the fraction of leaked energy from resource-β that is released in the form of 

resource-α by species-i. By definition, ∑α = 1
M dαβ

(i) = 1. The matrix D(i) = dαβ
(i) ∈ ℝM × M is 

referred to as the stoichiometric metabolic matrix of species-i.

MiCRM has been used to explain the emergent simplicity in the assembly of hundreds 

of soil- and plant-derived microbiomes in well-controlled minimal synthetic media87, as 

well as various ecological patterns found in environmental and human microbiomes, e.g., 

compositional gradients, dissimilarity/overlap correlations, richness/harshness correlations, 

and nestedness of community composition85,88. Note that in all the previous studies of 

MiCRM, model parameters were predetermined by modelers rather than inferred from real 

data. Moreover, for simplicity, it was often assumed that all species share a similar core 

metabolism encoded in a universal stoichiometric metabolic matrix D = dαβ ∈ ℝM × M. 

This assumption significantly reduces the number of model parameters. Another limitation 

of MiCRM (as well as MarArthur’s original CRM) is that it does not explicitly model the 

case of reusable resources (e.g., signaling molecules in quorum sensing, or antimicrobial 

metabolites such as bacteriocins) that drastically affect the growth of microbes but are not 

considerably consumed or degraded by microbes.

Despite the success of random CRMs in reproducing experimentally observed ecological 

patterns in various microbial communities, they will in general fail to capture species level 

details, unless all the model parameters are inferred from real data (which is a daunting task 

by itself). Consequently, directly using MiCRM to inform the design of microbiome-based 

therapeutics (e.g., probiotic cocktails) would be very challenging, if not impossible. After 

all, this type of models was not initially proposed for this purpose.

Liu Page 12

Cell Syst. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Metabolic Models—As discussed above, to capture the cross-feeding among microbial 

species, MiCRM explicitly models the metabolism of species (although a convenient 

assumption, i.e., all species share a similar core metabolism, is often made to reduce 

model parameters). Another big class of models, i.e., metabolic models, take this step 

even further and have emerged as a valuable framework for predicting, understanding and 

designing microbial communities. In particular, those models leverage metabolic networks 

of microbial species to perform flux balance analysis (FBA) and generate simulations 

of microbial species in molecularly complex and spatially structured environments. Here 

we briefly introduce the key component of existing metabolic models, i.e., FBA. As a 

constraint-based computational method in systems biology, FBA is used to predict the 

function or phenotype of an organism by simulating its metabolism90. The metabolic 

network of an organism is represented by the stoichiometric matrix S = siα ∈ ℝN × M, 

where siα represents the moles of metabolite-i consumed (siα < 0) or produced (siα > 0) 

by reaction-α, N and M are the number of metabolites and reactions, respectively. A key 

assumption of FBA is that intracellular metabolism is at steady state, i.e., S · v = 0, where 

v ∈ ℝM is the flux (i.e., reaction rate) vector. This steady-state assumption can be motivated 

from two different perspectives91: (1) One can argue that metabolism is much faster than 

other cellular processes such as gene expression. Hence, the steady-state assumption can 

be considered as a quasi-steady-state approximation of the metabolism that adapts to the 

changing cellular conditions. (2) On the long run no metabolite can accumulate or deplete. 

FBA computes the flux vector v by optimizing an objective function represented in the form 

of a linear combination of the flux variables: c⊤v (e.g., maximization of biomass yield) with 

certain capacity constraints imposed by the lower and upper bounds on the M reactions, 

represented by two vectors l and u, respectively. Mathematically, this can be formalized as a 

linear programming problem:

 Maximize c⊤v

 Subject to  S ⋅ v = 0
l ≤ v ≤ u

and solved with established efficient optimizers (e.g., Gurobi and GLPK). Note that the 

search for a set of fluxes that optimizes a given objective implies the “optimal regulation” 

hypothesis, i.e., the organism has evolved to be able to regulate its metabolic fluxes to 

approach that optimum under a set of environmental conditions69.

To consider the spatial structure of microbial communities, we assume that the biomass of 

different species and the environmental metabolites can propagate from its current position 

to its neighborhood based on the physics laws of diffusion.

COMETS92,93 and BacArena94 are two representative metabolic modeling platforms. 

The former takes a population-level approach, while the latter takes an individual-based 

approach. Both platforms can be used to generate novel hypothesis concerning the metabolic 

interactions between microbes and investigate the importance of microbial geography in 

community assembly (e.g., biofilm formation).
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Despite the success of those metabolic modeling platforms, we highlight a few limitations. 

First, parameterization of metabolic models is a big challenge. Indeed, to optimally employ 

any metabolic model for any specific applications, users should first determine whether 

genome-scale metabolic reconstructions of suitable quality for the microorganisms of 

interest are currently available. For the human gut microbiome, it is worthwhile mentioning 

that AGORA (assembly of gut organisms through reconstruction and analysis), a resource 

of genome-scale metabolic reconstructions semi-automatically generated for 773 human gut 

bacteria, was established in 201795. Recently, AGORA has been expanded in both scope 

and coverage to consist of microbial reconstructions for 7,206 strains, 1,644 species, and 

24 phyla96. AGORA reconstructions could provide a starting point for the generation of 

high-quality, manually curated metabolic reconstructions. For the human oral microbiome, 

thanks to the expanded Human Oral Microbiome Database (eHOMD)97, the genome-scale 

metabolic reconstructions for 456 different microbial strains (from 371 different species, 

124 genera, 64 families, 35 orders, 22 classes, and 12 phyla) have already been recently 

generated98.

Second, inputs of the metabolic models are sometimes hard to access. Users need to 

have a good understanding of the molecular composition of the environments or growth 

media of interest. For simple synthetic communities cultured in well-controlled laboratory 

conditions and relatively simple growth media, this is easy. But for complex multi-species 

communities with complex environment (e.g., the human gut microbiome with complicated 

dietary information), this is really a big challenge.

Finally, as a key component in metabolic models (regardless of its population-level 

or individual-based nature), FBA has its own intrinsic limitations. (1) The steady-state 

assumption of intracellular metabolism is not necessarily true all the times, even though 

a mathematical foundation for the steady-state assumption for long time periods has been 

proposed to justify its successful use in many applications91. (2) The ‘optimal regulation’ 

hypothesis is not necessarily true. A anecdotal example is the soil bacteria species 

Paenibacillus sp., which can modify its environmental pH to such a degree that leads to 

a rapid extinction of the whole population, a phenomenon coined as ecological suicide99. 

How such self-inflicted death of microbes can exist without evolution selecting against them 

is an outstanding question in microbial ecology.

Tradeoff: model complexity vs. parametric uncertainty—How complex should a 

microbial dynamics model be? Answer to this question certainly depends on the purpose 

of the modelling efforts. Simple models (e.g., the GLV model with only pairwise microbial 

interactions) are relatively easy to parameterize from existing microbiome data collected 

with existing techniques. But they are phenomenological or effective, may not capture all the 

details of the microbial interactions (such as higher-order interactions), and may completely 

ignore the host-microbiome interactions. Complex models (e.g., MiCRM or COMETS) are 

more mechanistic, may capture characteristics of various types of microbial interactions, 

may model the host-microbiome interactions, and even the microbiome biogeography. 

Yet, they are often difficult to parametrize. Of course, they can be used to study general 

principles of community assembly by sampling model parameters from certain distributions. 

But the same strategy will not allow us to inform microbiome-based therapeutics, e.g., a 
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probiotic cocktail that decolonize a particular pathogen. Parameterizing complex PLMs can 

be equally difficult as parameterizing IBMs. For example, the state-of-the-art metabolic 

modeling platforms: COMETS (which takes a population-level approach) and BacArena 

(which takes an individual-based approach) require almost the same amount of efforts 

in parameterization. Both require high-quality genome-scale metabolic reconstructions of 

microbial species of interest. Recent advancements in experimental microbiology and 

culture-independent sequence-based metagenomics provide more data and lead to a better 

understanding of individual species. This additional data and knowledge could be used 

to build more complex and mechanistic models of microbial communities. However, it is 

questioned if this will always lead to better models for specific purpose, e.g., inform the 

design of microbiome-based therapeutics. After all, a model with higher complexity means 

more parameters, which lead to a more difficult parametrization and are often considered as 

the main source of uncertainty in modeling efforts.

A promising strategy is to “start complex and simplify later”. This strategy is based on 

the observation that some complex microbial communities appear to be at least partially 

“coarse-grainable”100. In other words, some properties of interest can be adequately 

described by effective models of dimension much smaller than the number of interacting 

species. For example, for industrial bioreactors consisting of hundreds of species, their 

properties (e.g., nitrate removal, biomethane production) can often be well described 

by models with fewer than ten functional groups101,102. Rigorously defining the coarse-

grainability of complex microbial communities and understanding the conditions for its 

emergence is a very intriguing question. Recently, an inspiring theoretical framework 

was proposed to begin addressing this question100. In particular, a minimal model 

for investigating hierarchically structured ecosystems within the framework of resource 

competition was proposed and used to operationally define the coarse-graining quality based 

on reproducibility of the outcomes of a specified experiment. It was demonstrated that an 

ecosystem can be coarse-grainable under one criterion but not coarse-grainable at all under 

another criterion. Moreover, it was shown that a high diversity of strains may actually 

enhance the coarse-grainability. These results shed light on a theoretical understanding 

of which ecosystem properties, and in which environmental conditions, might be well 

described by coarse-grained models. Consider the example of the human gut microbiome. 

Perhaps the exact geometry of the gut epithelium, the effect of flow and peristaltic mixing, 

or the exact role of the vast diversity of uncharacterized chemical compounds (e.g., 

metabolites) might not be as important as we would expect, if we want to manipulate the 

community composition and functioning.

Harnessing the coarse-grainability of the human gut microbiome is of critical importance 

for understanding, predicting, or controlling the behavior of this complex ecosystem100. 

For example, inspired by the stable marriage problem in game theory and economics, a 

conceptual coarse-grained model of microbial communities was proposed103. With a key 

assumption that microbes utilize nutrients one at a time while competing with each other, 

this model can exhibit rich behaviors such as dynamic restructuring and multiple stable 

states connected by a hierarchical transition network. And all of this complexity is encoded 

in just two ranked tables (one with microbes’ nutrient preferences and the other with 

their competitive abilities for different nutrients), without assuming any other parameters. 
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Leveraging this highly coarse-grained model to design control strategies would be a very 

interesting future direction.

Universality of microbial dynamics.

As mentioned in Sec.3.1.2, if we are just interested in exploring the impact that any given 

species has on the abundance of other species and predicting the abundance changes of 

microbial species present in the community, it is sufficient to use species-only PLMs 

written as a set of ODEs: ẋi(t) = fi(x(t), Θ) without assuming any spatial structure. Here 

we have explicitly written down the set of model parameters, denoted as Θ, which depends 

on both environment/host-independent and environment/host-specific factors. In general, 

the parameters Θ estimated from a given habitat with certain characteristic environmental 

conditions do not necessarily map to other habitats with different environmental conditions. 

For microbiome samples collected from the same habitat (such as the human gut) but 

from different local communities (e.g., different hosts), are the ecological parameters Θ 
“host-independent” or “host-specific”?

Addressing this question is vital for developing microbiome-based therapies. There are three 

basic scenarios: (1) Θ’s are strongly host-specific, then we have to design truly personalized 

interventions: we need to consider not only the unique microbial state of an individual 

but also the unique dynamic rules (encoded by the host-specific Θ) of the underlying 

microbial ecosystems. (2) Θ’s can be classified into a few groups, for which we need to 

develop interventions based on group-specific dynamic rules. (3) Θ’s are host-independent 

or universal, the inter-personal variability stems solely from the different species collections. 

In this case, we can design interventions based on universal dynamic rules to control 

the microbial state of different individuals (although the intervention themselves, e.g., the 

recipes of the probiotic cocktails, might be quite different for different individuals due to the 

personalized baseline microbiomes).

A statistical method to detect universal dynamics—Directly addressing the 

dynamics universality question would require us to infer Θ from high-quality temporal 

data of each local community or host using system identification techniques (see Sec.3.3.1). 

Doing this for a large collection of local communities (hosts) is both logistically and 

ethically challenging. Recently, an indirect method called Dissimilarity-Overlap Curve 

(DOC) analysis was proposed29. The DOC analysis relies on two mathematically 

independent measures between any two microbiome samples (or local communities): (1) 

overlap (O), which is the average relative abundance of common species shared by the two 

communities; and (2) dissimilarity (D), which is the dissimilarity between the renormalized 

abundance profiles of the common species. Note that the renormalization of the common 

species’ abundance profiles is necessary to ensure the independency of the two measures: O 
and D. Hence, any dependency or relationship observed from real data deserves a dynamical 

or ecological explanation.

The basic steps of the DOC analysis are as follows. First, for a given set of microbiome 

samples, we calculate overlap and dissimilarity of all the sample pairs and represent each 

sample pair as a point in the dissimilarity–overlap plane. Second, since the exact relationship 
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between those two measures is unknown, we use a standard nonparametric regression 

method, i.e., the robust LOWESS (Locally Weighted Scatterplot Smoothing) method to 

create a smooth line through the scatter plot to summarize a relationship and foresee the 

general trend, in a fashion that makes few assumptions initially about the form or strength 

of the D-O relationship. The gives us the DOC, representing the average trend of the 

dependency between D and O. Finally, to get the confidence interval of the DOC, we use the 

standard bootstrap technique.

Mathematical basis of the DOC analysis—The DOC analysis assumes the abundance 

profile of each microbiome sample represents (or at least approximates) the steady state 

x* of the corresponding ecosystem (or local community), i.e., it satisfies the steady-state 

equation f(x*, Θ(a)) = 0, where a represents the sample ID. The DOC analysis is inspired 

by the following observation: if two microbiome samples (local communities) that have the 

same species collection also have the same abundance profile (steady state), i.e., O = 1 and 

D = 0 simultaneously, then the two communities should share universal microbial dynamics 

f(x, Θ) characterized by the same set of model parameters Θ. This is because if x* satisfies 

both steady-state equations: f(x*, Θ(1)) = 0 and f(x*, Θ(2)) = 0, then given the large number 

of species and all the other levels of complexity in their interactions encoded in the highly 

nonlinear function f, we should have generically Θ(1) = Θ(2) except for some pathological 

cases with Lebesgue measure zero.

In reality, the case of two samples having the same species collection (O = 1) almost 

never happens for complex host-associated microbial communities, such as the human gut 

microbiome, due to highly personalized microbial compositions. But we can take a leap of 

faith through interpolation: if we observe a trend that steady-state sample pairs with higher 

O tend to have lower D, i.e., there is a negative slope in the high-overlap region of the DOC, 

we can argue that this trend is a strong signal of host-independent model parameters Θ, or 

equivalently, universal microbial dynamics in species-only PLMs.

Caveats in detecting universal dynamics—We emphasize that detecting the 

universality (or host-independency) of microbial dynamics makes sense only for simple 

phenomenological species-only PLMs, which only model the species dynamics and 

completely ignore the resource dynamics and any environment/host factor. In a sense, 

phenomenological species-only PLMs are coarse-grained models of complex mechanistic 

models. Generally speaking, more complex models are more likely to be universal. Indeed, 

for a mechanistic model that explicitly models all the relevant state variables (e.g., species 

abundances, resource concentrations, pH, temperature, etc.), its model parameters (e.g., the 

rate at which species-i captures and consumes resource-α per unit abundance of resource-

α, the minimum maintenance energy required for the growth of species-i, etc.) should 

simply depend on biochemistry, and hence are host-independent by definition. As discussed 

in Sec.3.1.4, this modeling approach is challenging due to its parametrization difficulty. 

Coarse-grained models are simpler and easier to parameterize, but then we need to worry 

about their dynamics universality. The tradeoff between model complexity and dynamics 

universality has to be carefully considered in the modeling of the human microbiome.
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Although the DOC analysis can be used to detect dynamics universality of species-only 

PLMs, caution is needed in the application of DOC analysis and interpretation of its 

results. First, the microbiome samples should (at least roughly) represent the steady states 

of the underlying ecosystem. For microbial communities subject to strong environmental 

stochasticity and demographic noise, the results of the DOC analysis will be meaningless. 

With cross-sectional data only, this steady-state assumption is unfortunately hard to validate. 

Fortunately, previous studies based on longitudinal data analyses have reported the long-

term stability of human gut, oral and skin microbiome for healthy adults40,41. These 

findings justify the steady-state assumption to some extent. Second, the DOC analysis 

implicitly assumes that the true multi-stability does not exist. For complex host-associated 

microbial communities, the presence of true multi-stability is hard to validate (due to highly 

personalized microbial compositions). For simple experimental in vitro communities, the 

presence of true multi-stability is relatively easy to validate104. Third, interpretation of the 

DOC analysis should focus on the slope in the high-overlap region of the DOC. Ideally, 

the highest overlap should be close to 1. If all the sample pairs yield intermediate or very 

low overlap values, then the DOC analysis is not very meaningful. Finally, the negative 

slope in the high-overlap region of the DOC is also consistent with alternative hypotheses, 

such as communities assembling in environmental gradients, or situations when only a small 

fraction of samples have universal dynamics105. To rule out the hypothesis of environmental 

gradients, we need to systematically analyze microbiome samples while controlling for the 

effect of all the potential confounding factors. In the case of human gut microbiome, leading 

candidates of those factors include age, race, body mass index, long-term dietary pattern, 

and transit time through the gut (measured by stool consistency), which has been considered 

in the original work on the DOC analysis29. How to rule out the hypothesis of only a small 

fraction of samples have universal dynamics (and hence largely contribute to the negative 

slope in the high-overlap region of the DOC) is still an open question.

Reconstruction of the ecological network.

As discussed in Sec.3.1.2.1, if we assume pairwise microbial interactions in 

a species-only PLM, the ODEs of the system dynamics take the form of 

ẋi(t) = ℎi xi + ∑j = 1
N aijg xi, xj , i = 1, ⋯, N. Here, the inter-species interaction matrix 

A = aij ∈ ℝN × N can be represented by an ecological network (A) = ( , ℰ): there is 

a directed edge (j → i) ∈ ℰ if and only if aij ≠ 0. Here  represents the set of all the 

species, while ℰ represents the set of all the edges. Hence, inferring the interaction matrix 

from observed abundance data can be considered as a network reconstruction problem106. In 

dynamical systems and control theory, the art and science of building mathematical models 

of dynamic systems from observed input-output data is termed as system identification107, 

which is a more general task than network reconstruction.

Conceptually, there are two ways to infer the inter-species interaction matrix: (1) bottom-up 

approach; (2) top-down approach. For small synthetic communities, one can systematically 

perform monoculture and co-culture experiments to directly quantify the impact of species-j 
on the growth of species-i and hence estimate aij. This bottom-up approach has been applied 

to infer inter-species interactions in a synthetic community composed of 8 soil bacterial 
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species108, as well as a synthetic community encompassing 12 prevalent human-associated 

intestinal species109. This approach is not feasible for large complex communities for 

several reasons. First, many of the species in complex communities (e.g., the human gut 

microbiome) cannot be easily cultured in vitro. Second, if all the species can be cultured 

in vitro, the total number of monoculture and co-culture experiments N(N + 1)/2 increases 

rapidly as the number of species N increases. Finally, the inferred inter-species interactions 

in vitro might not capture the inter-species interactions in vivo.

For large complex communities, we have to rely on the top-down approach, i.e., inferring the 

inter-species interactions from (1) the informative longitudinal abundance data of the whole 

community; or (2) the steady-state abundance data of a large number of sub-communities 

with different species assemblages. Here, the sub-communities are far more complicated 

than mono-species and pairwise assemblages.

Methods based on longitudinal data—Many methods have been developed to infer 

inter-species interactions and reconstruct the ecological network based on longitudinal 

or time-resolved abundance data77,78,81. Those methods have demonstrated the capability 

to accurately forecast gut microbiota dynamics in mice77,78 and human studies80. In 

particular, the open-source software package Microbial Dynamical Systems Inference 

Engine (MDSINE) offers a suite of algorithms for inferring dynamical systems models from 

microbiome time-series data and predicting temporal behaviors78.

Key idea: gradient matching: Those methods are typically based on the extended GLV 

model that explicitly consider the impact of various external stimuli or perturbations on the 

system dynamics77:

ẋi(t) = xi ri + ∑j = 1
N aijxj + ∑q = 1

M biquq ,

i = 1, ⋯, N. Here, B = biq ∈ ℝN × M is the susceptibility matrix with biq representing 

the stimulus strength of a perturbation uq(t) on species-i. The perturbation uq(t) is binary-

valued, indicating if the given perturbation is present at time t or not. This mimics realistic 

perturbations from antibiotics or prebiotics, which can inhibit or benefit the growth of 

certain microbes.

To estimate the model parameters Θ = (r, A, B) ∈ ℝN × (1 + N + M) from the longitudinal data 

{xi(tk), uq(tk)} at discrete time points (k = 0,1, ⋯, T), the “gradient matching” approach can 

be employed78. The key idea is that if estimates of the gradient are available, parameters can 

be estimated by solving a system of equations rather than a system of differential equations. 

For the extended GLV model, thanks to the linear functional response, the gradient matching 

approach can reduce the system of differential equations into a system of linear equations, 

which enables application of statistical models for linear regression77. Indeed, if we move 

xi(t) to the left-hand side of the ODE, integrate both sides over the time interval [tk, tk+1] and 

assume xi(t) and uq(t) are roughly constant over the time interval], then we have
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logxi tk + 1 − logxi tk = ri + ∑j = 1
N aijxj tk + ∑q = 1

M biquq tk tk + 1 − tk + εi tk .

Here, εi(tk) represents the error arising from the approximation of the integral 

by holding the integrand constant over the time interval. Now, we define 

the scaled log-difference matrix Y = yik ∈ ℝN × T  with yik = [logxi(tk+1) − 

logxi(tk)]/(tk+1 − tk), the time-series data matrix Φ = row ϕk ∈ ℝ(1 + N + M) × T  with 

ϕk = 1, x1 tk , I, xN tk , u1 tk , I, uM tk ⊤ ∈ ℝ(1 + N + M), and the approximation error matrix 

E = eik ∈ ℝN × T  with eik = (εi(tk)/(tk+1 − tk)), we have a system of linear equation in the 

following compact form:

Y = ΘΦ + E .

Parameter inferences: Since the number of equations N × T is typically less than the 

number of unknowns N × (1 + N + M), the above system of linear equations is usually 

underdetermined. Different algorithms have been developed to compute Θ. They can be 

classified as (1) maximum likelihood-based methods, e.g., maximum likelihood ridge 

regression (MLRR)77 and maximum likelihood constrained ridge regression (MLCRR)78; 

and (2) Bayesian dynamical systems inference methods78, e.g., Bayesian Adaptive Lasso 

(BAL), and Bayesian Variable Selection (BVS). Note that Bayesian inference methods 

naturally offer two additional functionalities that the maximum likelihood-based methods do 

not, i.e., (1) estimation of confidence in model parameters Θ; and (2) statistical modeling 

of high-throughput sequencing count-based data over time. We emphasize that MLRR, 

MLCRR and BAL all rely on regularization techniques to reduce the overfitting issue, while 

BVS relies on variable selection techniques110: it directly models the 0/1 pattern of the 

inter-species interaction matrix A and the species-perturbation susceptibility matrix B.

A benchmark study78 using simulated ground-truth data demonstrated that MLCRR, BAL 

and BVS outperform MLRR on the following metrics: root mean square error (RMSE) 

for microbial growth rates (r); RMSE for microbial interaction parameters (A); RMSE 

for prediction of microbe trajectories on held-out subjects given only initial microbe 

concentrations for the held-out subject; and the area under the receiver operator curve 

(AUROC) for reconstructing the underlying ecological network of microbial interactions, 

i.e., (A). Moreover, the two Bayesian algorithms (BAL and BVS) showed the greatest 

robustness to lower sequencing depths and lower resolutions of temporal sampling and 

demonstrated particularly strong performance on inferring A and the underlying network 

(A).

Caveats: Despite the success of existing methods in various contexts, there are many caveats 

in inferring microbial dynamics from longitudinal metagenomics data111. Here, we list those 

caveats and point out possible solutions.

First, we need to choose a proper dynamics model for the microbial ecosystem. Although 

existing methods typically rely on the GLV model (to leverage its linear functional response 
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that facilitates the gradient matching approach), it has been pointed out that the GLV 

model may not be adequate enough to model many commonly encountered microbial 

interactions26. Even if we just assume pairwise microbial interactions, the exact functional 

response encoded in the function g(xi, xj) is largely unknown. This challenge can be tackled 

through symbolic regression, a machine learning method that automatically infers both the 

model structure and parameters from temporal data112–116. A previous study using both 

synthetic and experimental data demonstrated that combining symbolic regression with a 

“dictionary” of possible ecological functional responses opens the door to correctly reverse-

engineering ecosystem dynamics117. More efforts are needed to fully take advantage of 

the symbolic regression technique to analyze longitudinal metagenomics data of complex 

microbial communities, such as the human gut microbiome.

Second, we need to collect informative temporal data to infer model parameters. Note that 

The temporal data could be uninformative due to either low sampling rate or “unexcited” 

system dynamics. In system identification literature118, it is well known that the degree 

to which estimated parameters converge to their true values is highly correlated to the 

notion of persistent excitation, which means that the measured experimental signals need 

to be sufficiently “rich” (i.e., span the frequencies of dynamical interest) if one is to 

expect good parameter convergence. For the original GLV model, it has been shown 

that if the temporal data is not informative enough (such that the persistent excitation 

condition does not hold), indistinguishability will appear in the sense that different model 

parameters can produce exactly the same temporal data119. In the same spirit, it has been 

pointed out that, even for the extended GLV model with external stimuli or perturbations, 

accurate time-series prediction does not always imply accurate inference111. Mathematically, 

by persistent excitation of a signal vector v(t) we mean that there exist strictly positive 

constants α and T such that for any t ≥ 0, ∫t
t + T v(τ)v⊤(τ)dτ ≥ αI, where T is called the 

excitation period of v(t) and I is the identity matrix. In practice, we can define a measure 

μPE(t) = λmin ∫t − 1
t v(τ)v⊤(τ)dτ  to quantify the level of persistent excitation, where λmin 

is shorthand for the minimum eigenvalue of the matrix. So far, this data informativeness 

issue has not been seriously considered in inferring the dynamics of complex microbial 

communities.

Third, the compositionality nature of the relative abundance data will cause fundamental 

limitations in inference111. We know that the compositionality of relative abundance data 

will not significantly alter the original absolute abundance data if and only if the total 

microbial population is roughly time-invariant, which is of course not necessarily true. 

Even if the relative abundance data can approximate the original data, a time-invariant total 

population will be linearly correlated with the constant row in the time-series data matrix Φ, 

which will introduce linear correlations of rows of Φ and hence lead to the rank deficiency 

of ΦΦ⊤ and drastically worsen the inference results. In addition to rank deficiency, 

compositionality will cause another serious issue: distorting the original dynamics when 

the total population is time variant. Indeed, metagenomic sequencing data typically chart 

only the relative abundances of taxa, but not their absolute amounts. If a species’ relative 

abundance increases over time, we actually cannot determine whether that species is 

blooming, or other species are dying out. For certain small laboratory-based microbial 
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communities, we can measure the absolute taxon abundances in a variety of ways, e.g., 

selective plating120, quantitative polymerase chain reaction (qPCR)121, flow cytometry122, 

and fluorescence in situ hybridization (FISH)123. For large bacterial communities, the total 

bacterial biomass can be measured by 16S rRNA qPCR using universal primers77,78. To 

quantify the absolute abundances of bacteria, fungi and archaea simultaneously within a 

microbiome sample, a scalable cell-based multi-kingdom spike-in method (MK-SpikeSeq) 

can be employed124.

Finally, grouping or ignoring low-abundance species lacks justification. Since the number of 

equations is typically much smaller than the number of unknowns, many previous studies 

group those low-abundance species together and treat them as a pseudo-species77,81,125. A 

numerical study demonstrated that this approach does not work as well as we expected, 

especially when the low-abundance species are also strongly interacting species (i.e., 

they interact strongly with their interacting partners)111. Even in the absence of strongly 

interacting species, the reconstructed network obtained by grouping some low-abundance 

species can be misleading, because grouping can create false interactions between the 

grouped species and highly abundant species. Hence, we emphasize that grouping low-

abundance species is not a solution to the underdetermined problem. Generating informative 

temporal data with more time points is the solution. There is no short cut or free lunch.

Steady-state data-based Inference—Among all the caveats in inferring microbial 

dynamics from longitudinal metagenomics data, the data informativeness issue is the 

hardest one to resolve for the human microbiome. Indeed, any attempt to improve 

the informativeness of longitudinal human microbiome data is challenging and ethically 

questionable, as it requires applying drastic and frequent perturbations to the microbiome, 

with unknown effects on the host. Note that naively applying inference methods to 

longitudinal human microbiome data collected in observational studies (i.e., without any 

drastic interventions) is problematic. A previous attempt, using the GLV model, has 

demonstrated that the inter-species interaction matrix A inferred from the human gut 

microbiome time-series data collected in observational studies is almost the same as that 

inferred from the randomly shuffled time-series data where temporality is completely 

removed76. This finding simply implies that the observed time-series data of the human 

gut microbiome is not informative enough for dynamic inference purpose. This finding is 

also consistent with our general understanding on the stability of the human gut microbiome 

in the absence of drastic interventions, as discussed in Sec.2.3.

To circumvent the above fundamental limitation of inference microbial dynamics from 

temporal data, one can assume the observed microbiome samples (at least roughly) represent 

different steady states of the underlying ecosystem and infer the inter-species interactions 

from the difference between those “steady states”79. This approach does not require 

any external perturbations. In fact, for the human microbiome, this approach leverages 

the fact that our microbiome is highly personalized. Hence microbiome samples (with 

presumably very different species assemblages) collected from different hosts serves as 

natural perturbation experiments of the underlying ecosystem.
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This inference approach based on steady state comparison actually has its root in inferring 

general dynamics on complex networks106. For microbial dynamics inference and network 

reconstruction, this approach was inspired by a theoretical study on the ecological 

explanation of the “community types” (i.e., densely populated areas in the compositional 

landscape)76. In particular, for the GLV model, it was found that if we introduce a new 

species to a system at equilibrium, and if the new species interacts with existing ones, then 

the new species will drive the system to a new equilibrium. The strengths of the interactions 

between the new species and the existing ones are encoded in the difference between the two 

equilibria76.

Mathematical basis: Consider a generic population dynamics model:

ẋi(t) = xi(t)fi(x(t)),

i = 1, …, N. Here, we explicitly factor out xi to emphasize that in the absence of species 

invasion or migration, those initially absent or later extinct species will never be present in 

the microbial community again. Mathematically, the inter-species interactions are encoded 

by the matrix J(x) = Jij(x(t)) ∈ ℝN × N with Jij(x(t)) ≡ ∂fi(x(t))/∂xj. The condition Jij(x(t)) 

> 0 (< 0 or = 0) means that species-j promotes (inhibits or doesn’t affect) the growth of 

species-i, respectively. The diagonal terms Jii(x(t)) represent intra-species interactions.

Denote the set of observed steady-state samples as . Consider two steady-state samples xI 

and xK that share species-i. We have fi(xI) = fi(xK) = 0. Here, the species index sets I, K 
∈ 2{1,⋯,N} determine which species are present in the samples. Denote Ji(x) = ∂fi(x(t))/∂x, 

representing the i-th row of the matrix J(x). Applying the mean value theorem for multi-

variable functions, we obtain

fi xI − fi xK = ∫0
1

Ji xI + σ xK − xI dσ ⋅ xI − xK = 0.

This equation implies that the difference of any two steady-state samples xI and xK sharing 

species-i will constrain the integral of Ji over the line segment joining them in ℝN. This is 

the mathematical basis of inferring inter-species interactions from steady-state comparisons.

The structure of the ecological network is encoded in the zero-pattern of the matrix J(x(t)). 

Under a very mild assumption that ∫0
1Jij xI + σ xK − xI dσ = 0 holds if and only if Jij(x(t)) 

≡ 0, the steady-state samples can be used to infer the zero-pattern of J(x), i.e., the structure 

of the ecological network, which is interesting by itself and can be very useful in control 

theoretical analysis of microbial communities126 (see Sec.3.4.1).

The ecological interaction types are encoded in the sign-pattern of J(x), denoted as 

sgn(J(x)). To infer sgn(J(x)), we need to make an explicit assumption that sgn(J(x)) = 

const across all the observed steady-state samples. This assumption might be violated if 

those steady-state samples were collected from the microbial community under drastically 

different environmental conditions (e.g., nutrient availability127). In that case, inferring 
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sgn(J(x)) becomes an ill-defined problem. Interestingly, this assumption can be easily 

falsified by analyzing the observed steady-state samples, because it has been proved that if 

sgn(J(x)) = const, then the true multi-stability doesn’t exist. Here, a community of N species 

displays true multi-stability if there exists a subset of M (≤ N) species that has multiple 

different steady states, where all the M species have positive abundances and the other (N 
− M) species are absent. In practice, we can detect the presence of true multi-stability by 

examining the collected steady-state samples. If yes, then we know immediately that our 

assumption that sgn(J(x)) = const is invalid and we should only infer the zero-pattern of 

J(x). If no, then at least our assumption is consistent with the collected steady-state samples, 

and we can infer sgn(J(x)).

Inferring sign patterns: Here we introduce the methodology for inferring sgn(J(x)), which 

can be easily modified to infer the zero-pattern of J(x). The basic idea is as follows. Let 

ℐi be the set of all steady-state samples sharing species-i. For any two of those samples 

xI and xK, we can prove that the sign-pattern of the i-th row of J(x), denoted as a ternary 

vector si ∈ {−, 0, +}N, is orthogonal to (xI − xK). If we compute the sign-patterns of all 

vectors orthogonal to (xI − xK) for all I, K ∈ ℐi, then si must belong to the intersections 

of those sign-patterns, denoted as Si. As long as the number Ω of steady-state samples in 

 is above certain threshold Ω*, then Si will contain only three sign-patterns {−a, 0, a}. 

To decide which of these three sign-patterns is the true one, we just need to know the sign 

of only one non-zero interaction. If such prior knowledge is unavailable, one can at least 

make a reasonable assumption that sii = ‘−’, i.e., the intra-species interaction Jii is negative 

(which is often required for community stability). If Si has more than three sign-patterns, 

then the steady-state data is not informative enough in the sense that all sign-patterns in Si
are consistent with the data available in . This situation is not a limitation of the inference 

algorithm but of the data itself. To uniquely determine the sign-pattern in such a situation, 

one has to either collect more samples (thus increasing the informativeness of ) or use a 
priori knowledge of non-zero interactions.

Extensive numerical simulations with species-only PLMs of different levels of complexity 

indicate that the minimal sample size Ω* required to obtain an accurate inference of 

sgn(J(x)) scales linearly with N. Note that for a microbial community of N species, in 

the absence of true multi-stability, there are at most Ωmax = (2N − 1) possible steady-state 

samples. Hence, we have Ω*/Ωmax ~ → 0 as N increases. This suggests that as the 

number of species increases, the proportion of samples needed for accurate inference 

actually decreases. This is a rather counter-intuitive result because, instead of a “curse 

of dimensionality”, it suggests that a “blessing of dimensionality” exists when we infer 

interaction types for microbial communities from steady-state samples.

Inferring interaction strengths: To infer the inter-species interaction strengths, we have to 

choose a priori a population dynamics model for the microbial community. If we choose to 

work with the GLV model, we have J(x) = A, which is a state-independent constant matrix. 

This considerably simplifies the inference because
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ai ⋅ xI − xK = 0,

for all I, K ∈ ℐi, where ai ≡ (ai1, …, aiN) represents the i-th row of A. This 

simple mathematical fact has an elegant geometric interpretation: all steady-state samples 

containing species-i align exactly onto a hyperplane, whose orthogonal vector is parallel to 

ai that we aim to infer. This geometric interpretation can actually serve as a consistency 

check of the GLV model and the observed steady-state samples.

Inferring interaction strengths for the GLV model from steady-state data reduces to finding 

a (N − 1)-dimensional hyperplane that best fits the steady-state sample points {xI|I ∈ ℐi} 

in the N-dimensional state space. In order to exactly infer ai, it is necessary to know the 

value of at least one non-zero element in ai, say, aii. Otherwise, we can only determine the 

relative interaction strengths by expressing aij in terms of aii. Once we obtain ai, the intrinsic 

growth rate ri of species-i can be calculated by averaging (−ai · xI) over all I ∈ ℐi, i.e., all 

the steady-state samples containing species-i. In case the samples are not collected exactly 

at steady states of the microbial community or there is noise in abundance measurements, 

those samples containing species-i will not exactly align onto a hyperplane. A naive solution 

is to find a hyperplane that minimizes its distance to those noisy samples. But this solution 

is prone to induce false positive errors and will yield non-sparse solutions (corresponding 

to very dense ecological networks). This issue can be partly alleviated by introducing a 

Lasso regularization, implicitly assuming that A is sparse. However, the classical Lasso 

regularization may induce a high false discovery rate (FDR), meaning that many zero 

interactions are inferred as non-zeros ones. This drawback can be overcome by applying the 

Knockoff filter procedure128, allowing us to control the FDR below a desired user-defined 

level.

Extensive numerical simulations with randomly selected subcommunities indicate that for 

the GLV model the minimal steady-state sample size Ω* required to obtain an accurate 

inference of A also scales linearly with N, indicating a blessing of dimensionality. A 

recent work pointed out that we can actually infer A using steady-state abundances from 

the N monocultures and the N leave-one-out subcommunities129. In other words, for such 

well-chosen subcommunities, Ω* = 2N. Note that in the classical experimental approach 

of studying inter-species interactions, i.e., comparing steady-state abundances from the N 
monocultures and the N(N − 1)/2 pairwise cocultures. In other words, we have to collect Ω = 

N(N + 1)/2 steady-state samples. For large N, this will be a daunting task.

Caveats: This blessing of dimensionality suggests that this steady-state based inference 

holds great promise for inferring the ecological networks of large and complex microbial 

communities. However, there are several caveats. Here, we list those caveats and point out 

possible solutions.

First, this approach requires the measurement of steady-state samples and absolute species 

abundances. For microbial communities that are under frequent and large perturbations, 

where steady-state samples are hard to collect, this approach is not applicable. For example, 
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for certain reproductive-age women, their vaginal microbial compositions change markedly 

and rapidly over time46. The collected samples certainly do not represent steady states. 

For the human gut microbiome, it is well known that the gut microbial compositions of 

healthy adults remain stable for months and possibly even years until a major perturbation 

occurs through either antibiotic administration or drastic dietary changes. Hence, the gut 

microbiome samples collected from healthy adults very likely represent the steady states of 

the underlying ecosystem. However, the stability of gut microbial compositions associated 

with various diseases remains elusive. More studies are warranted.

Second, this approach implicitly assumes that different steady-state samples (or local 

communities) share universal microbial dynamics. In other words, those steady-state 

samples represent different boundary equilibria of a population dynamics model. This 

assumption is necessary because otherwise inferring microbial dynamics from steady-state 

samples is an ill-defined problem. This assumption will be satisfied when the samples 

were collected from similar environments. For in vitro communities, the universal dynamics 

assumption is satisfied if samples were collected from the same experiment or multiple 

experiments but with very similar environmental conditions. For in vivo communities, 

empirical evidence indicates that the human gut and oral microbiota of healthy adults 

display strong universal dynamics29. However, the universality of microbial dynamics in 

diseased microbiome has not been fully understood.

Finally, to infer the inter-species interaction strengths, we have to work with a particular 

population dynamics model, e.g., the GLV model. Although there is a simple consistency 

check of the GLV model and the observed steady-state samples, in case the consistency 

check falsifies the GLV model, this approach does not offer an alternative model to 

infer interaction strengths, but has to focus on the inference of interaction types, i.e., 

sgn(J(x)). Other techniques would have to be utilized to infer the dynamics model. For 

example, we can apply symbolic regression techniques to those steady-state samples to infer 

the dynamics model, leveraging the inferred interspecies interaction types. If we assume 

pairwise microbial interactions, then, mathematically, this is equivalent to inferring the 

functional form g(xi, xj) from a system of equations: ri + ∑j = 1
n aijg xi*, xj* = 0, with a prior 

knowledge of sgn(aij).

Control Strategy Design

The ultimate proof of our understanding of the human microbiome is reflected in our 

ability to manipulate it for health benefits. Once we have reconstructed the ecological 

network or parameterized a reasonable dynamics model to mathematically describe the 

human microbiome as an ecological system, we can leverage concepts and tools developed 

in dynamical systems and control theory to design various control strategies.

A control theoretical framework—Recently, a theoretical framework for controlling 

complex microbial communities towards desired states was developed126 (see Fig.3). Here, 

a desired state can just be the baseline healthy gut microbiome of an individual before 

her/his gut microbiome was disrupted (e.g., by antibiotic administrations). This control 

theoretical framework is based on the new notion of structural accessibility, which allows 
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us to use the ecological network of a microbial community to identify minimum sets 

of its driver species, whose abundance manipulation can control the whole community. 

Through numerical simulations, this framework has been demonstrated for controlling 

the gut microbiota of gnotobiotic mice infected with Clostridioides difficile and the core 

microbiota of the sea sponge Ircinia oros. This framework offers a systematic pipeline to 

drive complex microbial communities towards desired states.

Modeling controlled microbial communities.: Consider a generic species-only PLM 

ẋ(t) = f(x(t)) with an unspecified function f :ℝN ℝN. Instead of knowing the exact 

functional form of f, we assume we know its underlying ecological network  = ( , ℰ), 

where  = {x1, ⋯, xN} represents the set of N species nodes, and there is a directed edge 

(xj → xi) ∈ ℰ if and only if species-j has a direct ecological impact (i.e., direct promotion or 

inhibition of growth) on species-i.

Controlling the microbial community consists in driving it from an initial state (e.g., a 

“diseased” state) towards the desired final state value (e.g., the “healthy” state). Consider 

M control inputs u(t) ∈ ℝM directly applied to certain species. This results in a controlled 

ecological network c = (  ∪ , ℰ ∪ ℬ), where  = {u1, ⋯, uM} represents the set of M 
control input nodes, and there is a directed edge (uj → xi) ∈ ℬ if any only if the j-th control 

input uj(t) directly control species-i. To model how the control inputs change the species 

abundance, we consider two different control schemes: continuous control and impulsive 

control. The continuous control scheme models a combination of prebiotics (if uj(t) > 0) and 

bacteriostatic agents (if uj(t) < 0) as continuous control inputs modifying the growth of the 

actuated species:

ẋ(t) = f(x(t)) + g(x(t))u(t), t ∈ ℝ .

The impulsive control scheme models a combination of transplantations (if uj(t) > 0) 

and bactericides (if uj(t) < 0) applied at discrete intervention instants T = t1, t2, ⋯  that 

instantaneously modify the abundance of the actuated species:

ẋ(t) = f(x(t)), if t ∉ T ;
x t+ = x(t) + g(x(t))u(t), if t ∈ T .

The function g:ℝN ℝN × M describes the direct susceptibility of the species to the control 

actions. The j-th control input control species-i if gij ≢ 0.

Identify the driver species: If we have an independent control input applied to each species 

(i.e., all species are directly controlled), of course the whole community can be driven to 

the desired state. This is far from being efficient or necessary. In fact, we can leverage the 

inter-species interactions encoded in the ecological network  to identify minimum sets of 

species that we need to manipulate in order to drive the whole community. Those species are 

called “driver species”.
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To identify the driver species, we need to introduce the notion of autonomous 

element, i.e., a constraint between some species abundances that the control input 

cannot break, confining the state of the community to a low-dimensional manifold. For 

example, considering a three-species community with GLV dynamics: ẋ1 = x1 −1 + x3 , 

ẋ2 = x2 1 − x3 , ẋ3 = x3 −0.5 + 1.5x3 , if we only control species-3, we will have an 

autonomous element ξ = x1x2, because ξ̇ = ẋ1x2 + x1ẋ2 = 0, confining the whole community 

to a low-dimensional manifold: x ∈ ℝ3 x1(t)x2(t) = x1(0)x2(0)  for any control input. If 

we control both species-3 and species-1 (or species-2), we can eliminate this autonomous 

element and hence control the whole system. So, species-3 and species-1 (or species-2) form 

a set of driver species.

In the general case of N species and M control inputs, we define a set of controlled 

species as a set of driver species if the corresponding controlled population dynamics {f, g} 

lacks autonomous elements. Note that for linear systems {f, g} = {Ax, B}, the absence of 

autonomous elements is equivalent to their controllability, i.e., the ability to drive the system 

between any two states in finite time, usually verified using Kalman’s condition: rank[B, 

AB, …, AN−1 B] = N. For nonlinear systems, the absence of autonomous elements defines 

the system’s accessibility130, which can be characterized using a mathematical formalism 

based on differential one-forms.

In reality, it is difficult to parameterize {f, g} that precisely models the controlled population 

dynamics of a microbial community. But we can still leverage the structure of the controlled 

ecological network of the community, i.e., c, to check if the controlled system has 

autonomous elements or not, and use the ecological network  to identify a minimum 

set of driver species. This is based on the notion of structural accessibility, which can be 

considered as a nonlinear generalization of structural controllability for linear systems131. 

Indeed, for linear systems ẋ(t) = Ax(t) + Bu(t), it is often hard to precisely measure the 

elements in A and B, but we can still use the structure of the controlled network (A, B) to 

check if the controlled system is controllable or not131, and use the network (A) to identify 

a minimum set of driver nodes132.

Consider the class  of all possible controlled population dynamics models {f*, g*} that a 

controlled community can have given we know its c. We call  structurally accessible if 

almost all of its base models {f*, g*} and almost all of their deformations lack autonomous 

elements. Mathematically, this definition means that except for some pathological cases 

with Lebesgue measure zero, all the controlled population dynamics models that the 

community may take have no autonomous elements. It has been proven that, regardless 

of the control schemes (continuous or impulsive),  is structurally accessible if and only 

if its corresponding controlled network c satisfies the following two graph-theoretical 

conditions: (i) each species is the end-node of a path that starts at a control input node; 

and (ii) there is a disjoint union of cycles (excluding self-loops) and paths that cover all 

species nodes. Surprisingly, the two graph-theoretical conditions for structural accessibility 

are almost the same as those for structural controllability. The key difference is that for 

structural controllability self-loops (corresponding to intrinsic nodal dynamics) can be used 
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to satisfy condition (ii). The graph-theoretical conditions of structural accessibility enable us 

to identify a minimum set of driver species efficiently from the ecological network .

We emphasize that the graph-theoretical conditions for the structural accessibility in the 

continuous and the impulsive control schemes are identical. This implies that those two 

control schemes can be equally effective. This result is really assuring, because for 

the human microbiome, apparently impulsive control is much easier to implement than 

continuous control.

Calculate the control inputs: Once we have identified a minimum set of driver species, 

we need to calculate the control inputs to be applied to driver species to steer the 

whole community towards the desired state. It turns out it is more efficient to calculate 

impulsive control inputs u tk , tk ∈ T , using the so-called model predictive control (MPC) 

approach133. Basically, from the current state of the community x(tk) at tk ∈ T , we predict 

the sequence of states Xk, L = x tk + 1 , ⋯, x tk + L + 1  that the community will take in 

response to a sequence of L impulsive control inputs Uk,L = {u(tk), ⋯, u(tk+L−1)}, based 

on the controlled population dynamics {f, g}. The prediction horizon L > 0 determines 

how far into the future we predict, which can be chosen based on {f, g}. Then, we choose 

u tk = u1* tk , which is the first element of the optimal control sequence Uk, L*  calculated as:

Uk, L* = argmin
Uk, L ∈ ℝM × L

Pxd Xk, L, Uk, L  subject to Uk, L ∈ Ω .

Here, Pxd is the cost function penalizing deviations of the predicted trajectory Xk, L from 

the desired final state xd. For example, we can define Pxd Xk, L, Uk, L = x tk + L + 1 − xd , 

representing the deviations of the predicted final state from the desired one. Ω ⊆ ℝM × L

specifies constraints in the control inputs. The above equation represents a finite-

dimensional optimization problem, which can be solved using algorithms like DIRECT134. 

By recalculating Uk, L*  at each tk using the actual state of the community, the MPC approach 

creates a feedback loop enhancing its robustness against prediction errors.

The above MPC approach has two limitations. First, it requires detailed knowledge of the 

controlling population dynamics {f, g}, which is hard to parameterize for large complex 

communities. Second, it requires us to solve a non-convex optimization problem, which is 

quite challenging for large N or L. These two limitations can be circumvented by leveraging 

the controlled ecological network c. In particular, we rewrite {f, g} = {Ax + wx, B + 

wu}, where A ∈ ℝN × N is a weighted adjacency matrix of the ecological network  (i.e., a 

proxy of the inter-species interaction matrix), B ∈ {0,1}N×M is a proxy of the susceptibility 

matrix, with bij = 1 if the j-the control input actuates the i-th driver species. In a sense, {Ax, 

B} provides a prediction of the community’s linear response to the control inputs, and wx 

and wu can be considered as perturbations. Using {Ax, B}, we can design a linear MPC 

by solving the finite-dimensional optimization problem with the following quadratic cost 

function:
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Pxd Xk, ∞, Uk, ∞ = ∑
i = k

∞
x ti − xd

⊤Q x ti − xd + u ti
⊤Ru ti .

Here, the positive definite matrices Q = Q⊤ ∈ ℝN × N and R = R⊤ ∈ ℝM × M are design 

parameters. In particular, Q penalizes the deviations of the predicted trajectory from the 

desired state, while R penalizes the control inputs magnitude. Then, the optimization 

problem can be solved in closed form yielding the linear MPC: u(tk) = K x(tk), where 

K ∈ ℝM × N is the solution of a Riccati equation. Since the Riccati equation can be 

efficiently solved for large N, the linear MPC can be calculated for large communities.

Caveats: This theoretical framework allows us to systematically and efficiently control 

complex microbial communities towards desired states. Despite the theoretical soundness, 

this framework has several caveats. Here, we list those caveats and point out possible 

solutions.

First, identifying the driver species of a microbial community requires knowledge of 

its underlying ecological network , which is highly nontrivial to infer for complex 

communities due to data informativeness issues (see Sec.3.3). Fortunately, it has been 

proven that once c is structurally accessible, it cannot lose its structural accessibility with 

additional edges added to it. Hence, we can identify the driver species from an “incomplete” 

ecological network (e.g., containing only high-confidence edges). Note that there could be 

multiple different minimum sets of driver species for the same ecological network. If the 

cost of choosing any species as a driver species is known, a combinatorial optimization 

scheme can be employed to select the best minimum driver species set.

Second, this framework is based on species-only PLMs, which do not explicitly model the 

dynamics of resources provided to and/or chemicals produced by the microbial species. 

For general resource-explicit PLMs, to identify their driver species (which can drive the 

system to desired species abundance profile), we need to analyze the notion of “output 

accessibility”, which characterizes the absence of autonomous elements in the species 

dynamics and ignores autonomous elements in the resource dynamics. Then, we need 

to extend the notion of “output accessibility” to “structural output accessibility” (i.e., 

generic output accessibility given an adequate base model), which serves as a nonlinear 

counterpart of linear target controllability135. Similarly, structural output accessibility could 

also allow us to identify “driver resources” (which can drive the system to desired resource 

concentration profile) by characterizing the absence of autonomous elements in the resource 

dynamics and ignoring autonomous elements in the species dynamics.

Third, for large communities with uncertain dynamics, the linear MPC approach offers a 

robust and efficient way to calculate the control inputs. However, its performance strongly 

depends on the choice of (A, B) and the distance to the desired state. In general, the linear 

MPC is guaranteed to succeed only if the desired state is “close enough” to the initial state. 

But how “close” or “far” to a desired state depends on how well the linear dynamics {Ax, B} 

approximates the true controlled population dynamics {f, g} of the community.
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Finally, this control theoretical framework requires very demanding control actions, e.g., 

increase or decrease the abundance of the driver species to a desired level at a given time. 

Those control actions are demanding because our control objective (i.e., precisely steering 

the whole community from an undesired/unhealthy state to a desired/healthy state) is very 

ambitious. Those control actions might not be feasible in reality, and implementing those 

actions requires detailed knowledge on the susceptibility of species to the various control 

actions. Moreover, for the human gut microbiome, implementing those control actions could 

be ethically questionable, because they might cause unintended consequence to the host. 

Numerical calculations have demonstrated that sometimes the control strategy succeeds in a 

very counter-intuitive way: although the driver species is more abundant in the final desired 

state than in the initial state, the initial control action is actually to decrease its abundance 

further126.

Practical control strategies—In most cases, controlling the human microbiome requires 

us to solve a less ambitious task than precisely steering the whole community to a desired 

state. For example, sometimes we just want to decolonize a particular pathogen (e.g., 

Clostridioides difficile), or steer the community to a particular community type (i.e., a 

densely populated area in the compositional landscape). In those cases, we can design more 

feasible control actions, e.g., a one-time transplantation of a well-defined consortium of 

species (“probiotic cocktail”).

Switch between different community types: Microbiome-based stratification of hosts into 

compositional categories, referred to as “community types” (or “enterotypes” in the case 

of gut microbiome), holds great promise for drastically improving personalized medicine. 

For example, the notion of enterotypes were originally proposed as distinct clusters in the 

compositional landscape of human gut microbiome that might respond differently to diet 

and drug intake136. Through standard cluster analysis, it was found that the gut microbial 

compositions of a human population display three distinct clusters (enterotypes), and each 

enterotype is a dominated by a particular genus (Bacteroides, Prevotella, or Ruminococcus) 

but not affected by gender, age, body mass index, or nationality of the host. However, 

a meta-analysis revealed smooth abundance gradients of key genera without discrete 

clustering of samples137. Hence, enterotype was a controversial concept as to whether 

human gut microbiome can be clustered into different types or just fall into a continuous 

gradient. Nowadays we usually do not consider enterotypes as distinct clusters (“islands”), 

but just as densely populated areas (“peaks”) in the compositional landscape138,139.

In principle the presence of community types could be explained by different mechanisms, 

e.g., the presence of true multi-stability140, or heterogeneous inter-species interactions76. 

Although the notion of true multi-stability has been well discussed in macro-ecological 

systems, its detection in host-associated microbial communities is rather difficult (see 

Sec.2.2) and has not been demonstrated experimentally30. Detection of heterogeneous inter-

species interactions or the presence of strongly interesting species (SIS) in the human 

gut microbiome has not been successful either, due to the data informativeness issue76. 

Nevertheless, it has been numerically demonstrated that heterogeneity in the interspecific 

interactions or the presence of SISs is sufficient to explain community types, independent of 
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the topology of the underlying ecological network. Moreover, by controlling the presence or 

absence of these SISs we can steer the microbial community to any desired community type. 

This open-loop control strategy still holds even when the community types are not distinct 

but appear as dense regions within a continuous gradient. The caveat is that target removal 

of those SISs could be a highly non-trivial task by itself. We may not have the specific 

narrow-spectrum antibiotics or phages that target each of those SISs effectively.

Decolonize pathogens: FMT has been successfully used in the treatment of recurrent 

Clostridioides difficile Infection (rCDI)16,141–148. Yet, the potential long-term safety 

concerns149 and the challenging donor recruitment and screening process150 have 

significantly limited the use of FMT. The development of live biotherapeutic products (LBP) 

containing only the effective components of FMT would alleviate these drawbacks largely 

due to the undefined nature of fecal preparations. However, such formulations are highly 

non-trivial. Many attempts have failed clinical trials151. Recent clinical trials provided some 

exciting results152,153. Yet, there is still much room for improvement. For example, the 

primary efficacy objective of one of the trials was to show superiority of the developed 

LBP as compared with placebo in reducing the risk of CDI recurrence153. It is unclear if 

the developed LBP outperforms FMT. In another trial, the LBP comprises 8 commensal 

Clostridia strains152. It is unclear if this one-size-fits-all approach works for all patients who 

presumably have very different baseline diseased microbiomes.

In order to decolonize a particular species (e.g., the pathogen Clostridioides difficile) from 

a community, targeting microbes that directly inhibit this species might have unintended 

consequences due to the network effect (see Sec.2.1). The complex network structure needs 

to be accounted for to design probiotic cocktails to decolonize a particular species from the 

microbial community.

To quantify the network effect in microbial communities32, let’s consider a metacommunity 

of N species labeled as Ω = {1, …, N}. We assume all samples or local communities 

obtained from this metacommunity share universal population dynamics, hence different 

local communities just differ by their initial species collections. Given a local community, 

labelled as ω, let’s assume that its population dynamics is described by the GLV model 

with A(ω) = aij
(ω) ∈ ℝn × n and r(ω) = ri

(ω) ∈ ℝn are the inter-species interaction matrix and 

intrinsic species growth rate vector of the local community ω, respectively. Here n = |ω| 

denotes the cardinality of the set ω. Consider two persisting species i and j (i.e., both 

species have non-zero steady-state abundances) in a local community ω. We can define 

the net impact of species-j on species-i in the local community ω as the independent 

contribution of species-j on the steady-state abundance of species-i. In other words, we 

can write the steady-state abundance of species-i as xi
* (ω) = ∑j ∈ ωsij

(ω), where Sij
(ω) is 

the independent contribution (i.e., net impact) of species-j. For the GLV model, we have 

sij
(ω) ≡ ( − 1)i + j + 1Mji

(ω)rj
(ω)/det A(ω) , where Mji

(ω) is the (j, i)-minor of matrix A(ω), and 

det(A(ω)) is the determinant of matrix A(ω). In particular, species j has a net inhibition 

(promotion or null) effect on species i in the local community ω if Sij
(ω) < 0 (> 0, or = 0, 

respectively). When the signs of aij
(ω) and sij

(ω) are different, this indicates a strong network 
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effect. Applying this approach to two published microbial community datasets77,108 found 

evidence of strong network effects both in vitro and in vivo.

Once we know the ecological network of a microbial community, as well as the diseased 

state due to a particular pathogen X, we can formalize an optimization problem to design a 

personalized probiotic cocktail to decolonize X. The key idea is to calculate the net impact 

of a tentative probiotic cocktail on the growth of X and keep refining it by removing those 

species that could have a positive net impact on the growth of X in the altered community32. 

First, we form a tentative probiotic cocktail containing all the effective inhibitors of X 

calculated from the global ecological network . Note that effective inhibitors include 

both direct and indirect inhibitors. But any species that already exists in the patient’s 

diseased microbiota will be removed from the initial cocktail. Second, for each species in the 

cocktail, we numerically test if it is still an effective inhibitor (i.e., has a negative net impact 

on the growth of X) in the altered local community (that contains all species in the patient’s 

diseased microbiota and all species in the current cocktail). If yes, we keep it in the cocktail; 

if no, we remove it. We repeat this process until all the species in the cocktail are indeed 

effective inhibitors in the altered local community. Finally, we are left with a minimal set of 

species, i.e., the optimal probiotic cocktail, which can effectively inhibit the growth of X for 

this particular disrupted microbiome (“patient”).

Applying the same algorithm to another “patient”, we will obtain another optimal probiotic 

cocktail. Note that the two optimal probiotic cocktails are naturally patient-specific or 

“personalized”, because they are designed based on the present species in each patient’s 

diseased microbiota.

Note that in case the global ecological network  of the metacommunity is unknown (which 

is unfortunately the case for the human gut microbiome), we can leverage the ego network 

of X to design a near-optimal personalized probiotic cocktail to decolonize X. Here the ego 

network of X consists of the focal node/species (“ego”, i.e., the pathogen X), those nodes/

species to which X directly interacts with (they are called “alters”), the links/interactions 

between X and its alters, as well as the links/interactions among the alters. The algorithm to 

design a probiotic cocktail based on the ego network of X is very similar to the algorithm 

based on the global ecological network. The only difference is that we need to construct the 

initial tentative probiotic cocktail based on the ego network, rather than the global ecological 

network.

The above probiotic cocktail design strategy has been applied to analyze the ecological 

network involving the so-called GnotoComplex microflora (a mixture of human commensal 

bacterial type strains) and Clostridioides difficile32 (Fig.4). This network was inferred from 

mouse experimental data78 with the assumption that the microbial community follows 

the GLV model. Based on the ecological network and the disrupted microbiota, we can 

design probiotic cocktails to effectively decolonize C. difficile. Numerical calculations 

demonstrated that the optimal probiotic cocktail Rglobal (designed based on the whole 

ecological network and the specific disrupted microbiota) can strongly suppress the 

abundance of C. difficile. Even the cocktail Rego designed based on the ego-network 

of C. difficile can suppress the abundance of C. difficile to a much lower level than 
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that of the diseased state. Although the result is about an enteric pathogen, we believe 

that it demonstrates the advantages of the network-based design of probiotic cocktails in 

decolonizing generic pathogenic species for other body sites, e.g., Streptococcus mutans in 

the oral cavity.

This probiotic cocktail design strategy has a clear limitation. The quantification of net 

impact of a species on the growth of the pathogen and the design of optimal personalized 

probiotic cocktails are largely based on the GLV model (which assumes linear functional 

response and pairwise microbial interactions). For more complicated population dynamics 

models with nonlinear functional response or higher-order interactions, it is still an open 

question how to analytically calculate the net impact.

OUTLOOK

The modeling and control framework discussed in this article has a strong flavor of 

community ecology, dynamical systems, network science, and control theory. However, to 

fully harvest the benefits of controlling the human microbiome, insights and tools from other 

disciplines will be very helpful. Here, we point out a few promising directions that require 

interdisciplinary synergy.

Towards more realistic control actions

In the control theoretical framework discussed in Sec.3.4.1, we considered four different 

control actions (prebiotics and bacteriostatic agents that modify the growth of the 

actuated species; probiotics and bactericides that directly modify the abundance of the 

actuated species) to steer microbial communities to desired compositions. In practice, the 

administration of prebiotics or probiotics or both (which is often called synbiotics, i.e., the 

combination of prebiotics and probiotics that work synergistically) is more realistic. How 

to design control strategies based on a particular choice of control action or a particular 

combination of them is an outstanding question that merits further investigation. Given the 

existing generic control theoretical framework, this presumably should be a low-hanging 

fruit.

Integrate taxonomic and functional data

To design control strategies for the manipulation of microbial compositions, current 

modeling frameworks of microbial communities typically start with a minimal dynamical 

model of species abundances to facilitate the parameterizing procedure, which thus does 

not explicitly model any functional changes of the communities. Further efforts should be 

dedicated to integrate both taxonomic and functional data to provide more comprehensive 

control strategies. For example, we can shift the control goal from the manipulation of 

microbial compositions to the manipulation of microbial functions (e.g., the secondary 

bile acid metabolism, the production of certain short-chain fatty acids, the digestion of 

lactose, and the generation of toxins). How to design safe microbiome-based therapeutics 

(e.g., personalized synbiotics) to effectively manipulate microbial functions in the long-run 

remains an open question. Metabolic control analysis154, a tool for designing strategies 
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to manipulate metabolic pathways, might be useful. Development of bioreaction control 

systems could also be inspirational, at least from the conceptual perspective155.

Integrate microbiome and host data

All the modelling approaches discussed in Sec.3.1 focus on the dynamics of the microbiome 

itself, and do not explicitly model the impact of microbial dynamics on the host. Recently, a 

microbiome-immune system mathematical model was proposed to describe the activation of 

regulatory T-cells (Treg) in response to colonization profiles of Treg-stimulating Clostridia 

strains156. This model integrates a microbiome ecological model that describes the short and 

long-term temporal dynamics of Clostridia strains in germ-free mice78 and a microbiome-

Treg model of CD4+FOXP3+Treg activation in response to long-term compositions in 

the microbiome. This pioneering work should inspire more research activities to integrate 

microbiome and host data, and to make the control goals more host-oriented (i.e., 

maximizing a desired host phenotype).

Data-driven control

Control strategies discussed in this review article are based on certain population dynamics 

models. Yet, parameterizing those dynamics models is a challenging task by itself. One 

way to circumvent this intrinsic challenge of any model-based control framework is to 

adopt a data-driven control framework157,158. Facilitated by recent advances in machine 

learning and artificial intelligence, data-driven control of dynamical systems has attracted 

a great deal of research interest over the last few years. In macro-ecosystem forecasting, 

the so-called empirical dynamic modeling (EDM) has been proposed as a data-driven 

(or equation-free) alternative to imposed model equations and offered more accurate and 

precise forecasts159. For microbial systems, the EDM approach has also been used to infer 

inter-species interactions from longitudinal microbiome data160. Recently, a deep-learning 

method (cNODE: compositional Neural Ordinary Differential Equations) was developed 

to predict microbial composition from steady-state species assemblage without assuming 

any microbial dynamics161. The long short-term memory (LSTM), a representative type 

of recurrent neural networks capable of learning order dependence in sequential or time-

series data, has been applied to longitudinal species abundance data of synthetic microbial 

communities, and demonstrated better performance than the GLV model in predicting 

species abundances162. These deep-learning approaches hold great promise in data-driven 

control of the human microbiome. We anticipate that data-driven forecast and control of the 

human microbiome will be heavily studied soon. Indeed, the unprecedented availability of 

metagenomics sequencing data offers a great opportunity for us to better understand, predict, 

and, ultimately, control the behavior of the human microbiome.

Experimental validation.

Advances in culturomics71 will certainly facilitate the validation of control strategies 

for in vitro synthetic communities. Several in vitro continuous culture systems (e.g., 

SHIME163: Simulator of the Human Intestinal Microbial Ecosystem, HuMiX164: human-

microbial crosstalk; and a human gut-on-a-chip microdevice165) have been developed. 

In particular, HuMiX and gut-on-a-chip can model microbiota-host interactions. Those 

culture systems would be extremely valuable to test control strategies, despite an important 
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challenge still lies in further increasing their high-throughput analyses capacity166. In a very 

recent breakthrough, hCom1, a defined community of 104 gut bacterial species, was first 

constructed and characterized in vitro, and then augmented in vivo (by filling open niches) 

to form hCom2, a defined community of 119 species167. Up to our knowledge, this is the 

largest synthetic community designed so far that can serve as a model system of the human 

gut microbiome. We expect that this work will not only enable us to test many classical 

hypotheses in community ecology, but also trigger many mechanistic studies to reveal the 

critical roles of gut microbiome in human diseases. The ecology-based in vivo augmentation 

strategy developed by the authors is very insightful. It will inspire other researchers to 

design similar (and perhaps even larger) synthetic communities to model the human gut 

microbiome. Ultimately, we need carefully designed animal experiments and clinical trials 

to validate those proposed control strategies. Both pharmacokinetic and pharmacodynamics 

need to be carefully studied152. In the context of microbiome-based therapeutics (e.g., 

a defined probiotic cocktail or more precisely LBP), pharmacokinetics concerns the 

abundance of LBP strain colonization, proportion of LBP consortium strains colonizing 

a given host, and persistence of LBP strain colonization, while pharmacodynamics concerns 

the ecological impact of the LBP on the host resident microbial communities.

Finally, we hope this review article will catalyze more collaborative works between 

modelers, microbiologists, and clinicians. Given the advances in various disciplines, we 

anticipate that more interdisciplinary approaches will be developed to further enhance our 

ability to control the human microbiome.
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Figure 1: The ecological network associated with a microbial community can have two different 
representations with different levels of complexity.
a, The first representation is a bipartite graph connecting two types of nodes: microbial 

species and chemical compounds (e.g., nutrients, metabolites, signaling molecules, toxins, 

etc.). Species can consume or produce consumable chemical compounds (e.g., metabolites); 

while reusable chemical compounds (e.g., signaling molecules and toxins) can stimulate or 

inhibit the growth of species21. b, The second representation is a unipartite graph where 

nodes represent microbial species and edges represent pairwise inter-species interactions. 

One species can promote or inhibit the growth of another species. The unipartite graph 

can be considered as a projection of the bipartite graph onto the species nodes. Although 

the projection is not perfect, it does simplify the network reconstruction problem. Figure 

courtesy of Dr. Xu-Wen Wang.
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Figure 2: The human gut microbiome is highly personalized and very stable.
a, The taxonomic profile of the human gut microbiome varies a lot across different 

individuals. Here the stacked bar chart demonstrates the phylum-level gut microbial 

compositions of ~200 healthy adults in the HMP cohort1. b, The taxonomic profile of 

the human gut microbiome is highly dynamic but very stable. In the absence of drastic 

interventions, the human gut microbiome can be considered as a dynamically stable 

ecosystem, continually buffeted by internal and external forces and recovering back toward 

a conserved steady-state38. Here the stacked bar chart demonstrates the daily phylum-level 

gut microbial compositions of a healthy adult over ~200 days in the Moving Picture study39. 

Figure courtesy of Dr. Xu-Wen Wang.
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Fig. 3: A control theoretical framework.
a, A toy community of N = 3 species (green, yellow, blue) with microbial interactions 

encoded in an ecological network . The controlled ecological network c contains one 

control input driving species-3. b, Initial and desired abundance profiles shown in stacked 

bars. The control objective is to steer the community from the (undesired) initial state x0 

to the desired final state xd, represented by two points in the state space of the system. c, 

In the continuous control scheme, the control inputs u(t) are continuous signals modifying 

the growth of the actuated species. d, In the impulsive control scheme, the control inputs 

u(t) are impulses applied at the intervention instants T = t1, t2, ⋯ , instantaneously changing 

the abundance of the actuated species. e, A minimum set of driver species can be identified 

from the ecological network  by checking the graph-theoretical conditions of structural 
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accessibility. Here, we show an ecological network involving the GnotoComplex microflora 

(a mixture of human commensal bacterial type strains) and C. difficile, inferred from mouse 

data (assuming the GLV model). Red (or blue) edges indicate the direct promotion (or 

inhibition), respectively. The five driver species are driven by five independent control 

inputs. f, Projection of the high-dimensional abundance profiles (states of the microbial 

communities) into their first three principal components (PCs). The calculated control 

strategies applied to the driver species succeed in driving the community to the desired 

state, using either continuous or impulsive control. Here, the controlled population dynamics 

is simulated using the controlled GLV equations. The intrinsic growth rates were adjusted 

such that the community has an initial “diseased” equilibrium state x0 in which C. difficile 
is overabundant compared to the rest of species. We chose the desired state xd as another 

equilibrium with a more balanced abundance profile. Figure adapted and modified from 

Ref.126.
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Fig. 4. Personalized probiotic cocktails effectively decolonize C. difficile.
a, An ecological network involving the GnotoComplex microflora (a mixture of human 

commensal bacterial type strains) and C. difficile was inferred from mouse data. Red 

(or blue) edges indicate the direct promotion (or inhibition), respectively. b, A disrupted 

microbiota due to a hypothetic antibiotic administration. c, The restored microbiota due to 

the administration of a particular probiotic cocktail Rglobal. d, The trajectory of C. difficile 
abundance over three different time windows: (1) the initial healthy microbiota, (2) the 

disrupted microbiota, and (3) the microbiota post probiotic administration. In the third 

time window, we compare the performance of various probiotic cocktails in terms of their 

ability to decolonize C. difficile. Those cocktails were designed by considering the global 

ecological network (Rglobal), the ego-network of C. difficile (Rego), and randomly chosen 

subsets of Rglobal (R1, R2 and R3). Rnear–optimal is obtained by excluding species-12 (i.e., 

K. oxytoca, which is an opportunistic pathogen) from Rglobal. e-h, We start from the same 

initial microbiota as shown in (a), but another hypothetic antibiotic administration leads to a 

different disrupted microbiota (f), which can be restored through another probiotic cocktail 

(g). Performance of different probiotic cocktails in decolonizing C. difficile vary (h). Note 

that since the disrupted microbiota (f) is different from that shown in (b), the optimal 

cocktail Rglobal in (h) is also different from that shown in (d). Figure adapted and modified 

from Ref.32.
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